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Effect of the Interphase Zone 
on the Bulk Modulus of a 
Particulate Composite 
An exact solution is found for the problem of hydrostatic compression of an infinite 
body containing a spherical inclusion, with the elastic moduli varying with radius 
outside of the inclusion. This may represent an interphase zone in a composite, or 
the transition zone around an aggregate partiele in concrete, for example. Both the 
shear and the bulk moduli are assumed to be equal to a constant term plus a power- 
law term that decays away from the inclusion. The method of Frobenius series is 
used to generate an exact solution for the displacements and stresses. The solution 
is then used to estimate the effective bulk modulus of a material containing a random 
dispersion of these inclusions. The results demonstrate the manner in which a local- 
ized interphase zone around an inclusion may markedly affect both the stress concen- 
trations at the interface, and the overall bulk modulus of  the material. 

1 Introduction 

The behavior of many composite materials is known to be 
greatly affected by the interface between the matrix and the 
inclusions. The earliest analyses of the mechanical behavior of 
composites assumed that the two components are both homoge- 
neous, and that the components are perfectly bonded across a 
sharp and distinct interface (Eshelby, 1957; Hashin and Shtfik- 
man, 1961 ). Later models considered the effect of sliding across 
the interface (Aboudi, 1989; Jasiuk et al., 1992), debonding 
between the inclusion and matrix (Benveniste, 1984), and other 
effects. In some materials, the components are well bonded 
to each other, but the interface is not sharp. In polymer-fiber 
composites, for example, as well as in some metal-matrix com- 
posites, diffusion of material between the matrix and fiber may 
create an elastic moduli profile that smoothly varies from that 
of the fiber to that of the matrix (Theocaris, 1992). In some 
polymer composites, a binding agent is applied to the fibers to 
promote adhesion between the fiber and the matrix (Drzal et 
al., 1983). This binding agent may diffuse into the matrix during 
the curing process, leading to a gradient in resin concentration. 
This gradient, in turn, leads to a gradient in the elastic moduli. 

In other cases, such as the transition zone around concrete 
(Mehta and Monteiro, 1992), the moduli of the matrix varies 
as the inclusion particle is approached, but the interface with 
the inclusion is still distinct, since the inhomogeneous region is 
restricted to the matrix phase. Nonuniformities in the hydration 
process, caused by adhesion of water films to the aggregate 
(inclusion) particles, leads to a "transition zone" that is charac- 
terized by an increase in porosity near the inclusions, along with 
other microstructural differences. Although little quantitative 
analysis has been done to study the elastic moduli in this zone, 
it seems clear that one effect will be to cause the elastic moduli 
of the cement paste to decrease near the inclusions, as compared 
to their values in pure cement paste. 
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The types of materials described above cannot be adequately 
modeled without accounting for the variation of elastic moduli 
with radial distance from the center of the inclusion. This is 
particularly true with regard to localized phenomena such as 
stress concentrations. In this paper, we solve the problem of 
hydrostatic compression of a body containing a spherical inclu- 
sion, with a radially symmetric elastic moduli profile outside 
of the inclusion. This solution is then used to estimate the effec- 
tive bulk modulus of a body containing a random dispersion of 
such inclusions. 

2 Previous Models of Interphase Zones 

Recognition of the importance of modeling the "interphase 
zone" in composite materials has existed for some time. Hashin 
and Rosen (1964) developed a model for composites in which 
a thin layer existed outside of each inclusion. The elastic moduli 
were uniform within this layer, but different from those in the 
matrix or inclusions. Use of this model for a material with an 
inhomogeneous interphase will be problematic, however, as it 
is not clear how one would choose a single pair of effective 
elastic moduli to represent the entire interphase region. And 
whereas this model may be useful in predicting the overall 
moduli of a composite with an inhomogeneous interphase, it is 
incapable of properly estimating the effect that the property 
gradient has on stress concentrations (see Jayaraman and Reif- 
snider, 1992, Fig. 5, for example). 

A number of researchers have attempted to account for varia- 
tions of the moduli within the interphase zone. Jayaraman and 
Reifsnider (1992) considered a transition zone outside of a 
cylindrical inclusion, and allowed the moduli to vary according 
as r ' ,  where/3 is some constant. As this variation would lead 
to the moduli vanishing (or blowing up) far from the inclusion, 
it was necessary to assume that the interphase zone terminated 
at some specified distance from the inclusion, beyond which 
lay the "undamaged" matrix material. In this approach, solu- 
tions valid in the interphase region and exterior to the interphase 
must be joined together by matching up the tractions and dis- 
placements at the interphase/matrix boundary. This model is 
more general than the three-shell model of Hashin and Rosen 
(1964), in that it allows the moduli to vary within the interphase 
zone. Our model is similar to that used by Jayaraman and Reif- 
snider (1992), except that the moduli will vary continuously 
throughout the entire region outside of the inclusion. Further- 
more, we will be considering particulate composites with spheri- 
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ca1 inclusions, rather than fiber composites with cylindrical in- 
clusions. 

3 Governing Equations for Radially Symmetric De- 
formations 

The derivation of the governing equation for radially symmet- 
ric elastic deformation of a body whose moduli vary with radius 
have been given by Herve and Zaoui (1993), Lutz and Ferrari 
(1993), and others, and will be reviewed here briefly; an analo- 
gous derivation for axisymmetric deformations in cylindrical 
coordinates has been given by Kwon et al. (1994). The dis- 
placement vector will have only one nonzero component, ur, 
which will vary only with the r coordinate. Since there is only 
one nonzero displacement component, the subscript r can be 
dropped, and the displacement vector can be written as 

u = [ur(r ,  O, 05), ue(r,  O, 05), ue,(r, O, 05)] = [u(r) ,  0, 01. 

(1) 

The only nonzero components of the strain are (Sokolnikoff, 
1956, p. 184): 

du u 
err = . . . .  , (2) dr  ' coo e ~  r 

where total derivatives can be used, since u does not depend 
on 0 or 05. Two of the three equations of stress equilibrium are 
identically satisfied; the third takes the form (Sokolnikoff, 1956, 
p. 184) 

drr__._.~ + 2r~r - roe - %~ = 0. (3) 
d r  r 

The stress-strain equations take the usual form for an isotropic 
material: 

rrr = k(er~ + Coo + %~) + 2#err, (4a) 

rot = k(e~, + coo + e~,~) + 2#Coo, (4b) 

re, ¢ = k(er~ + coo + e~4,) + 21.ze~¢. (4c) 

These stress-strain relations remain valid even if the moduli 
vary with position. 

The stress-displacement relations are found by eliminating 
the strains from Eqs. (2) and (4): 

du u 
rr~ = (k + 2>) dr + 2h r ' ( 5 a )  

= = k d u  + 2(X + ~)_u (5b) 
7-0o r 4, 4, dr  r ' 

Finally, we substitute the expressions for the stresses given by 
Eq. (5) into the equilibrium Eq. (3), and allow the moduli k 
and # to vary with r. This leads to the following equation that 
governs radially symmetric deformations: 

(k + 2tz) --:-- + 2k + - -  - = 0 ,  (6) 
r 7 ;  

which can also be written as 

[ d 2 u 2 d u  2 ]  
[k(r)  + 2#(r)] [ d r  2 + r dr  r 2 u 

du  u 
+ [k ' ( r )  + 2# ' ( r ) ]  ~ r  + 2k ' ( r ) - r  = 0, (7) 

where the prime ( ' )  denotes differentiation with respect to r. 
If both k and # were uniform, only the term inside the large 
brackets would remain; this is the classical equation for radially 

[ 
Inclusion ', Interphaae matrix 

,u,m 

Fig. 1 Schematic diagram of the moduli variation described by Eq. (8). 
In this figure the interphase zone is a damage zone in which the moduli 
are less than in the pure matrix material, 

symmetric deformations that was solved by Lam6 in 1859 (see 
Rekach, 1979, pp. 50-51) .  

In the problem at hand, the moduli in the matrix vary 
smoothly with radius, and approach those of the "pure matrix" 
component as r --+ c~. In general, the precise variation of the 
moduli will not be known, although some measurements suggest 
a power-law behavior (Theocaris, 1986, 1992). The main re- 
quirements of the assumed modulus variation are that it decay 
away from the interface, and asymptotically level off to some 
constant value. Furthermore, we would like the values of the 
moduli at the interface and at infinity to be controllable parame- 
ters, and would also like to be able to control the extent of the 
interphase zone. Finally, it will be convenient if the moduli 
vary in such a way that the governing equation is of the form 
that can be solved by the method of Frobenius, as done by Lutz 
and Ferrari (1993) for the problem of a radially inhomogeneous 
sphere. Bearing these factors in mind, we assume that the mod- 
uli vary according to (see Fig. 1 ) 

k ( r )  = ~k m @ (~k t f -  k m ) ( r / a )  - ~ ,  (8a) 

# ( r )  = #m + (I.Zo ~ -- # , , ) ( r / a )  -p ,  (8b) 

where a is the radius of the inclusion, the subscript m refers to 
the pure matrix component, and the subscript /f refers to the 
interface with the inclusion. The parameter/3 controls the rate 
at which the moduli decay away from the inclusion; larger 
values of/3 correspond to interphase zones that are more local- 
ized. It will be seen below that/3 must be an integer in order 
for the Frobenius theory to apply. As the moduli variations are 
never known precisely, restricting/3 to integer values poses no 
serious limitation, in practice. Note that as { hm, k~, #m, #g} are 
all independently variable, the Poisson ratio of the interphase 
zone is not restricted to be constant, as it has been in some 
previous models. For notational convenience, we now rewrite 
Eq. (8) as 

k(r)  = hm + Xr -~ ,  (9a) 

/.z(r) = #m + ~r -p, (9b) 

where X = (k¢ - km)a ~, and ~ = (#o~ - #,.)a p. 

4 Solution of Governing Equation for an Inhomoge- 
neous Matrix 

An analytical solution to Eq. (7) can be found using the 
classical method of Frobenius series. This method has pre- 
viously been used by Lutz and Ferrari (1993) to solve the 
problem of an inhomogeneous sphere under hydrostatic loading, 
and by Mikata (1994) to find the thermal stresses in a fiber 
composite with an inhomogeneous interphase zone. If we substi- 
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tute Eq. (9) into Eq. (7) ,  and then multiply through by r ~, the 
result is a second-order, linear ODE with variable coefficients, 
which can be written in standard form (Boyce and DiPrima, 
1969, p. 177) as 

P(r )  d2u du 
dr 2 + Q(r)  --dTr + R ( r ) u  O, (10a) 

P(r )  = (h + 2,~) + (k,, + 21.Zm)r ~, (10b) 

Q(r)  = 2 P ( r ) r  - l -  /3(~ + 2~) r  1, (10c)  

R(r )  = - 2 P ( r ) r  -2 - 2/3kr -2. ( lOd) 

For physically realistic values of the various moduli parameters, 
this equation will have a regular singular point at r = 0, since 
P(r )  is analytic at the origin, Q(r)  has a pole of order one, 
and R(r )  has a pole of  order two. Hence, the equation could be 
solved by a Frobenius series expansion about r = 0. However, as 
the matrix occupies the region r > a,  it seems more natural to 
expand the solution about r = ~ ,  which is also a regular singular 
point of Eq. (10).  By expanding about r = ~ ,  a solution can 
be found that is in a sense a perturbation of  the known solution 
for a homogeneous matrix. 

We therefore first let t = l / r ,  which has the effect of trans- 
forming the singular point at r = ~ to the origin t = 0 (Codding- 
ton, 1961, pp. 180-181) .  The coefficients P(r ) ,  Q(r ) ,  and 
R(r )  in Eq. (10) transform by simply replacing r with I / t ,  
whereas the derivatives of u ( r )  transform according to the chain 
rule, as follows: 

du _ da dt _ - 1 dff _ t2 dt~ ( 11 ) 
dr dt dr r 2 dt dt ' 

d2u - t2  d [ - t 2 d ~ l  t4dZtg+ 2t 3dIS (12) 
dr 2 dt dt 2 dt 

where we distinguish between the two functions u(r)  and a(t)  
-= u( 1/r) .  The resulting differential equation for a(t)  is 

P( t )  d2t~ + (~(t) da 
dr--- T ~ + /~(t)t~ = 0, 13a) 

P( t )  = (L,, + 2#m) + (~ + 2~)t  v, 13b) 

(~(t) = /3(k + 2~)t  ~-1, 13c) 

/~(t) = - 2 ( k , ,  + 2#,,,)t 2 _ 2[~(/3 + 1) + 2~]t  ~-2. (13d)  

If /3 is a non-negative integer, Eq. (13) will have a regular 
singular point at t = 0, in which case we look for general 
solutions of  the form 

a(t) = ~ c.t  "+", (14) 
n=0  

where the C, are constants, and m is a parameter that is a priori 
unknown. We now substitute the series given by Eq. (14) into 
Eq. (13),  multiply out all the terms, and group together terms 
that are multiplied by the same power of  t, to arrive at 

(h,,, + 2#m)[(n + m - 1)(n + m) - 2]C,,t ..... -2 
n - 0  

+ ~ {[(h  + 2~)(n  + m - 1)(n  + m) 
n=O 

+ / 3 ( n  + m ) - 2 ] - 2 ~ X } C , t  . . . . .  v - 2 =  0. (15) 

In order for a power series to sum to zero, the coefficient of 
each power of t must vanish identically. Since /3 > 0, the 
lowest-order term appearing anywhere in Eq. (15) is t ' ' -2,  

which occurs in the first sum when n = 0. Setting the coefficient 
of  this term equal to zero leads to the indicial equation 

(m - 1)m - 2 = 0. (16) 

The two roots of  the indicial equation are mL = - 1 and m2 = 
2. Usually, each of the two roots leads to a different power 
series solution. The case where the two roots differ by an inte- 
ger, however, is a special case that usually causes one of the two 
linearly independent solutions to have a logarithmic dependence 
(see, for example, Mikata, 1994). However,  it so happens that 
our problem is a special subcase again, in which two indepen- 
dent power-series solutions do exist. When this occurs (see 
Butkov, 1968, p. 147), both solutions can be found by using 
the smaller of the two indices, which is - 1 .  It is difficult to 
see a priori that this special subcase will occur, other than by 
attempting to find the logarithmic solution, and determining that 
it vanishes. In order to present the solutions in as succinct a 
manner as possible, we will derive both solutions using the 
index mx = - 1. 

With m = - 1 ,  Eq. (15) takes the form 

(X,,, + 2#m)n(n - 3)C~t "-3 
n=0  

+ ~ {(X + 2~)[n  2 - (3 + /3)n + 2/31 
n=~3 

- 2/3X}C,,_~t "-3 = 0, (17) 

where we have rewritten the second sum in terms of t" 3, in 
order for it to be of the same form as the first. We now set the 
coefficient of  each power of t equal to zero, starting with the 
lowest power, which occurs when n = 0. In order to avoid 
discussing special cases, we now limit our treatment to values 
of /3  > (mz - ml) = 3. This restriction causes no real loss of 
generality, since relevant values of /3  are probably very large. 
For example, Theocaris (1986) fitted power-law-type curves to 
elastic moduli in an interphase zone in a set of E-glass fiber- 
epoxy resin composites, and found values of/3 on the order of 
100. Values o f /3  <- 3 would correspond to interphase zones 
whose thicknesses are larger than the inclusion radius. 

For all values of  n from 0 to/3 - 1, only the first summation 
contributes a t "-3 term. Because of  the appearance of n (n - 3) 
in the first summation, we see that Co and C3 can be arbitrary; 
all other values of  C,, for n -< /3 - 1, must vanish. For n --- 
/3, setting the coefficient of t "-3 equal to zero in Eq. ( 17 ) yields 
a recursion relation between C,, and C,_~: 

C , =  - { ( ~  + 2 ~ ) [ n 2 - ( 3 + / 3 ) n +  213]-213~}C'-~,  (18) 

n(n  - 3)(kin + 2#,,) 

which can also be written as 

- { ( X  + 2~)[n  z + (fl - 3)n - / 3 ]  - 2/3X}C,, 
G,+~ = (19) 

(n + / 3 ) ( n  + /3  - 3)(km + 2#m) 

Equation (19) shows that the arbitrary constant Co will generate 
nonzero constants C,,  C=,, etc., whereas the arbitrary constant 
C3 generates CB+3, C2~+3, etc. Hence we have two linearly 
independent solutions of  the forms 

& ( t )  = t -~ ~ G,;¢ "~, (20) 

a2(t) = t -1 ~ Cne+3t he+3. (21) 
n=O 

In order to simplify subsequent calculations, we note from Eqs. 
(9) ,  (18) that since all the moduli with overbars actually con- 
tain a factor a e, a factor of a" can be factored out of each C,,; 
hence, we define Fn = C,,a-". Next, we revert back to the 
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physical variable r, by substituting t = 1/r in Eqs. (20), (21), 
in which case the two independent solutions can be written as 

o* 

u , ( r )  = r Y~ F.~(a/r)  ~ ,  (22) 
n = 0  

u2(r) = r ~ I-'nB+3(a/r) ~'°+3, (23) 
n = 0  

where the F,, are found from the recursion formula (18), with 
replaced by hg - kin, g replaced by "ag - ,am, and F0 = I-'3 

= 1. The general solution outside of the inclusion is therefore 
given by 

u(r )  = AlUm(r) + A2u2(r), (24) 

where the two constants A~ and A2 will be chosen so as to satisfy 
the boundary conditions. Before doing this, however, we briefly 
discuss the convergence of the two series solutions. 

5 Convergence of the Solutions 
To test the convergence of the series solutions, the ratio test 

can be applied to pairs of successive nonzero terms. For each 
of the two solutions, Eqs. (9), (18), (22), (23) can be used 
to show that the limit of the absolute value of the ratio of two 
successive nonzero terms is given by 

F.+~( a/  r ) . . . . .  ~ ] 
lim I , , ~  F.(a/r).+,----------------~ [ 

: I(h~ + 2"a~y) - (Xm + 2"am)] (a/r)~" (25) 
Ibm + 2"aml 

In order for the series to converge for all r -> a, which is to 
say for the entire region outside of the inclusion, we need 

I(hll + 2'a~y) - (hm + 2'am)l 
< 1. (26) 

I(h,. + 2"am)l 

But h + 2'a = K + 4'a/3, where K is the bulk modulus, and as 
all stable solids have positive values of K and "a, it is expected 
that h,, + 2'am > 0. Hence, Eq. (26) is equivalent to the condi- 
tion 

0 < (h e + 2'a,y) < 2(hm -q- 2"am). (27) 

The combination M = h + 2"a is the elastic modulus that governs 
the velocity of compressional waves. The condition that M be 
non-negative throughout a body is sufficient to guarantee the 
existence of solutions to certain elastostatic boundary value 
problems (Gurtin, 1972, pp. 102-110). Hence it is plausible 
that a nonpositive value of the compressional wave modulus at 
the interface between the matrix and the inclusion will prevent 
the series solution from converging. However, as mentioned 
above, it is expected that the condition his + 2"a~ I > 0 will 
always be satisfied. As all the moduli { h, 'a, K, M, etc. } are 
assumed to have the same r -~ dependence, we see that the 
series will converge for all cases where the elastic moduli are 
lower in the interphase zone than in the undisturbed matrix 
material. 

Equation (27) also implies, however, that the series will not 
converge if the modulus M~. is more than twice as large as the 
compressional wave modulus of the pure matrix. As there is 
nothing physically unrealistic about having Me > 2Mm, we 
would expect a solution to exist in these cases. The reason that 
the series fail to converge is related to the fact that, for large 
n, the series essentially behaves as power series in the parameter 
(M e - Mm)/Mm; this can be seen from Eq, (18). Since power 
series always converge inside some disk in the complex plane, 
and diverge outside of that disk, the existence of a physical 
singularity at (M e - Mm)/Mm = - 1  causes the series to diverge 
when ( M  e - Mm)/Mm > + 1. A similar situation arose in the 

solution of the problem of compression of a radially inhomoge- 
neous sphere (Lutz and Ferrari, 1993), The difficulty can be 
circumvented by subjecting the series solution to an Euler trans- 
formation (Hinch, 1991; Lutz and Ferrari, 1993), which trans- 
forms the divergent series into a convergent one. The method, 
although cumbersome, is straightforward, and for computational 
purposes is readily implemented on a computer. For illustrative 
purposes, therefore, only cases for which Me < 2Mm will be 
considered, in which case the Euler transformation is not 
needed. 

6 Spherical Inclusion in an Inhomogeneous Matrix 
Using the general solution for the displacements in the matrix 

region r > a, we now solve the problem of a homogeneous 
spherical inclusion inside a radially inhomogeneous matrix 
whose moduli vary according to Eq. (9), subjected to uniform 
hydrostatic pressure of magnitude P at infinity. The subscript i 
will be used to denote the elastic properties of the inclusion. In 
the matrix region r > a, the solution will be of the form given 
by Eq. (24), with appropriate choices for the constants A~ and 
A2. In the inclusion, the solution will have the form appropriate 
for radially symmetric deformations of a homogeneous material 
(Rekach, 1979): 

u(r )  = Bir + Bzr -2. (28) 

Four boundary conditions are needed to determine the four 
constants {A1, A2, B1, B2 }. These conditions are that ~'rr(r) --' 
P as r ~ % ~-rr(r) and u(r )  must be continuous at r = a, and 
u(r )  must be finite as r --, 0. 

The condition at r = 0 shows that B2 = 0. To apply the 
condition rrr(r) --' P as r ~ 0% we need expressions for the 
stresses r)r(r)  and "rZr(r) that are associated with the displace- 
ments ul(r)  and u2(r).  From Eq. (5a) and Eqs. (22), (23), 
we find 

~-)~(r) = [3h(r) + 2#(r)] Y, F.~(a/r)  "~ 
n = O  

to 

- [k(r)  + 2#@)] ]~ n ~ F . , ( a / r )  "~, (29) 
n=o 

7-%@) = [3h(r) + 2#(r)] ~ F.~+3(a/r) "~÷3 
/ l=0  

- [h(r)  + 2#(r)] ~. (nl3 + 3)F.~+3(a/r)  "~+3, (30) 
n=0 

where k ( r )  and #(r) are given by Eq. (9). Now as r-~ co, k(r)  
hm and # ~ "am, SO we see from Eqs. (29), (30) that 

~'~r(r) ~ (3hm + 2"am) = 3Km, whereas 7-r2r(r) ~ O. Hence we 
must have 3KmA, + 0A2 = P, which implies 

P 
A1 = 3K,, " (31) 

Now consider the continuity conditions at r = a. The dis- 
placement field inside the inclusion is given by u(r )  = Blr,  so 
that in the inclusion, u(a )  = B~a. Equating this value to the 
displacement in the matrix at r = a, using Eqs. ( 2 2 ) - ( 2 4 ) ,  
(31 ), gives 

p ~ 

B1 = ~ m  ~ F,,~ + A2 ~ F~+3. (32) 
n=O n=O 

The final equation needed in order to solve for the remaining 
constant A2 is found by considering continuity of the normal 
traction T~ at r = a. Equations (5a) and (28) show that inside 
the inclusion, "7-rr(a) = 3KiBt.  Using Eqs. ( 2 8 ) - ( 3 0 )  to find 
7-rr (a)  outside of the inclusion, and equating it to r~(a)  inside 
the inclusion, leads to the condition 
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p ~ ~ 2.0 

3K, B~ = ~ , ,  [(3k¢ + 2#¢) _ F,, a - (~.,y + 2#¢) Y. n/3F,,o] 
n=0 n=0 

+ A2[(3~.,y + 2#,:r) Y~ F,,~+3 ~ -  
n=0 

1.!5- 

-- (~.if + 2~if) 2 ( n B +  3 ) F , , , + 3 ] .  ( 3 3 )  
n=0 IJJ 

Simultaneous solution of Eqs. (32), (33) yields I- 

_ p  3 (K~-Ke)  E Fn~ + ( ~.if W 2~if) ~ nflF,,~ @ ~.O- 
n=0 n=O h 

3 K " 3 ( K ~ - K g )  ~ F,,~+3 + (Xif+2#g) N (n/~ + 3)F,¢+3 uJ n=O n=O 

(34) ~ 0.s. 

This completes the solution, with the displacements given by ~ 
Eqs. ( 2 2 ) - ( 2 4 ) ,  (28), A~ given by Eq. (31), A~ given by Eq. z 
(34), B~ given by Eq. (32), and B~ = 0. 

7 Stresses in the Matrix and Inclusion 
To illustrate the effect that the interphase has on the stresses, 

consider a composite for which #~ = h~ = 5#m = 5hm, which 
implies u~ =Um = 0.25. As the variation in Poisson ratio is of 
lesser importance than are the variations in the moduli them- 
selves (cf., Jasiuk and Kouider, 1993), we will also take u = 
0.25 throughout the interphase. (Note, however, that our solu- 
tion is valid for arbitrary Poisson ratios, including cases where 

varies throughout the interphase zone). The parameter/3 is 
taken to be 10, corresponding to an interphase zone whose 
thickness is about 0.25a. The degree of inhomogeneity will be 
quantified by a local damage parameter, defined by D = (Mm 
- M~)/M,,=. We will consider the cases in which the interface 
is either 50 percent stiffer than, or 50 percent less stiff than, 
the pure matrix component, i.e., D = ±0.5. The radial stress 
~-~r(r) is found from the linear combination A~w~(r) + 
A2T~,.(r), where Ti~,.(r) are given in Eqs. (29), (30), theAi are 

k. 
t" 

UJ 
f l :  
I-- 
co  

< 

< 

tu 
N 
- I  < 

O 
Z 

2.0" 

1.5" 

1.0" 

0.5" 

E:P;.s. 0 . . . . .  

O,,~ -.50 

.% 

0,0 
0.0 015 110 115 210 215 3.0 

NORMALIZED RADIUS, r/a 

Fig. 2 Radial stress ~ for the case of hydrostatic compression of a 
body containing a single spherical inclusion surrounded by an interphase 
zone. Positive values of D correspond to a damaged interphase zone, 
as shown in Fig. 1, whereas negative values correspond to an interphase 
t h a t  is stiffer than the pure matrix material. See text for the moduli values 
used in the calculations. 

.:" p.:.o;.s.o . . . . .  

D = 0.00 

D = -.50 

0.0 
0.0 015 110 115 210 2t.5 3.0 

NORMALIZED RADIUS, r/a 

Fig, 3 Hoop stresses ~ 0  = z~,~ for the situation shown in Fig. 2. Note 
that, unlike the radial stress, the hoop stress need not be c o n t i n u o u s  a t  
the interface between the inclusion and matrix, 

given by Eqs. (31), (34), and the moduli are given by Eqs. 
(8a, b). The hoop stresses are found from the same equations, 
after replacing (k + 2/z) by k, and replacing k by (k + /z), as 
indicated by Eq. (5).  The radial stress, ~-rr, and the hoop 
stresses, ~-~ = ~-00, are shown in Figs. 2 and 3. Also shown in 
each figure are the stresses that would be found in the absence 
of an interphase zone, which corresponds to taking D = 0. The 
altered moduli of the interphase zone are seen to alter the local 
stresses both within the interphase zone and inside the inclusion. 
The region outside of the inclusion in which the stresses are 
perturbed is essentially confined to the interphase region, as can 
be seen by comparing Figs. 2 and 3 to Fig. 1, which is drawn 
to a scale that corresponds to the present case of/3 = 10. 

8 Effective Bulk Modulus 
The solution derived above for the stresses and displacements 

is an exact solution to the problem of a single inclusion embed- 
ded in an infinite matrix, with an interphase zone described by 
a power-law variation in moduli. We will now use this solution 
to estimate the effective bulk modulus of a material that contains 
a dispersion of such inclusions. In general, effective moduli of 
materials consisting of discrete inclusions in a matrix can be 
found rigorously only to first order in the inclusion concentra- 
tion. Although various approximate methods have been used to 
estimate effective moduli at higher concentrations, there is as 
yet no agreed-upon method for doing so; see Christensen 
(1990), Zimmerman (1991), and Ferrari (1994) for critical 
discussions of some of the existing methods. Nevertheless, 
methods exist that are known to be reasonably accurate for 
materials with isotropic spherical inclusions. With this in mind, 
we will use a method for estimating the effective bulk modulus 
that is correct to first order in concentration, and which, in the 
case when the matrix becomes homogeneous, reduces to the 
result found by Mori and Tanaka (1973), Christensen (1979), 
Ferrari (1994) and others, which is known to be reasonably 
accurate for moderate values of the inclusion concentration. 

The effective bulk modulus Ke~f of an inhomogeneous body 
can be found (Willis, 1981, pp. 7 - 1 3 )  by subjecting the body 
to hydrostatic loading of magnitude P, and then comparing the 
strain energy stored in the body to that which would be stored in 
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an identically shaped homogeneous body. Consider a spherical 
region of radius b, centered on a single inclusion. The strain 
energy stored in this region can be computed from (Sokolnikoff, 
1956, p. 86) 

l ~ f i u i d V + l f o  T~uidA, (35) U = ~  

where f~ is the spherical region r -< b, 0~2 is the boundary r = 
b, f are the components of the body force vector, and Ti are 
the components of the surface traction vector. In the present 
problem, the body force is zero, the only nonzero component 
of the displacement vector on 0f~ is u,, and the traction vector 
is ~-~. (For clarity, we henceforth will write ur instead of u.) 
Due to the radial symmetry of the problem, both u~ and %~ are 
uniform on 0~2. Hence, 

U = ~ 'r~u~dA = ½[Trr(b)ur(b)](47rb ~) 
f~ 

= 27rb~T~(b)ur(b) .  (36) 

For the hypothetical homogeneous body, the radial displace- 
ment would be given by u~(r) = "r~(b)r /3Kaf  (Rekach, 1979), 
so that 

U = 27rbZ~-~(b) 7"rr(b)_______b = 27rb_~ [~_ (b)]2 ' (37) 
3Keff 3Kaf 

E 

0> 
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.J 

o 
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Fig. 4 Effective bulk modulus of a material containing a volume fraction 
c of inclusions, each surrounded by an interphase zone. The bulk modu- 
lus is calculated from Eq. (42), using the moduli parameters that are 
listed in the text. 

We now equate the strain energy stored in the actual inhomo- where 
geneous body, as given by Eq. (36), to that stored in the homo- -A2 
geneous body, as given by Eq. (37), and solve for f = A--~- 

brr~(b) %~(b) 
Xo, 3u,(b-----3- = 3u~(b)/--------b' (38) 

where we move the b term to the denominator in order that 
both numerator and denominator have finite values as b ~ ~. 
In order to utilize the solution for a single inclusion in an infinite 
body, we let b --+ % in which case we arrive at 

7 - r r ( b )  ]t lim rrr(b) 
g e f  f : lim = b~ 

b~= L 3 u ~ ( b ) / b J  3 lim [u~(b)/b]  
b ~  

If we were to evaluate the limits in Eq. (39) by fixing a and 
letting b ~ c~, the effect of the inhomogeneity would be lost. 
Instead, we first recognize that ( a / b )  3 = c, the volume fraction 
of the inclusions, and then renormalize by putting ( a / b )  3 = c 
> 0 before taking the limit. Furthermore, we ignore all powers 
higher than c that appear; this is justified by noting that these 
powers will be of the form c ~/3, c 2~/3, etc., and we expect, as 
mentioned above, that [3 >> 1. Using Eqs. ( 2 2 ) - ( 2 4 )  we find 
that 

lim [ u r ( b ) / b ]  = A~ + A2c, 

and using Eqs. (24), (29), (30) we find that 

lim %~(b) = 3 K . , A i  - 4tz,,,A2c. 
b ~  

Equations ( 3 9 ) - ( 4 1 )  can then be solved for 

3(/(,. - Ko) E F,,fl + (X,~. + 2#0) E n/3F,,~ 
n=0 n=0  

3(Ki  - Ke) Y~ F,,~+3 + (h~ + 2#~) Z (ni l  + 3)F,~+3 
n=0 n~0  

(42b) 

In the limiting case where the interphase zone is homogeneous, 
F0 = F3 = 1, all other I", = O, K ~  Kin, etc., so f ~  3(K~ - 
Km)/(3Ki + 4#m), and Eq. (42) reduces precisely to the result 
that has been found by Mori and Tanaka (1973), Christensen 

(39) (1979), and others. As that expression is known to be accurate 
for small to moderate values of c, it seems reasonable that 
Eq. (42) will have similar accuracy when the interphase is 
inhomogeneous; in any event, Eq. (42) is exact to first order 
in c. 

To study the effect that the inhomogeneous interphase zone 
has on the overall effective bulk modulus, we again utilize the 
local damage parameter D = (Mm - M¢)/Mm. In order to focus 
on the effect of the variation in stiffness, we again take u~ = 
Um = U,y = 0.25, in which case D can also be expressed as (Kin 
- Kil)/Km. Figure 4 shows the effective bulk modulus as a 
function of the inclusion concentration, for the case/3 = 10, 
and various values of D. The curve for D = 0 coincides with the 

(40) Mori-Tanaka prediction, as well as with the Hashin-Shtrikman 
lower bound (see Christensen, 1979). As the moduli at the 
interface decrease, the damage parameter D increases, and the 
effective moduli decrease, as expected. Negative values of D, 
on the other hand, correspond to an interphase zone that is 

(41) stiffer than the pure matrix; this can occur in a metal-matrix 
composite, for example, if the inclusion material diffuses into 
the matrix. In these cases, the interphase zone causes an increase 
in the effective bulk modulus. 

1 + 4#" fc 
K e f  f _ 3K., 
Km 1 - f c  ' (42a) 

9 S u m m a r y  and Di scuss ion  
An exact closed-form solution has been found for the hydro- 

static compression of a body containing a spherical inclusion 
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that is surrounded by an inhomogeneous interphase zone. The 
elastic moduli outside of the inclusion are assumed to be de- 
scribed by a constant term, plus a term that decays like r -~, 
where /3 is an integer greater than 3. This model is similar 
to those used by Theocaris (1986), Jayaraman and Reifsnider 
(1992), Jasiuk and Kouider (1993) and others, with the excep- 
tion that the moduli are allowed to smoothly vary from the 
interface out into the matrix. This may be advantageous for 
applications to composites whose moduli vary continuously out- 
side of the inclusions, as opposed to those in which the in- 
terphase is a distinct region formed by, say, application of a 
fiber coating. Furthermore, this smooth variation of the moduli 
permits a closed-form solution to be found, without requiring 
different solutions to be pieced together at the interphase/matrix 
"interface". 

The presence of the intetphase zone was found to have an 
effect on the stress concentrations around and within the inclu- 
sion. The stress within a stiff spherical inclusion is in general 
greater than the applied far-field stress. This effect is mitigated 
by the presence of a damage zone outside of the inclusion. One 
way to see why this occurs is to realize that in the limiting case 
as D ~ 1, the elastic moduli at the inclusion matrix boundary 
will vanish, and the inclusion becomes "uncoupled" from the 
matrix, in which case no stress can be transmitted to it. 

The solution was then used to estimate the effective bulk 
modulus of a material that contains a random dispersion of such 
inclusions. In the limiting case of a homogeneous matrix, the 
expression found for the effective bulk modulus agrees with the 
result found by Mori and Tanaka (1973), Christensen (1979), 
Ferrari (1994), and others. The presence of a weakened in- 
terphase zone leads to a lowering of the effective moduli, 
whereas an interphase zone that is stiffer than the pure matrix 
phase causes an increase in the effective bulk modulus. 
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A Pressure Projection Method 
for Nearly Incompressible 
Rubber Hyperelasticity, 
Part I: Theory 
A least-squares-based pressure projection method is proposed for the nonlinear anal- 
ysis of nearly incompressible hyperelastic materials. The strain energy density func- 
tion is separated into distortional and dilatational parts by the use of Penn's invari- 
ants such that the hydrostatic pressure is solely determined from the dilatational 
strain energy density. The hydrostatic pressure and hydrostatic pressure increment 
calculated from displacements are projected onto appropriate pressure fields through 
the least-squares method. The method is applicable to lower and higher order ele- 
ments and the projection procedures can be implemented into the displacement based 
nonlinear finite element program. By the use of certain pressure interpolation func- 
tions and reduced integration rules in the pressure projection equations, this method 
can be degenerated to a nonlinear version of the selective reduced integration method. 

1 Introduction 

The use of rubber materials for engineering applications is 
very broad, including engine mounts, bushings, building and 
bridge bearings, vehicle door seals, tires, solid rocket motor 
flexseals, o-rings, off-shore structure flexjoints, and gaskets. 
These applications utilize the uniqueness of rubber being soft, 
highly extensible, and highly elastic. To date, laboratory testing 
and simple equations based on small strain theory are still the 
primary methods used in the design of rubber products. The 
main cause of this design process is due to the level of difficulty 
in performing nonlinear finite element analysis of rubber com- 
ponents which usually experience very large deformation under 
normal service conditions. The nearly incompressible nature of 
rubber also adds additional difficulties to the numerical treat- 
ment of volume conservation. Therefore, an effective finite ele- 
ment formulation that can handle material incompressibility un- 
der large deformation is highly desirable for the analysis of 
rubber components. Further, strain energy density functions ap- 
plicable to highly nonlinear and complex deformation problems 
are also essential to the success of finite element prediction. 

Problems arising from the numerical treatment of the incom- 
pressibility constraint were first addressed by Herrmann (1965). 
Mixed formulations have been used successfully for incom- 
pressible and nearly incompressible media. In linear elasticity, 
the Herrmann principle (Herrmann, 1965 ) was the first effective 
method to handle the incompressibility constraint and is re- 
garded as a reduced form of the Hellinger-Reissner variational 
principle. The extension to orthotropic materials was later made 
by Taylor et al. (1968). A modified Hellinger-Reissner princi- 
ple was proposed by Key (1969) for incompressible and nearly 
incompressible anisotropic linear elasticity. Tong (1969), 
Scharnhorst and Plan (1978), and Murakawa and Atluri (1979) 
introduced hybrid stress formulations for nonlinear incompress- 
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ible materials. Belytschko and Bachrach (1986) and Bachrach 
and Belytschko (1986) used the Hu-Washizu variational princi- 
ple in conjunction with the y-operator to develop a bending/ 
incompressible element. The extension to nonlinear incom- 
pressible problems was later developed by Liu, Belytschko, and 
Chen(1988).  Perturbed Lagrange multiplier methods were used 
by Cescotto et al. (1979), Bercovier (1978), Sussman and 
Bathe (1987), Simo et al. (1985), and, recently by Chang and 
Saleeb et al. (1991). 

Alternatively, the penalty method in conjunction with the 
reduced integration has been successfully used in incompress- 
ible problems. Fried (1974) suggested that the selective reduced 
integration can cure the failure of the displacement approach. 
Oden and Kikuchi (1982) discussed the necessary conditions 
on the order of reduced integration rules to produce stable and 
convergent schemes. Hughes, Liu, and Brooks (1979) reviewed 
penalty methods and selective reduced integration of incom- 
pressible viscous flows. Malkus and Hughes (1978) and Malkus 
(1980) proved and unified the equivalence of mixed formula- 
tions and selective reduced integration techniques. The B-bar 
method, generalized from the selective reduced integration 
method, was later introduced by Hughes (1980). This B-bar 
method can be treated as a projection method for linear elastic- 
ity. Simo et al. (1985) showed that the B-bar method can be 
derived from a Hu-Washizu principle and then developed a 
nonlinear tangent matrix for this formulation. Other displace- 
ment-based methods are hourglass control on under integrated 
elements by Belytschko et al. (1984), an explicit incompress- 
ible plane strain element using Taylor series expansion devel- 
oped by Liu et al. (1986), and a volumetric strain projection 
method for nonlinear hyperelasticity by Chen et al. (1994). 

In the B-bar formulation, the discrete gradient matrix B is 
separated into deviatoric and dilatational parts, and the dilata- 
tional B-matrix is projected onto a lower order space to resolve 
volumetric locking. Our present work is motivated by the sim- 
plicity and effectiveness of the B-bar formulation. In order to 
introduce the projection method within the framework of hyper- 
elasticity, we first separate the strain energy density into distor- 
tional and dilatational parts and then project the hydrostatic 
pressure, which is solely determined from dilatational strain 
energy density, onto an appropriate pressure field. The projec- 
tion is performed by imposing a constraint condition between 
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displacement calculated hydrostatic pressure and hydrostatic 
pressure obtained from pressure interpolation functions in a 
least-squares sense. The hydrostatic pressure increment is also 
projected in a consistent manner to preserve the consistency 
between tangent stiffness and internal force. If particular projec- 
tion procedures are carried out, this pressure projection method 
also provides a nonlinear version of the selective reduced inte- 
gration method. Although the proposed method is applicable to 
lower and higher order elements, we employ linear pressure in 
conjunction with biquadratic/triquadratic displacement fields 
that satisfy Babuska-Brezi (Babuska, 1973, Brezzi, 1974) con- 
ditions in numerical examples. 

In the present approach, since hydrostatic pressure originally 
calculated from displacements has been modified through the 
projection procedures, this method is found to be restricted to 
materials with a linear pressure-strain relation (constant bulk 
modulus). This condition is equivalent to the "material re- 
straint" discussed by Sussman and Bathe (1987) where they 
proved that a linear pressure-strain relation is required for the u~ 
p formulation. For nearly incompressible materials, volumetric 
strain is expected to be small, and therefore a constant bulk 
modulus material model is appropriate. 

In the next section, the basic equations of hyperelasticity and 
several rubber strain energy density functions are reviewed. In 
this section, the Penn's invariants are introduced to decompose 
the distortional and dilatational deformations and the corre- 
sponding strain energy density functions. The relation between 
hydrostatic pressure and the dilatational strain energy density 
is established. In Section 3, the decomposed variational princi- 
ple and the associated finite element formulation is presented. 
The projection of hydrostatic pressure and hydrostatic pressure 
increment are introduced through the least-squares methods. 
The stress, material response, and initial stress tensors are calcu- 
lated according to the projected hydrostatic pressure. The deri- 
vations of the internal force and tangent stiffness are also given. 
The degeneration to volumetric strain projection method and the 
nonlinear version of the selective reduced integration method is 
discussed in Section 4. Further degeneration to selective reduced 
integration in linear elasticity is provided in Appendix A. 

2 Basic Equations 
Consider a body which occupies a region f~x at the initial 

stage. The motion of the body can be described by a mapping 
function ® such that the image of fix at time t is denoted by 
f~, and the image of X E f~x is defined by x, i.e., 

x = ®(X, t) = X + u(X,  t) (2.1) 

where X is the material coordinate, x is the spatial coordinate, 
u is displacement, and t is time. Rubber is classified as a hyper- 
elastic material in which the strain energy density function, W, 
can be defined and the stress-strain relation is given by 

O W  
S o = OE ° (2.2) 

where S o is the second Piola-Kirchhoff stress and E 0 is the 
Green-Lagrangian strain which is defined as 

E,j = ½(G~ - 6o) ,  (2.3) 

Go = F k i F k j ,  (2.4) 

0Xi 
Fo = 0Xj (2.5) 

where F U is the deformation gradient, G o is the Green deforma- 
tion tensor, and 6ij is the Kronecker delta. The Cauchy stress 
a 0 can be obtained by 

ao = 3Fik&,~ , ,  (2.6) 

J = det (F) .  (2.7) 

According to Mooney (1940) and later extended by Rivlin 
(1956), the strain energy density function of elastic medium 
can be expressed in terms of the three invariants of the Green 
deformation tensor: 11, 12, 13 such that 

W ( l l  , h ,  13) 

where 

I1 = tr (G) ,  

Am.l ( I I  - 3)m(h -- 3)"(13 -- 1) t (2.8) 
m+n+l= 1 

/2 = ½[(tr G)  2 - tr (GZ)], 

h = det (G) .  (2.9) 

The second Piola-Kirchhoff stress can be obtained from W 
by 

O W  O L  
S O = - - - -  

oi. OEo 

= 2[K16 U + K z ( I ~ 6  o - Go)  + K 3 h G j  ~] (2,10) 

where 

O W  
K, = - -  (2.11) 

Ol. 

If the behavior of the elastic medium is incompressible, then 
13 = 1, and the power series strain energy density function 
proposed by Rivlin (1956) reduces to 

1~7(I,, 12) = ~ A, , , , ( I ,  - 3)'(12 - 3)". (2.12) 
i/1+11= l 

Rivlin's strain energy density function expressed by an infi- 
nite power series is normally truncated to neo-Hookean or Moo- 
ney-Rivlin forms. However, the material constants in these two 
functions obtained from tensile data are not adequate in other 
deformation modes, in addition to the poor fitting in large strain. 
Yeoh (1990) proposed a cubic strain energy density function: 

= A l o ( l l  -- 3) +A20(l= - 3):  +A30(1l - 3) s, (2.13) 

and a modified cubic strain energy density function (Yeoh, 
1993): 

a 
1~ = ~ [1 - e -~(1t-3)] + A l o ( l l  - 3) 

+ A2o( l l  - 3) 2 + A3o( l l  -- 3) 3. (2.14) 

For incompressible materials, a volume conservation con- 
straint needs to be imposed and therefore the strain energy 
density is modified either by the use of the Lagrangian multiplier 
method or a penalty method. Additional strain energy density 
which is a function of (Is - 1) and/or hydrostatic pressure is 
added to the incompressible strain energy density. For nearly 
incompressible materials, this additional strain energy density 
can be treated as the dilatational strain energy density resulting 
from the small volume change of the material. The modified 
strain energy density function for nearly incompressible materi- 
als can be expressed as 

W ( I , ,  12, 13) = ~,~2(I,, 12) + !Xz(Is). (2.15) 

Since 13 = j z  and J - 1 is a measure of volumetric deforma- 
tion, g ' ( I s )  represents the part of strain energy density due to 
volume change. However, for nearly incompressible materials, 
invariants I~ and 12 are not measures of pure distortion (iso- 
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choric). This can be easily understood by considering a pure 
dilatational state with hi = )t~ = k3 = k, then 

and 

r~( l , ,  h )  = 

1, = 3K 2, & = 3k 4, (2.16) 

Y~ Am,3"+"(k 2 - 1)'n(~. 4 -- 1) n =¢: 0. (2.17) 
re+n-- l 

In other words, W(I~, 12) contains a certain amount of dilata- 
tional energy. Penn (1970) proposed the following invariants 
to separate the distortional and dilatational deformation: 

il = I~I~ -1/3, 12 = I213213. (2.18) 

Clearly, under pure dilation, & and I2 are constants and 1~( ~ ,  
I2) = 0 and this indicates that I~(~,  I2) contains only distor- 
tional energy. It was observed by Wood and Martin (1964) that 
the compressibility of rubber is very small even under hundreds 
of atmospheric pressure. Penn (1970) took a further step and 
suggested that OW/OI3 might be independent of ~ and Iz so that 
in any deformation W could be separated as a sum of two 
functions 

W ( ~ , / 2 ,  13) = W(I, , /2)  + 1~(/3). (2.19) 

The hydrostatic pressure, defined as Gram/3, can be related to 
l,iz(13) by using Eqs. (2.2) and (2.6) 

P = Gm,J3 = "~ G,,a OEkt + OJ ; 

n =  1, 2. (2.20) 

As have been shown by Chang et al. (1991),  Penn 's  invari- 
ants satisfy the following conditions: 

G Of. k,. OE~---~ = 0; n = 1, 2. (2.21) 

Equation (2.20) can be simplified to 

ow o ~  
P (2.22) 

OJ OJ 

and the second Piola-Kirchhoff stress becomes 

S~ 2[K~l~q/3(6o ~ -~ = _ 51~Gi~ ) 

+ ~I~2/~(I16~ - Gij - ~I~Gj1)] + PJG~ ~ (2.23) 

where 

/~,, = - - ~ .  (2.24) 
Olo 

It is worth noting that if l~z(13) is expressed as the power 
series of 13 - 1, the first-order term must be eliminated to satisfy 
the initial condition of P.  The explicit expressions of K, 's  for 
various material models can be found in Chen et al. (1994).  

3 Pressure Projection Method 

3.1 Decomposed Variational Principle and Finite Ele. 
ment Formulation. In the current study, the original configu- 
ration is selected as the reference configuration, and the conju- 
gate pair, the second Piola-Kirchhoff stress, S 0, and the Green- 
Lagrangian strain, E U, are employed in the total Lagrangian 
formulation 

I ]=  f W(I~,12)d~2 + f W(la)df~-  W ext (3.1) 
x i/[~x 

where 1FI is the potential energy, W ex~ is the external work, and 

f~x is the domain of the original configuration of the structure. 
The equilibrium equation can be obtained from the stationary 
condition of the potential energy, i.e., to satisfy 

6I]= f~ 6Eo~id~ + f ,  6 E i j ~ j d ~ - 6 W e x t = o  (3.2) 
x x 

where 

&j = OE,i = 

+ [K~21~213(Ii60-Go-~I2G,71)], (3.3) 

o ~  o ~  oJ 
'~0 = - PJG~.'. 

OE U OJ OEo 

The linearization of Eq. (3.2) leads to 

f 06ui (Tik t + Tokl) OAu~ d~ A617i = aa~ OXj OX, 

0,,+F 0,< l pt O~ "J ~ i  ]_J ( c i j k '  do~,) + 

(3.4) 

[ 1 (  OAuq OAuq'] ] A6We:, 
X ~ F q k ~ +  V q t - ~ - /  d a -  (3.5) 

where 

Cijkl : - -  

T, Tk/ = 61~S.,'l, (3.6) 

::t,~, = 6 , ~ , ,  ( 3 . 7 )  

02W 
C, jk, -- OEo 0ekm---~ ' (3.8) 

0zff' - d~k, + d~,, (3.9) 
OE o OEkt 

and 

(2~, O(JG~') p 
OEu 

= JP(G~IGh t - G~IG~ 1 - G~iG~i), (3.10) 

~2 = (3.11) Co.k I JGij I OP 
OEk~ ' 

I-7,j - O2W(~' ~) (3.12) 
0~O~ 

For the purpose of introducing the pressure projection 
method, it is more convenient to convert Eq. (3.5) to the follow- 
ing form: 

fa O6ui _ OAu,,, d~  
, ~ n  = ~ o-~-  (T,j~, + L~,) Ox, 

+ L x  [ ½ ( FR' O6up-~- 06u---2 \ / J - 

--SE- + F~, - -SZ - / ]  da  

~-+ F,,, OX, /] 
× J G ~ i A p d ~  - A~W ex'. (3.13) 
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By introducing displacement shape functions and domain dis- 
cretization, the equilibrium matrix equation can be obtained 
from Eq. (3.2) 

¢ 
61-I= 6d r |  B~(Z + Z ) d f l -  6dTff ~t = 0, (3.14) 

~x 

and this leads to the equilibrium equation 

fint : ffxt (3.15) 

where 

: f~ ~int fint Ber(Z + Z)df~ ~ tint+ f , 
~x 

(3.16) 

f ~ '=  ff~ B~Zdf~, (3.17) 
x 

t~"t = f a  B~Zdf~, (3.18) 
x 

and Z and Z are vector forms of ~7 and go, respectively. BEtd 
is the matrix form of 6E o, and p,t and fext a re  internal and 
external force vectors, respectively. 

3.2 Pressure Projection. Many displacement-based fi- 
nite element formulations derived from single field variational 
principle failed in incompressible and nearly incompressibility 
problems. In linear elasticity, Hughes (1980) proposed a B- 
bar formulation to resolve locking for nearly incompressible 
materials. The gradient B matrix was separated into deviatoric 
and dilatational parts. The dilatational B matrix was then pro- 
jected onto a trial space a priori and replaced the original dilata- 
tional B matrix. This B-bar formulation was generalized from 
the earlier work by Malkus and Hughes (1978) in which they 
proved the equivalence between the mixed formulation and se- 
lective reduced integration. In nonlinear hyperelasticity, separa- 
tion of the B matrix is difficult. Instead, an alternative approach 
is taken by the segregation of the strain energy density. In 
Section 2, the strain energy density was separated into pure 
distortional (isochoric) and pure dilatational parts and, conse- 
quently, the hydrostatic pressure is only related to the dilata- 
tional energy. To attain the accuracy of the mixed formulation, 
we deliberately carry out the projection of the element hydro- 
static pressure, W, and the element hydrostatic pressure incre- 
ment, ~pe  (originally calculated from displacements), onto 
selected pressure function space. 

Consider a problem of approximating a square integrable 
function W ( x )  at the element level, in a least-squares sense, 
by a linear combination of a sequence of functions { Q~(x), 
Q2(x) . . . . .  Q,,(x) } in L2(~¢). That is, choose p" = [p~, p~, 
. . . .  p~]r to minimize 

~I'(p ~) I[W ~ z (3.19) 

where II" II~¢a~) is the L 2 n o r m  in the element domain ~c  and 

Q(x) = [Ql(x), Q2(x) . . . . .  Q,,(x)]. (3.20) 

The minimization of ~(p~) leads to 

Mep ~ = F" (3.21) 

where 
/ ,  

M e = | QrQdf~, (3.22) 
os 

F e = f a  Qrpd f2=  fa Q rOl~ ~ -~-  dr2, (3,23) 

and the projected hydrostatic pressure, W*, is 

P~* -= Qp~ = QMe- 'F  e. (3.24) 

Consequently, the internal force vector is modified as 

fint = ~int + ~,int (3.25) 

where 
g 

= ] BreZ*df~ (3.26) 
~x 

and f* i.t and Z * are the modified vectors of ~,t and Z,  respec- 
tively, due to the pressure projection. 

In the present work, the selection of pressure interpolation 
functions follows Babuska-Brezzi (BB) conditions in which a 
linear pressure interpolation function is used for the nine-node 
Lagrangian element 

Q = [1, x, y] (3.27) 

and similarly for a three-dimensional 27-node element 

Q = [1, x, y, z]. (3.28) 

Obviously, there are other alternatives of selecting pressure in- 
terpolation functions that do not satisfy the BB condition and 
will be discussed in the next section. 

3.3 Incremental  Equat ion and Solution Procedures.  
For the nonlinear analysis of rubber deformation, the incremen- 
tal equation is employed for nonlinear iteration and therefore 
the hydrostatic pressure increment needs to be calculated in a 
consistent manner. Similarly, we consider a least-squares ap- 
proximation of the hydrostatic pressure increment by  a linear 
combination of a sequence of functions { Q~(x), Q2(x) . . . . .  
Q,,(x)} in L2(f2~). Determine ~ e  = [p~ ,  / ~  . . . . .  /~en]T to 
minimize 

where 

and 

'IJ(D ~) NAW - - ~ z  = - QP  [IL2(a~) (3.29) 

AP ~ = 02IV JGh I AEkt (3.30) 
OJ 2 

0 ( x )  = [Q,(x), 02(x) . . . . .  Q,(x)]. (3.31) 

The minimization of ~ ( ~ ' )  leads to 

~ = lVl~- 'L~d  ~ (3.32) 

~ = J~ 0~Qdfl, (3.33) 

( 0 gBEd., (3.34) 

where 

with g the row vector form of JG~ ~ and BE the gradient matrix 
of Green-Lagrangian strain. The projected hydrostatic pressure 
increment, AP e* , is obtained by 

~ p e ,  ~ Ooe = 0 1 ~ I e - l L e ~ d  e. ( 3 . 3 5 )  

The newly calculated hydrostatic pressure, P e*, and hydrostatic 
pressure increment, AP e*, will replace pe and AP e respec- 
tively, in the equilibrium and linearized equilibrium equations 
(Eqs. (3 .5)- (3 .13)) .  

By substituting Eq. (3.35) into Eq. (3.13) and introducing 
shape functions and domain discretization, the tangent stiffness 
can be obtained in the following form: 
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A6I~ = 6dr (R + K* + K * * ) A d  (3.36) 

where the element matrices of K, K* and K**, denoted by 
g e ,  R e *  and R ~**, are 

K e  - - e  -- = K a  + K~t, (3.37) 

~ ~ e* ~ e* K e* = Ka + K M ,  (3.38) 

R e** f Br"rd~d~21~l ~ IL* (3.39) dn 

with 

R ~ = ~'x B rFTBFdf~' 

~ e* ff~ Ko = B~T *BFd~, 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

The terms with subscript " * "  contain the projected hydro- 
static pressure and K~** results from projection of the hydro- 
static pressure increment. The matrices T, T *, C, 1~ 1. and 
BFtd are the matrix forms of 6~k~t, 6~kS~, ~,~,,, C~ ,  and 6Fo, 
respectively, and 6~S~ and C0~ have been modified due to the 
hydrostatic pressure projection. Equation (3.39) can be further 
manipulated as 

= f B~grl)df~l~I~-'L ~ = ReTl~le-lI_.~e (3.44) 
d~ 

where 

= | QrgBeda.  (3.45) 
d~ 

As can be seen, Eq. (3.44) will lead to an asymmetric tangent 
stiffness matrix unless the following condition is imposed: 

02gz 
- k. (3.46) Oj 2 

Since W is a function of J, by integrating Eq. (3.46) in conjunc- 
tion with Eq. (2.22) and imposing a pressure-free initial condi- 
tion, one can obtain 

~ = k  )2. 
(J - 1 (3.47) 

The physical interpretation of k is the bulk modulus and Eq. 
(3.47) represents a linear hydrostatic pressure-volumetric strain 
relation. Equation (3.47) is a necessary condition in this devel- 
opment using the pressure projection method. This necessary 
condition is consistent with the "material constraint condition" 
discussed by Sussman and Bathe (1987). They proved that a 
linear pressure-volumetric strain relation must hold when a u~ 
p formulation is used for nearly incompressible materials. If 
Eq. (3.47) is imposed, Ke** becomes a symmetric matrix: 

Ke** = kRerr~ie- ,Re.  (3.48) 

The final incremental equilibrium equation is 

( g  + I~* + R * * ) ~ A d  

= (ffxt),+l _ (fi,t + ~.int)~+l (3.49) 

where n is the load step counter and v is the iteration counter. 
Here, K and ~int a r e  related to the distortional energy. Matrices 

* and t'* int are related to dilatational energy with hydrostatic 
pressure calculated from the projection equation. K** arises 
due to the projection of the hydrostatic pressure increment. 

4 Degenerat ion to Some Existing Formulat ions  

By the appropriate selection of pressure interpolation func- 
tions and integration rules in the projection procedures, this 
projection method can be degenerated to some existing formula- 
tions. For example, choose Q to be 

Q = I/V1 (~), AI2(~) . . . . .  N^,R(~)] (4.1) 

where NR is the number of reduced integration points and bl~(~) 
is the shape function defined at reduced integration point I, i.e., 

Nl(~s) = 6H (4.2) 

and ~s ~ (PJ, ~s, ts) is the natural coordinate at reduced integra- 
tion point J. 

For simplicity, the superscript " e "  for element matrices is 
dropped in this section. By performing reduced integration on 
M and F in the pressure projection equation, Eq. (3.24), one 
can obtain 

NR 

M = X QT(.~)Q(.~,)J(~Dwt 

0 ' ' '  

Y(~)w2 ... 

0 

1=1 

Y(.~l)w, 
0 

0 

NR 
F = E Q r ( ~ ) P ( ~ l ) J ( ~ ) w ,  = 

1=1 

0 

0 

• .. J (~N. )  w~R 

P(~i)Y(~,lw, ) 
P(~)J(~)w2 

P(~N~)Y(~N~)WN~ 

, (4.3) 

(4.4) 

where ) = det (0Xi/0~j) and the projected hydrostatic pressure 
is reduced to a simple form 

NR 

P*(~) = QM-1F = ~ ~91(~)P(~D. (4.5) 
1=1 

The internal force vector is formed based on this projected 
hydrostatic pressure. Since hydrostatic pressure is proportional 
to the volumetric strain, this reduced form is identical to the 
volumetric strain projection method proposed by Chen et al. 
(1994). 

Similarly, if O = Q is chosen and reduced integration is used 
in the projection of the hydrostatic pressure increment (Eq. 

(4.6) 

(3.35)), then 
NR 

= E QT(~,)g(~z)Be(~,)Jr(~z)w/ 
1=1 

] (~2)w2 

! ' . .  

0 ' ' '  

0 

0 

J(~NR)WNR 
g(~,)BE(~i) ] 

g( NR)B ( NR)J 
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Using Eqs. (3.35) and (3.30), one can obtain a reduced form 
of the hydrostatic pressure increment 

NR 

AP*(~:) = [ ~  ~',(~)g(~:t)BE(~,)]Ad 
t = l  

NR 

= ~ Af,(g)AP(~,). (4.7) 
I=l 

Finally the tangent stiffness matrix is simplified to 

+ * ) B F d ~  K =  ~ B~e(T ' t  

+ f B~(C + C~*)Bedf~ + k R r l V i - I R  
J~ 

= f B~(T +'I'*)BFdf~ + f Ber(C + 
i 

~l*)Bedf~ 
J~ | 

NR 

+ k[~ (B~(~t)gZ(~t)g(g,)Be(L)J(~,)W,]. (4.8) 
1=1 

Equation (4.8) provides a nonlinear version of the selective 
reduced integration method. Further reducing the problem to 
linear elasticity, this tangent stiffness is identical to that of the 
selectively reduced integration method and consequently, the 
B-bar formulation. The detailed derivation is given in the Ap- 
pendix. 

5 Conclus ions  
This paper focuses on the treatment of hydrostatic pressure 

for nearly incompressible materials. Although the emphasis is 
on rubber, the proposed method is applicable to general nearly 
incompressible hyperelastic materials. By the use of Penn's 
invariants, the strain energy density is decomposed into distor- 
tional and dilatational parts. The hydrostatic pressure, which is 
the key variable in incompressible problems, is then purely 
related to the dilatational energy. Unlike the mixed formulation 
where the hydrostatic pressure is introduced through a multifield 
variational principle, this method projects the displacement cal- 
culated hydrostatic pressure onto the pressure trial space 
through a least-squares technique. Projection of hydrostatic 
pressure onto a lower order space is, in concept, consistent with 
the selective reduced integration method. 

Since the projection equation is separatly constructed from 
the variational equilibrium equation through least-squares 
method, independent numerical treatment can be introduced to 
the pressure projection equation to provide flexibility of degen- 
erating this formulation to other forms. For example, as dis- 
cussed in Section 4, selecting pressure interpolation functions 
as the shape functions defined at the reduced integration points 
and employing reduced integration rules in the calculation of 
Lz norm, the degenerated pressure projection equation is identi- 
cal to the volumetric strain projection equation. Further, the 
resulting tangent stiffness matrix possesses the form of "selec- 
tive reduced integration." 

The present method provides a straightforward approach for 
the nonlinear analysis of nearly incompressible materials. The 
implementation of this method into a displacement based non- 
linear finite element program will be discussed together with 
several numerical examples in the second part of this paper. 
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A P P E N D I X  

Degeneration to Linear Elasticity 
In linear elasticity, T = ' r* = (2~* = o, BE = B and the 

tangent stiffness matrix (Eq. (4.8)) degenerates to 

K e = f ~ :  B r C B d f 2  

NR 

+ k{ Z [BT(~ l )g r (~z )g (~ , )B (~z ) . f (~ , )w , ] }  • (A.1) 
I =  1 

Further, Cou and JGff ~ degenerate to 

Cijkl 2 = gg(Alo + A o l ) [ 3 ( 6 i k 6 j t  + 6il¢~jk) --  26ij6kt] (A.2) 

JG~ ~ = 6 o. (A.3) 

In linear elasticity, the shear modulus can be obtained by 

# =  2(00W + 0 ~ ) h = ~ 2 = 3 = 2 ( A , o + A o ,  ) (1.4) 

and therefore Eq. (A.2) can be rewritten as 

= "~6~6kl] , (A.5) 

and the matrix forms of the linear Cou and JG~ l are 

c = _  2 
3 

2 - I  - 1  

-1  2 -1  

- 1  - I  2 

0 0 0 # 

0 0 0 0 

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

-3o0 
2 (1.6) 

3_ o 
2 

o 3_ 
2 

g = [1, 1, 1, 0, 0, 0]. (A.7) 

Taking the bulk modulus k = k + 2/3#, in conjunction with 
Eq. (A.7), Eq. (A.1) can be simplified to 

K e = -.f~ BrCBd~  

NR 

+ [X + ~#] { E [br(~l )b(~)J(~)wz]  } (A.8) 
1=1 

where 

bl = [Ni.x, Nl.y, Nl.z]. (A.9) 

Using the orthogonal condition between the deviatoric and 
dilatational parts of the B matrix, it can be easily recognized 
that Eq. (A.8) is identical to the selective reduced integration 
method in linear elasticity. 
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A Pressure Projection Method 
for Nearly Incompressible 
Rubber Hyperelasticity, 
Part I1: Applications 
In the first part of this paper a pressure projection method was presented for the 
nonlinear analysis of structures made of nearly incompressible hyperelastic materials. 
The main focus of the second part of the paper is to demonstrate the performance 
of the present method and to address some of the issues related to the analysis of 
engineering elastomers including the proper selection of strain energy density func- 
tions. The numerical procedures and the implementation to nonlinear finite element 
programs are presented. Mooney-Rivlin, Cubic, and Modified Cubic strain energy 
density functions are used in the numerical examples. Several classical finite elasticity 
problems as well as some practical engineering elastomer problems are analyzed. 
The need to account for the slight compressibility of  rubber (finite bulk modulus) in 
the finite element formulation is demonstrated in the study of apparent Young's 
modulus of bonded thin rubber units. The combined shear-bending deformation that 
commonly exists in rubber mounting systems is also analyzed and discussed. 

1 I n t r o d u c t i o n  
In most engineering elastomeric applications, rubber compo- 

nents experience strains in the order of several hundred percent. 
The amount of computation involved in the finite element analy- 
sis is tremendous and therefore an accurate and efficient finite 
element formulation is highly desirable. In Part I of this paper, a 
least-squares-based pressure projection method was introduced. 
The formulation was developed in a general framework such 
that it provides flexibility for the degeneration to other existing 
formulations. As a result, the expression of the resulting tangent 
stiffness matrix is rather complex. In this paper, condensed 
numerical procedures for code implementation are presented so 
that some of the separately integrated tangent stiffness matrices 
and force vectors are formed at once to provide better computa- 
tional efficiency. 

In addition to a reliable finite element formulation, an appro- 
priate strain energy density function capable of describing rub- 
ber behavior under large strain is essential to the success of 
nonlinear finite element analysis. Although Mooney-Rivlin 
strain energy function has been widely used in many finite 
element formulations such as those in Scharnhorst and Plan 
(1978), Liu et al. (1988) and Chang et al. (1991), the study 
by Tschoegl (1971) and James et al. (1975a, b) suggested that 
the popular Mooney-Rivlin model is not adequate to describe 
rubber behavior Nnder very large and complex deformations. 
Yeoh (1993) proposed a Cubic strain energy density function 
as a correction of the Mooney-Rivlin function to capture the 
nonlinear shear behavior of rubber at large strain. This function 
was later modified by adding an additional exponential term 
(Yeoh, 1993) to improve low strain accuracy. 

In the applications to bridge/building bearings, solid rocket 
motor flexseals and off-shore structure flexjoints, rubber compo- 
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nents are highly confined and the deformation is essentially 
bulk deformation. The work by Payne ( 1957 ), Gent and Lindley 
(1959), and Gent and Meinecke (1970) indicated that the me- 
chanical behavior of highly confined rubber components is 
strongly affected by the magnitude of rubber bulk modulus, and 
therefore the "nearly incompressible" nature of rubber plays 
an important role in these applications. Finite element formula- 
tion that can accurately account for bulk deformation is critical 
to the analysis of this type of problems. Surely, pure incom- 
pressible finite element formulation is not applicable. Rubber 
under combined bending-shear deformation is also common in 
robber mounting systems such as engine mounts and bushings. 
Varying the aspect ratio of rubber components changes the 
relative contributions of shear and bending to the overall defor- 
mation (Rivlin and Saunders, 1949) and thereby changes the 
structural stiffness. In this paper, the applicability of the present 
finite element method to these typical elastomeric problems is 
verified. 

In the following, the numerical procedures of the pressure 
projection method are first presented in Section 2. The funda- 
mental laboratory test problems, uniaxial tension-compression 
and simple shear, are analyzed in Section 3. These analyses 
also show how the Mooney-Rivlin model fails under large defa- 
mation. Two more incompressible finite elasticity problems, 
inflation and torsion problems, are analyzed in Section 4 to 
further illustrate the effectiveness of the proposed method. Some 
practical elastomeric applications such as bonded rubber units 
under tension and compression, and combined shear-bending 
example, together with an engine mount problem, are analyzed 
and compared to approximate solutions in Section 5. 

2 N u m e r i c a l  P r o c e d u r e s  

The pressure projection procedures and the corresponding 
nonlinear finite element formulation for nearly incompressible 
rubber-like materials were discussed in Part I (Chen et al., 
1996). Recall the final incremental equilibrium equation 

(K + K* + K * * ) ~ A d  = f,~:.~l - ( f  int + f*int)~+l (2 .1)  

where n and v are load step and iteration counters, respectively. 
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The matrices K and f int are associated with the distortional 
energy density W(11,12) and are independent of pressure projec- 
tion. The matrices with superscript " * " ,  I~* and ~,i,t, are 
associated with the dilatational energy density 1~(13) and there- 
fore contain projected hydrostatic pressure quantity. The term 
K** is resulting from the projection of hydrostatic pressure 
increment. The explicit expressions of the material response 
stiffness and geometric response stiffness in each of R and K* 
are given in Eqs. (3 .40) - (3 .43)  in Part I. 

Equation (2.1) is arranged for clarity and is computational 
inefficient if those matrices are formed separately. More effi- 
cient computational procedures are given below as follows: 

1 Initialization. 
2 Currently at the beginning of (n + 1)th load step and 

(v + 1 )th iteration: d,~+j is known. 
3 Compute kinematic variables: (Fo),~+z , (Eo)~+i, (G~t),~+l, 

4 Compute the displacement calculated pressure OW/OJ. 
5 Form (M~)~+i and (Fe)~+l (Eqs. (3.22) and (3.23) in 

Part I, respectively) and perform projection on hydrostatic pres- 
sure to obtain (PC*)°,+1 (Eq. (3.24) in Part I) .  

6 Compute (So)~+ ~ (Eq. (3.4) in Part I) by replacing the 
displacement calculated hydrostatic pressure by (P ~* ),~+ 1. 

7 Compute (~j)~+l using Eq. (3.3) in Part I, and the total 
second Piola-Kirchhoff stress is 

(Sij),]+l = (~j),~+l + (~j),]+l. (2.2) 

8 Form internal force vector ( f  ~nt)~+l by 

f ~"~),~+~ ~ ~ ( = (B~Z),+ldf~ (2.3) 

where (Z)°,+1 is the vector form of (S~j)~+i. 
9 Compute (~ijkl)°,+l and -1 (Cukl),+l (Eqs. (3.7) and (3.9) in 

Part I) using (Su)~+ ~ and the projected hydrostatic pressure 
(P~*)~+i). 

10 Calculate (Tukl)~+~ and = (Cokl).+l by 

(Tuel)~+l = (Z~,)°~+, + (Tub,)]+,, (2.4) 

1 v ~ 1  v ( Co~),+1 - ° = (Cu,~),+~ + (Ci~),+l (2.5) 

where the explicit expressions of (~7~)~+~ and (C~z)~+l are 
given in Eqs. (3.6) and (3.8) in Part I, respectively. 

11 Form (1~)~+1 and (19Ie)~+1 (Eqs. (3.33) and (3.45) in 
Part I, respectively) and construct element stiffness matrix 

~ f r ~  (K) .+1  r 1 = (BrTBv) ,+ td~  + (BeC Be),+~d~ 

+ k(ReT)Vn+l(~ ' le -1)Vn+l(Re)Vn+l  . (2.6) 

12 Solve global incremental equation: 

(K)~+~Ad = ( f  °xt),+l - (f~"t),~+l. (2.7) 

13 Update displacement a~+~ Un+l = d.+l + Ad.  
14 Convergence check. 

(1) Mooney-Rivlin: A10 = 0.2599 Mpa, At1 = 0.1608 Mpa 

(2) Cubic: A10 = 0.373 Mpa, A20 = -0.031 Mpa, 

A30 = 0.005 Mpa 

(3) Modified Cubic: Al0 = 0.363 Mpa, A20 = -0.028 Mpa, 

A30 = 0.005 Mpa, 

c~ = 0.123 Mpa, /3 = 10.1. 

For carbon black filled rubber, the bulk modulus to shear 
modulus ratio is around 104 ~ 105 and therefore bulk modulus 
k = 105 Mpa is used in each material model. Nine-node and 
27-node elements are used in two-dimensional and three-dimen- 
sional problems, respectively. 

In this section, analyses and results are compared against 
analytical solutions and experimental data obtained from (Yeoh, 
1990, 1993, 1994). 

3.1 Uniaxial Tension-Compression. Since the stress- 
strain relation of uniaxial tension-compression is independent 
of cross-sectional geometry, a rubber block with dimension 1 
cm × 1 cm × 4 cm is modeled by only one 27-node element 
in this analysis. The analytical solution can be found in Rivlin 
and Saunders (1951) as 

t _ 2 ( O W  1 0 W )  (3.1) 
x - x  -2 \0z, + 2  

where t is the axial force divided by undeformed cross-sectional 
area, k is the axial stretch ratio, and t / ( k  - k -2) is called the 
reduced stress. In this problem, the rubber block is stretched up 
to 400 percent in axial tension and compressed down to 50 
percent in axial compression. The finite element results calcu- 
lated using different rubber models have excellent agreement 
with analytical solutions as shown in Fig. 1. 

By the comparison with experimental data, one can observe 
that the Mooney-Rivlin model, which represents a linear relation 
between reduced stress and ~-1 in uniaxial deformation (as 
described in Eq. (3.1)),  is not capable of capturing the upturn 
in the small strain region, and the nonlinearity beyond ~200 
percent tension and ~20 percent compression. The finite ele- 
ment results obtained using the Cubic strain energy density 
function, on the other hand, agree quite well with experimental 
data in both large tension and compression but misses a certain 
amount of accuracy in the small strain region. The Modified 
Cubic function with an additional exponential term further im- 
proves small strain accuracy as shown in Fig. 1. 

3.2 Shear of Rubber Component. A double-sandwich 
shear test problem is described in Fig. 2. When the width-to- 
thickness ratio ( w / h )  of the test specimen approaches infinity, 
rubber deforms in simple shear. The specimen used (Yeoh, 
1990) has a width to thickness ratio of 4 and therefore only 
generates a "nearly" simple shear deformatibn. The analytical 
solution of simple shear can be found in Rivlin (1956) as 

2(0w 0w) 
t = \ 0 1 ,  + 012 3' (3.2) 

In the present study, linear pressure fields, Q = 0 = [1, x, 
y] and Q = Q = [1, x, y, z] are used in 9-node two-dimensional 
and 27-node three-dimensional Lagrangian elements, respec- 
tively. 

3 F u n d a m e n t a l  Test  P r o b l e m s  

Three rubber models are used in this section: Mooney-Rivlin, 
Cubic, and Modified Cubic. The material constants fitted from 
uniaxial tensile data (Yeoh, 1990) are 

where t is shear stress and y is shear strain. Note that Eq. (3.2) 
only provides an appropriate solution for this problem. Figure 
2 indicates that the Mooney-Rivlin model, which contains only 
leading terms in 11 and 12, represents a linear shear stress-strain 
behavior as described in Eq. (3.2). The higher order models, 
such as the Cubic and Modified Cubic models, are more capable 
of characterizing the nonlinear shear stress-strain relation as 
shown in Fig. 2. Similar to the uniaxial deformation, the Modi- 
fied Cubic strain energy density function further enhances the 
small strain accuracy when compared against experimental data. 
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Fig. 1 Rubber block under uniaxial tension-compression: comparison of Mooney-Riv- 
lin, Cubic, and modified Cubic strain energy density functions 

The deformed shape at 200 percent shear strain is also plotted 
in Fig. 2. Due to the geometry of the test specimen, some small 
amount of bending deformation is observed near the edges. 

4 Rubber Elasticity Problems 

Since Modified Cubic strain energy density function differs 
from Cubic function simply at low strain as discussed in Section 
3, only Moongy-Rivlin and Cubic strain energy density func- 
tions are used in this study. 

4.1 Inflation of a Rubber Tube. Inflation is a good test 
problem for (nearly) incompressible finite element formulations 
because the pressure-displacement behavior is highly nonlinear 
and the hydrostatic pressure plays a significant role in this prob- 
lem. 

As described in Fig. 3, an infinitely long rubber cylinder, 
with inner radius of 6 cm and outer radius of 8 cm, is subjected 
to an internal pressure, p. The analytical solution of this problem 
can be derived from Rivlin (1949). For convenience, the analyt- 
ical solution (considering only Mooney-Rivlin and Cubic strain 
energy density functions) is summarized as follows: 

p(p )  = (Aw + Am)[Ht(p, a2) - Hi(p, al)] 

+ A2o[H2(p, a2) - H2(p, al)] 

+ A3o[H3(p, as) - H3(p, aj)] 
where 

a 2 ) K(p)  
H l (p ,a )  = in 

a 2 + K(p)  a z + K(p)  

H2(p, a) = - 2  In ( a  2 
a2 ) 

+ K(p) ( )2 
+ K(p)  - 2 K(p)  

a 2 + K(p)  

H3(p, a) = 6 i n  ( a  2 
a2 )3 
K ( p ) ) - ( a  2K(P)  

+ + g ( p )  

3 ( g(p) 3 (K(p)? K(p) 
2 a27~p) /  - 2 \ 7 J  + 6 - 7  

K(p)  = p Z _ a ~  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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Fig, 2 Rubber block under simple shear deformation: comparison of Mooney-Rivlin, 
Cubic, and modified Cubic strain energy density functions 
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Fig. 3 R u b b e r  cylinder subjected to internal pressure: comparison of 
load-displacement response using Mooney-Rivlin and Cubic models 

and a~ and a2 are the outer and inner radius of the undeformed 
cylinder, respectively, p is the inner radius of the deformed 
cylinder, and p is the internal pressure. 

This problem is modeled by four axisymmetric 9-node ele- 
ments with restraints in the axial direction to reflect the plane- 
strain condition in the axial direction, as shown in Fig. 3. As 
described in Eqs. ( 4 . 1 ) - (4 .5 ) ,  a limit pressure exists if the 
Mooney-Rivlin model is used, i.e., 

P(p)lp~= = 2(Am + Act) In a2 = 0.2405 Mpa. (4.6) 
a l  

Displacement control is used in this analysis and a total of 
ten steps are used to inflate the inner radius of the tube from 
6 cm to 21 cm. The finite element and analytical pressure- 
displacement curves obtained using a Mooney-Rivlin material 
are compared in Fig. 3. The corresponding internal pressure at 
the final deformed stage is 0.23919 Mpa which is equivalent to 
99.5 percent of the limit pressure. The error of finite element 
solution is 0.014 percent at the final deformed stage. The Cubic 
material model, compared to Mooney-Rivlin, demonstrates a 
different load-deflection characteristic, as shown in Fig. 3, due 
to the contribution of the higher order terms in the strain energy 
density function. In this analysis, 0.3 percent error is generated 
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Fig. 4 R u b b e r  cylinder subjected to internal pressure: comparison of 
hydrostatic pressure calculated from finite element and ana ly t i ca l  so lu -  
t i on  us ing  Cub i c  r u b b e r  model 

in the axial direction. A total of 48 27-node elements, as shown 
in Fig. 5, are used in this problem. 

The axial forces calculated by finite element using Mooney- 
Rivlin and Cubic strain energy density functions are compared 
against analytical solutions in Fig. 5. The agreement between 
finite element and analytical solutions is good. The axial stress 
distributions at various deformed states calculated using the 
Cubic model are plotted in Fig. 6 and the results are satisfactory. 
In this problem, as can be understood from Eq. (4.7), that the 
initial slope of the N - 0 curve is proportional to Cm + 2Col. 
Hence, the Mooney-Rivlin model demonstrates a stiffer re- 
sponse compared to that of the Cubic model, as shown in 
Fig. 5. 

6o 

50 

by the present finite element solution at the final deformed stage. 
The hydrostatic pressure distributions at various deformation ~ 4 0 
states are plotted in Fig. 4 and results are satisfactory. 

4.2 Simple Torsion o f  a S o l i d  Rubber  Cylinder.  A sim- ~ 30 
ple torsion is generated by rotating the two end surfaces of a 
solid cylinder in their own planes about the axis of the cylinder 
without axial motion. This problem discusses the amount of ~ 2o 
axial force needed to be applied to the twisted rubber cylinder "~ 
in order to maintain it in simple torsion. The solution of this 
problem has been discussed by Rivlin (1949) where the re- 
sulting force N acting along the axis of the cylinder is given by 10 

2r3( OW OW 
N = 7rOb 2 \ O l l  + 2 dr (4.7) 

012 / o 

where q5 is the amount of torsional angle per unit length and a 
is the radius of the cylinder. The dimension of this problem is 
described in Fig. 5. Since the twisted angle per unit axial length 
in simple torsion is constant, only one layer of elements is used 
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- - -  Mooney-Rivlln(Analytlcel) ~,~ 

l~ Cublc(FEM) 
i 

. . . . .  Cubic(Analytical) 
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Twisted Angle (degree) 

Fig. 5 R u b b e r  solid cylinder subjected to  s i m p l e  torsion: comparison of 
induced axial force versus twisted angle using Mooney-Rivlin and C u b i c  
models 
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Fig. 6 Rubber solid cylinder subjected to simple torsion: comparison 
of axial stress distribution calculated from finite element and analytical 
solution using Cubic model 

5 Application to Engineering Eiastomers 
The study in Section 3 indicates that the Cubic strain energy 

density is more appropriate for large and complex deformation 
problems. Only Cubic strain energy density function is consid- 
ered in problems 5.1 and 5.2. The problem definition of example 
5.3 is taken from Tseng et al. (1987) where material constants 
were characterized using the Mooney-Rivlin model. 

5.1 B u l k  D e f o r m a t i o n  of  B o n d e d  R u b b e r .  The mechan- 
ical behavior of bonded rubber under compression has been 
studied since the 1950s by Payne (1957), Gent and Lindley 
(1959), Gent and Meinecke (1970), and others by using the 
concept of "apparent Young's modulus." In their work, the 
apparent Young's modulus for a bonded rubber unit was esti- 
mated from the Young's modulus of an unbonded rubber unit in 
conjunction with the shape effect. Based on small deformation 
assumption, the force-displacement relation of a bonded rubber 
unit can be described by 

F = E~Aoe (5 .1 )  
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Fig. 7 Axisymmetric bonded rubber unit under compression: effect of 
width/height ratio on the apparent Young's modulus 
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Fig. 8 Plane-strain bonded rubber unit under compression: effect of 
width/height ratio on the apparent Young's modulus 

and 

E .  = E . ( 1  + riS e) (5.2) 

where A0 is the undeformed cross sectional area, e is the com- 
pressive (tensile) axial strain,/3 = 2 for axisymmetric case and 
/3 = 1 for plane-strain case, S is the shape factor defined by the 
ratio of loaded area to unloaded area, E. is called the apparent 
Young's modulus and E,, is the Young's modulus of unbonded 
rubber components: 

0~( OW OW ) /1=/2 =3' E,, = \ 0I ,  + 0-~- k-~ (5.3 

where a = 6 for axisymmetric case and a = 8 for plane-strain 
case with ~-~ dropped. Gent also mentioned that rubber is not 
fully incompressible and the bulk modulus, k, should be consid- 
ered in the deformation of rubber, especially when the rubber 
unit is very thin and bonded. The apparent Young's modulus 
E,, in Eq. (5.1) should be replaced by E,,, in the following form: 

1 1 1 
- + - .  ( 5 .4 )  

E,,, E,, k 

The finite element method is used to study this problem. For 
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==================================== ::i;::: 
Fig, 9 Deformed geometries of axisymmetric bonded rubber unit under 
compression 
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Fig. 12 Plane-strain rubber component under shear and bending defor- 
mation= effect of structural geometry on the apparent shear modulus 

the comparison with Gent's approximation, linear analysis is 
first performed. In this problem, rubber behavior is described 
by the Cubic strain energy density function ~nd a mesh of 4 × 
4 nine-node elements, as shown in Fig. 7, are used in the finite 
element analysis. Three arbitrarily selected bulk moduli, 1 × 
103, 1 × 104, 1 × l0 s Mpa (representing bulk modulus to 
shear modulus ratios of 1.34 × 103, 1.34 × 1 0  4, 1.34 × 105, 
respectively) are used to study the effect of bulk modulus on 
the structural stiffness. In this study, the width/height ratio of 
the rubber units varies from 0.01 to 1000. The finite element 
results are compared against Gent's approximation in Figs. 7 -  
8 for axisymmetric and plane-strain cases, respectively, and 
verry good agreement is observed. In the small width/height 
range, the apparent Young's modulus approaches that of the 
unbonded case. As the width/height ratio becomes very large, 
the apparent Young's modulus approaches to bulk modulus and 
this deformation is called bulk compression (tension). 

Large deformation analysis of bonded rubber with k = 1 0  4 

Mpa under tension and compression are also performed. An 
axisymmetric rubber unit with diameter to height ratio of 10 is 
used in the analysis. Five and 20 elements in the axial and radial 
directions, respectively, are used to model one quarter of the 
structure. In the compression analysis, rubber squeezes out at 
the edges as shown in Fig. 9 and the analysis terminated when 
the rubber is compressed more than 30 percent of the original 
thickness, due to excessive mesh entanglement. In the tension 
analysis, rubber is stretched up to five times the original thick- 
ness and the deformed geometries are plotted in Fig. 10. The 
nonlinear finite element load-displacement curves are also com- 
pared against Gent's linear approximate solution in Figs. 11 (a)  
and l l ( b )  for compression and tension, respectively. The 
highly nonlinearities predicted by finite element suggested that 
Gent's solution is applicable only at around 50 percent strain 
in tension and around 15 percent strain in compression in this 
problem. 

This problem also demonstrates the need of using a nearly 
incompressible formulation for rubber that is not purely incom- 
pressible. As indicated in Figs. 7 -8 ,  the magnitude of bulk 
modulus determines the structural stiffness in bonded thin rub- 
ber components. The finite element formulation that can accu- 
rately captures bulk deformation is essential to the success in 
the analysis of highly confined engineering elastomers. The 
present formulation decouples the distortional and dilatational 
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shear and bending deformation: comparison of finite element solution 
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strain energy and therefore performs quite well in this analysis 
as shown in Figs. 7-8.  

5.2 Combined Shear and Bending of Rubber  Compo- 
nents. Rivlin and Saunders (1951) considered the deforma- 
tion to result from the sum of a simple shear deformation and 
a bending deformation based on small deformation theory, and 
proposed an apparent shear modulus given by 

Gapo = G /  1 + 3 ~  (5.5) 

2( OW OW) ,,=,~=3 
G= \Oil +~2 (5.6) 
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Fig, 15 Load-deflection characteristics of engine mount under vertical 
load= comparison of finite element results and linear approximation 

where K is the radius of gyration, G is the shear modulus, and 
h is defined in Fig. 12 where the problem definition is given. 
The finite element nodes on the left end are totally fixed and 
those on the right end are restrained in the horizontal direction 
and are forced to move with the same amount of vertical dis- 
placement. Plane-strain rubber components with w / h  ranging 
from 0.01 to 1000 (w is fixed as 1 cm) are included in the 
analysis. Total of 20 × 6 9-node elements are used in the 
analysis. The finite element apparent shear modulus is calcu- 
lated by 

F~h 
G~pp = Ad--~ = ( Fs /A ) / (  ds/h ) (5.7) 

where F~ and d~ are defined in Fig. 12 and A is the rubber 
cross-sectional area. The finite element results agree well with 

L•.l.. j ~  i 1 %  

Ca) 

, ,  

(~ (c) 

Fig. 14 Undeformed and deformed geometries of engine mount under vertical upward and 
downward loading 
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solutions provided by Rivlin and Saunders shown in Fig. 12. 
When w/h is small, the deformation is primarily in bending 
and therefore the apparent shear modulus is low. On the other 
hand, a thin rubber unit with very high w/h value deforms 
essentially in shear and hence the apparent shear modulus ap- 
proaches to the shear modulus of rubber. 

The nonlinear shear-bending behavior of the rubber unit with 
w = 1 cm and w/h equal to 0.1, 1, 10 is also studied. The 
nonlinear load-deflection curves predicted by finite element are 
compared against the linear approximation obtained from Eq. 
(5.5) in Fig. 13. As indicated in Fig. 13, when deflection is 
small, rubber unit with w/h = 0.1 deforms primarily in bending 
and the corresponding apparent shear modulus is much lower 
than that of the other two units. While at large deflection, due 
to the boundary conditions imposed on the right end of the 
structure, all three rubber units deform primarily in shear and 
therefore exhibit similar apparent shear moduli at large strain. 

5.3 Analysis of Engine Mount. This engine mount prob- 
lem is taken from Tseng et al. (1987) (shown in Fig. 14(a))  

• . ~ . . 

where rubber was characterized using the Mo0ney-Rwhn model 
with Alu = 0.145 Mpa and A0~ = 0.062 Mpa. Since only limited 
raw stress-strain data were provided, we did not to recharacter- 
ize rubber properties using the Cubic model• 

The outer metal box of the engine mount is connected to the 
car body, therefore the outer metal/rubber interface is totally 
fixed in the finite element model. The inner metal piece is 
attached to the engine and, hence, the external load is applied 
to the inner metal. In this example, the vertical load-deflection 
characteristic of the engine mount is analyzed. 

When vertical load is applied to the inner metal, only half of 
the structure is modeled, due to symmetry. With a longer travel 
distance in the downward motion than in the upward motion, the 
lower rubber leg is expected to undergo large and complicated 
deformation; and, therefore, a finer mesh is used to model the 
lower rubber leg. Figure 14 shows that the rubber legs are under 
a combination of compression (tension), shear and bending 
deformation. Some localized buckling occurs near the lower 
right corner of the lower rubber leg. The finite element load- 
deflection curves are compared against the linear solution ob- 
tained from Eqs. (5•1) - (5•7)  in Fig. 15. The finite element 
solution correlates well with the linear approximation at small 
deformations. The nonlinear load-deflection behavior is due to 
the severe bending and shear in the rubber components as have 
discussed in the previous examples• 

6 Conclusions 

The purpose of this paper is to demonstrate the performance 
of the present method and to study some of the typical structural 
characteristics of engineering elastomers using the present 
method in conjunction with several strain energy density func- 
tions. Numerical procedures of the projection method that can 
be implemented into displacement based finite element pro- 

grams is presented. A series of numerical examples demonstrate 
the performance of the present method. 

The comparison of finite element analysis results with experi- 
mental data in tension-compression and shear suggests that the 
higher order strain energy density functions are required to 
capture stress-strain nonlinearities. In the problems with strong 
boundary constraints, the structural stiffness is largely de- 
pending on the magnitude of rubber bulk modulus. This type 
of analysis requires a finite element formulation that is capable 
of capturing the bulk deformation of rubber. With the decompo- 
sition of the strain energy density function and the use of pres- 
sure projection method, the present formulation performs effec- 
tively in these classical finite elasticity problems as well as bulk 
deformation problems. 
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On the Eigenstrain Problem of a 
Spherical Inclusion With an 
Imperfectly Bonded Interface 
This article provides a comprehensive theoretical treatment of the eigenstrain problem 
of a spherical inclusion with an imperfectly bonded interface. Both tangential and 
normal discontinuities at the interface are considered and a linear interfacial condi- 
tion, which assumes that the tangential and the normal displacement jumps are 
proportional to the associated tractions, is adopted. The solution to the corresponding 
eigenstrain problem is obtained by combining Eshelby's solution for a perfectly 
bonded inclusion with Volterra's solution for an equivalent Somigliana dislocation 
field which models the interfacial sliding and normal separation. For isotropic materi- 
als, the Burger's vector of the equivalent Somigliana dislocation is exactly deter- 
mined," the solution is explicitly presented and its uniqueness demonstrated. It is 
found that the stresses inside the inclusion are not uniform, except for some special 
cases. 

1 Introduction 
Since Eshelby (1957) published his celebrated paper on the 

transformation of ellipsoidal inclusion, eigenstrain problems of 
inclusion have been successfully employed in predicting the 
mechanical behavior of heterogeneous materials, such as com- 
posites and polycrystals. The importance of eigenstrain is mani- 
fested by its presence in broad applications encompassing real 
nonelastic strains, such as thermal expansion strains, phase 
transformation strains, initial strains, plastic strains, and misfit 
strains. Alternatively, equivalent imaginary eigenstrains can 
also be introduced to model the inhomogeneities of heteroge- 
neous materials. 

In view of the above, the inclusion problem has received 
considerable attention; as evidenced by the work of Willis 
(1964, 1965), Walpole (1967), Asaro and Barnett (1975), 
Mura (1987, 1988), Nemat-Nasser and Hori (1993), and oth- 
ers. However, most of the available solutions concerning the 
inclusion problem assume perfect bonding at the interface be- 
tween the matrix and the inclusion; i.e., the displacement and 
the interfacial traction are continuous across the interface. This 
condition is sometimes violated and consequently, the resulting 
formulations become inadequate in describing the mechanical 
behavior of the inclusion problem for situations involving the 
debonding of fibers in composites and the grain boundary slid- 
ing in polycrystalline materials. 

The imperfect bonding of the interface has an important in- 
fluence on the mechanical behavior of composite solids. But the 
interracial region is so complex that some simplified interracial 
conditions must be introduced to enable the formulation of the 
problem. One of the most useful interracial conditions is the 
assumption that the normal and the tangential displacement dis- 
continuities at the interface are directly proportional to the corre- 
sponding traction components which are continuous for reason 
of equilibrium. This kind of linear interracial condition has 
been employed by many researchers (e.g., Ghahremani, 1980; 
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Benveniste, 1985; Achenbach and Zhu, 1989; Gosz et al., 1991; 
Hashin, 1991; Qu, 1993). Hashin ( 1991 ) gave a physical expla- 
nation of it and correlated the interface parameters to the in- 
terphase elastic moduli. 

For the eigenstrain problem of inclusion with an imperfectly 
bonded interface, Mura and his collaborators obtained several 
pioneering results (e.g., Mura and Furuhashi, 1984; Mura et al., 
1985; Jasiuk et al., 1987). However, they only considered the 
free sliding interfacial conditions, with vanishing normal dis- 
placement discontinuity and shear traction at the interface. For 
more realistic interracial conditions, no conclusive results have 
been reported, except for that of Huang et al. (1993) who treated 
the interfacial sliding condition in an average sense and that of 
Qu (1993) who approximated the solution using the first term 
of a series expansion. 

In the present paper, both normal and tangential interfacial 
displacement discontinuities are considered. The basic equa- 
tions are obtained for the eigenstrain problem of a spherical 
inclusion with an imperfectly bonded interface described by a 
linear interfacial condition. The solution is decomposed into 
two parts: Eshelby's solution for a perfectly bonded inclusion 
and Volterra's solution for an equivalent Somigliana dislocation 
field which models the interracial sliding and normal separation. 
For elastically isotropic materials, the Burger's vector of the 
equivalent Somigliana dislocation is exactly determined and the 
solution is explicitly presented. 

2 Problem Formulation 

Consider an infinitely extended elastic medium D containing 
a uniform eigenstrain e~ in a spherical inclusion f~ with an 
imperfectly bonded interface 0fL as depicted in Fig. 1. 

If we consider infinitesimal deformation, the total strain c o 
can then be written as the sum of the elastic strain e~i and the 
eigenstrain * 

• (1) ~ij = E~j + Ei j .  

Since the total strain must be compatible, then 

% = (ui.j + uj.i)/2 (2) 

where ui,j = Oui/Oxj, u~ is the displacement and xj the Cartesian 
coordinate of point x. The stress cr U is related to the strain e o 
by Hooke's law, such that 
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x 3 
x ~  n D ×~ 

-1 
Fig. 1 A schematic of the spherical Inclusion problem 

[Au i ]n ink=/3 (ANk)  on 0f~ (15) 

and Au~ = 0 at infinity. Let us introduce a positive-definite 
quantity such that 

f Acro Aui . jdV + f A c r u A u , j d V - > 0  (16) I =  
g D  

If I is transformed using Gauss' theorem to surface integrals 
together with Eqs. (14) and (15), we can show that 

= - f  [a(AT,)(ATg) +/3(AN~)(ANg)]dS <_ 0 (17) I 
gO 

o'ij = Co~l(ckl- e~) in f~ (3) 

oij "~ C i j k l ~ k l  in D - f~ (4) 

where Cokz is the elastic modulus tensor, and the repeated indices 
imply summation. The equations of equilibrium for stress are 

c ruu=0  in D. (5) 

For an imperfectly bonded interface, the interfacial traction 
remains continuous, while both the normal and the tangential 
displacements experience a jump across the interface. Accord- 
ingly, the interfacial conditions can be written as 

[~r,~]nj = 0 (6) 

[ui](6ik - nink) = f (Tk)  (7) 

[ui]nink = g(Nk) (8) 

where [. ] = (out) - (in), nt is the outward unit normal on the 
interface, and T~ = okjnj( 6ik -- nink) and Ni = Okgnkn~ni represent 
the shear and the normal traction at the interface, respectively. 
6~k denotes the Kronecker 6, f and  g are functions. If we consider 
the case of elastic isotropy and assume that f and g are linear 
functions such that the tangential and normal displacement dis- 
continuities at the interface are directly proportional to their 
corresponding interracial tractions, then the interracial condi- 
tions (7) and (8) reduce to 

[ui](6i~ - nink) = aTk (9) 

[U~ ] n i n k  = /3N~ (10) 

where a and/3 denote the compliance in the tangential and the 
normal directions of the interface, respectively. According to 
our definition of [u/], a and/3 should be positive. It can be 
seen that a and /3 characterize the interfacial behavior. For 
example, the case where a = 0 and/3 = 0 corresponds to a 
perfectly bonded interface. When/3 = 0 and ce :~ 0, only interra- 
cial sliding takes place with normal contact remaining intact. 
Furthermore, the case where/3 = 0 and a -~ ~o represents the 
free sliding interface. This kind of linear interfacial condition, 
in essence, corresponds to modeling the imperfectly bonded 
interface by a linear spring-layer of vanishing thickness. 

The solution of Eqs. (2) - (6), (9), (10) completely deter- 
mines the eigenstrain problem of an inclusion with a linear 
imperfectly bonded interface. 

Let we now examine the uniqueness of the solution of the 
current problem. Assume that there are two solutions for dis- 
placements, u) and u 2, with ~ ~ and cr ~. being the corresponding 
stresses. Assuming that Aui = u] - u~ and A a  V = orb - a~, 
then 

Acr0u = 0 in D (11) 

Act0= Co.klAUk.t in D (12) 

[Acr,~]nj=0 on 0f~ (13) 

[Aui](6ik - nink) = a(ATk)  on 0f~ (14) 

since a ~ 0 and/3 -> 0. Combining (16) and (17), we have 1 
= 0, and conclude that ~ = ~r~. Moreover, if the impotent 
terms related to the rigid-body translation and rotation are ex- 
cluded, we also have u~ = u~. 

3 S o l u t i o n  

The solution of the above problem can be divided into two 
main parts: 

(1) The solution of the eigenstrain problem of inclusion 
with perfectly bonded interface. This is the well-known Eshel- 
by's solution, which has the following general form for the 
displacement, strain, and stress fields, 

u~(x) f~ * = - -  C, nnklEkl(X)Gim.n(X -- x ' ) d V '  (18) 

i f .  , , e/~(x) = - ~ Cm,,klekl(X )[Gim..y(x - X') 

+ Gjm.n,(X - x ' ) ] d V '  (19) 

G~(X) = --C,jmn[ y C,,qkle~(X') 
-] 

G,.p.qn(X - x ' ) d V '  + e~. (x) ]  (20) 

where d V '  = dx~dx~dx~, and G~j(x) is the Green's function 
of elasticity for infinite medium. 

(2) The displacement field caused by the interfacial sliding 
and normal separation can be modeled by an equivalent Somig- 
liana dislocation field whose Burger's vector is defined as 

b i  = - [ u i  ]. (21) 

This dislocation field is given by Volterra's solution as being 

= f Cm.ktbt(x')n~(x')Gim,.(x - x ' ) dS ' ,  (22) Uy(X) 
gO I2 

Following Asaro (1975), b. is extended to the interior of f~ 
and we can express (22) in another form using Gauss' theorem; 
i.e., 

- f  C,,.,ktek~*(x')Gi,,,.,,(X -- x ' ) d V '  + b,(x) (23) uuiV(x) 

e~* = --(bk,t + bl.k)/2 (24) 

where bi (x) is only defined for x inside ft; if x is outside ft, 
bt (x) is taken as zero. 

The corresponding strains and stresses are 

l f~  ** t e~.(x) = - ~ Cm.ktekl (X)[Gim,.~(X - X') 

+ Gjm,ni(X - x t ) ] d V  t ** - c U ( x )  ( 2 5 )  
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Iff~ ** r V =  __Co ..... C~,qklekl (X)  °'6 

* *  ] G,,p.q,,(x - x ' ) d V '  + era,, (x) (26) 

where e~ * (x) is taken as zero except when x is inside fL 
Therefore, the solution of the eigenstrain problem of a spheri- 

cal inclusion with the linear interfacial condition can be ex- 
pressed as 

ui = u ~ +  u v (27) 

v (28) ~/J = 66 q- ~6 

v (29) O" 6 = crf] + o 6 . 

The interfacial traction continuity condition (6) is satisfied auto- 
matically, since it is satisfied by Eshelby's solution and Vol- 
terra's solution respectively, whereas the Burgers' vector b~ 
needs to satisfy the interfacial conditions (9) and (10).  

The exact solution for this problem has not been obtained 
before, except for the free sliding case (o~ ~ ~ and /3 = 0) 
solved originally by Mura and Furuhashi (1984) and corrected 
later by Furuhashi et al. ( 1991 ). In this case, Eshelby's solution 
(1957) for the uniform eigenstrain problem of spherical inclu- 
sion with a perfectly bonded interface gives 

e 2/z [10(1 + u ) e * 6 6 +  3 ( 7 - 5 u ) e * ]  (30) o - 0 -  
45(1 - v) 

for point x inside f/, where/z is the shear modulus, v Poisson's 
ratio, and e* is the deviatoric part of e*. Accordingly, the shear 
and the normal tractions at the interface resulting from Eshel- 
by 's  solution can be expressed as 

1 ~ ( ( 7 - 5 u )  2 .  e*xkx~x~) (31) TiE - -__ u)a3  (a e 6 x  j - -  

N,.e _ 4#(1 + u) 2#(7 - 5u) 
----u)-~ e*xs 15(1 -- v)a3-- e*xkx ,  x, (32) 

9(1 

where a is the radius of the spherical inclusion f~ defined by 
x~x~ <- a a for which n~ = x~/a.  

The Burgers 'vector  can be assumed to have the form 

bi = a2Itxi + a2A6xj + BklXkXlXi (33) 

where It is a scalar, A 6 and B 6 are symmetric deviatoric tensors 
with the requirement that Au = B t t  = O. It, A6, and B 6 need to 
be determined using (9) and (10).  Hence, the tangential and 
the normal displacement discontinuities at the interface can be 
written as 

[Ui](6ik -- nink) = --a2AikXi + A6xixjxk (34) 

[ui]nink = --a2Itxk - (A6 + B6)XiXjXk. (35) 

The stress inside the inclusion caused by Somigliana disloca- 
tion (detailed derivation of the stress field inside and outside 
the inclusion is provided in the Appendix) is 

v 4~( 1 + u)  2/z(7 - 5_~)) 
o-6 - 3(1 - ~ a Z I t 6 6  q- "15(1 - -  a2A° 

24/~v 4# 
+ - -  BktXkXt66 

5(1 -- V) 35(1 -- V) 

× [ 2 ( 7 -  4 v ) B 6 1 x I Z +  12l]Bitxtxj + 12uBjtxtxi 

- 2(7 - lOv)Bktx ,  xt66 - "} (5 - v)aZB6] . (36) 

In this case, the shear and the normal tractions at the interface 
corresponding to Volterra's solution are 

TV = 2#(7 - 5v)  (a2A6x j _ AktXkXtXi) 
15(1 u ) a  

4/z(7 + 19v) 
1 - - ~ ( - - - - - ~ a  (a2B6xj  - Bktxkxtx~) (37) 

N V _ 4/z(1 + v )  aItx~ + 2/z(7 - 5v)  Aktxkxtxi 
3(1 - v)  15(1 - u ) a  

+ 4#(35 + l l v )  Bktxkxtxi. (38) 
105(1 -- v ) a  

Therefore, the total shear and normal tractions at the interface 
are 

r~ = Tf  + T~ (39) 

N~ = Nf  + N~. (40) 

Substituting (31),  (32),  (34),  (35),  and ( 3 7 ) - ( 4 0 )  into 
(9) and (10),  and comparing the corresponding terms of the 
polynomial, one can deduce that 

/30kl { e * ~  (41) 
It - 3(1 + ~ok,) \ ~ )  

A6 

1 + O~o(k2 + k3) + flok4 + Otoflok2(k3 + k4) \ a  2]  
(42) 

no 

1 + ot0(k2 + k3) + ~o~4"~o/3ok2(k3 + k4) \ a  2 ] 
(43) 

with 

a a 

4(1 + v) 2(7 - 5v) 
k t - - -  k 2 -  

3(1 - u)  15(1 - v)  

4(7 + 19v) 4(35 + l l v )  
k 3 -  k4=  

105(1 - u)  105(1 - u)  

It is noted that A 6 and B 6 satisfy the requirement that A, = B, 
= 0, since e~ = 0. Once It, A 6, and B 6 are determined, the 
displacement, strain, and stress fields inside and outside the 
inclusion can be calculated using ( 2 7 ) -  (29).  

Although the interfacial tractions at the imperfectly bonded 
interface remain continuous, as in the perfectly bonded case, 
the stress discontinuity across the interface is not the same. 
This discontinuity at the interface can be obtained by a slight 
modification of the methods developed earlier by Hill (1961) 
and Walpole (1978) as summarized below. 

The displacement gradient u~j has a jump across the interface 
which can be expressed as 

[ ui,j] = - b i  d "1- c~nj (44) 

such that it satisfies the relation 

[ ui,j] dxj = -b i , jdx j  (45) 

where dxj is a line element on the interface and ci is an unknown 
vector to be determined. The stress discontinuity can be written 
as 
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[~r 0] = C~m([u~,~] - [e~])  (46) 

where [e*] = e*(out )  e* ( in ) ,  e*(out )  = 0 and e*( in )  = 
- e * .  By means of (48) and (50)  we obtain 

[a~]n; = C~u(-b~j  + c~n~ + e~)n~ = 0 (47) 

where n~ is the outward unit normal on the interface. The solu- 
tion for ce can thus be obtained such that 

ci = C~m~(b ..... - e~ )n~No(n ) /D(n )  (48) 

where N0(n) and D (n)  are the respective co-factor and determi- 
nant of the matrix C~j~n~n~ (known as the acoustical tensor for 
the direction n) .  For isotropic materials, 

D ( n )  = #~(k + 2#)n 6 (49) 

N~(n)  = #n2[(X + 2#)6~fl 2 - (k + #)n~nj] (50) 

where k and # are Lain6 constants, and n = (nine) m .  Thus, 
the stress discontinuity at the interface can be expressed as 

[cry] = Cij ,~t[C1)qmn(b ..... - -  e , * n ) n q n ~ N ~ p ( n ) / D ( n )  

- (b~,t- e~)]. (51) 

The above expression has been derived earlier by Huang et al. 
(1993) for the case of  pure sliding without normal separation. 

Let us now examine the elastic strain energy stored in body 
D which contains an imperfectly bonded inclusion YL In this 
case, the total elastic strain energy W can be described as 

W = W ~ + W v (52) 

with 

1 f E * W F~ = - ~ c r ~ % d V  (53) 

and 

1L v* W v = - ~ a~jc~jdV. (54) 

In the above expressions, W E represents the elastic strain energy 
for the perfectly bonded inclusion model of Eshelby, while W v 
is the elastic strain energy induced by the imperfectly bonded 

, 
interface. When % is uniform inside [2, W E and W v can be 
simplified to 

W E l , ,  E * 

W V l ~ r - - V  * 
= - - ~ V ~ i j e i j  

where cr~ is the uniform stress inside the perfectly bonded inclu- 
sion given by (30),  ~ is the average of  the stress ors over the 
inclusion f~, and V is the volume of fL 

4 Discussion 
Let us now examine some aspects of the solution. When 

= /3 = 0, we have k = A 0 = B U = 0 which means that there 
exist no displacement discontinuities at the interface, and the 
solution reduces to Eshelby's  solution for spherical inclusion 
with a perfectly bonded interface. For the case of  pure sliding 
without normal separation across the interface, we have/3 = 0, 
leading to k = 0, and 

aoka { e ~  
Au = - B °  = l + ao(k2 + k3) \ a2 / 

14ao(7 - 5u) { e ~  
= 6ao(21 +~-3  +- -10~1 - u) \ a 2 ]  " 

1.0 

0.9 

0.8 
X 
? 

t~ 0.7 

0.6 

0.5 

- -  % = 0  (Eshelby, 1957) 
-- -- %=0.1 
- - -  %=0.2 
- - % = 1  
- - - - -  %=10 
- - - -  % ~ ~ (Furuhashi ot al., 1901) 

: . -~  2 7_7.~7.2-7-7-2-~-7-7:=2 -~ y ~  2 Y~  2 7.Z 2 7_7.%77"%72: 

i 

0.0 0.2 0.4 0.6 0.8 1.0 

Xl/a 

Fig. 2 Variation of the normal stress ~ / ( -2 / ,¢e~1)  versus x~/a (x~ = x3 
= 0 )  in the case of pure sliding (/3o = 0)  with only e ~  ~ 0 

Fulrthernlore, 

7(7 - 5u) { e ~  
A° = - B i J  - 3 ~ 1  -~ ~ \ a 2 ] (58) 

for the case where a ~ ~ ,  which corresponds to the flee sliding 
interface. This solution is identical to the result of Furuhashi et 
al. (1991).  If a = 0 and/3 ~ 0, only normal separation without 
sliding occurs at the interface. In this case, Ai; = 0 and 

x = 3(1 + Pok,) \ a a J  (59) 

/3ok2 {e~j~ (60) 
B,j - 1 \ g " 

If eft = 0 and e~l ~ 0, then according to Eqs. ( 4 1 ) - ( 4 3 ) ,  
we have A U = B~j = 0 and k ~e 0. This means that volumetric- 
type eigenstrains only cause normal separation (no sliding) and 

(55) the stress inside the inclusion is uniform. Nevertheless, if  e~ = 
0 and at least one component of  eft is not vanishing, say e~2 :~ 

(56) 0, accordingly, Aj2 :P 0, B12 ~ 0, k = 0, which implies that 
the deviatoric component of the eigenstrain results in normal 
separation as well as sliding at the interface. 

Unlike the perfectly bonded interface, our solution indicates 
that the stresses inside the inclusion of  an imperfectly bonded 
interface are not uniform, except for two special cases. The first 
case is that where e~ = 0 and e~ ~ 0, which has already been 
discussed. In the second case where a = /3 ~e 0, we can find 
that uniform stresses do appear inside the inclusion, since Bij 
= 0,  

Figure 2 shows the variation of the normal stress ej~/ 
( -  2 # e ~ )  along thex l -ax is  (0 _< x d a  -< 1, x2 = x3 = 0),  
when e ~j ~ 0 and other components of the eigenstrain are 
nonexistent. In this case, we set/30 = 0 (pure sliding) and a0 
is allowed to vary from 0 to c~, with u = 0.3. This figure 
demonstrates the nonuniform distribution of the stress inside 
the inclusion. Only for the case where a0 = 0 (Eshelby's  solu- 
tion) does the stress distribution become uniform. The figure 
also shows the case where a0 ~ 0% which corresponds to the 
earlier attempt made by Furuhashi et al. (1991). The results 

(57) reveal that the nonuniformity of the stress crl~ increases with 
the increase of a0. 
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Fig. 3 Variation of the shear stress ~ = / ( - 2 p ,  eta) versus x ~ l a  (x2 = x3 = 
0) in the case of pure sliding (~o = 0) with only el"= ~ 0 

Figure 3 shows the variation of the shear stress crl2/ 
(-2/ .ze ~'2) along the xl-axis when e~z ~ 0 and other components 
of the eigenstrain are zero. In this case, when the interface is 
perfectly bonded (o~0 = 0) ,  no variation in the shear stress 
atz/(-2/ .ze ~'2) distribution along Xl/a is observed. However, for 
a0 > 0, the shear stress decreases with an increase in xt/a.  
When a0 approaches w, this decrease in the shear stress becomes 
rather rapid, indicative of the large variation in the stress field 
in the inclusion. 

Figure 4 gives the variation of the elastic strain energy W~ 
W e versus the interfacial sliding compliance c~0, when e~l ~ 0 
and other components of the eigenstrain are nonexistent, with 
/30 = 0 and u = 0.3. The results indicate that the elastic strain 
energy decreases rapidly with an increase in cap for small values 
of Ceo (ao -< 1 ). For greater values of C~o, W/W E decreases 
asymptotically to approach the free sliding interface case 
(O~o --, ~). 

5 Concluding Remarks 
A new solution is obtained for the eigenstrain problem of 

spherical inclusion with an imperfectly bonded interface. The 
interface is modeled by a linear spring-layer of vanishing thick- 
ness. Both the tangential and the normal displacement disconti- 

1.0 

0.8 

0.7 2 

~0 

Fig, 4 Variation of the elastic strain energy W l W  ~ versus the interfacial 
compliance ao 

nuities are taken into account. The formulations are obtained 
using Eshelby' s solution of the eigenstrain problem for perfectly 
bonded inclusion and Volterra's solution for an equivalent So- 
migliana dislocation field to model the interfacial sliding and 
normal separation. For isotropic materials, the Burger's vector 
of the equivalent Somigliana dislocation is determined exactly 
and the resulting solution is explicitly presented• Unlike the 
case of a perfectly bonded interface, the stresses inside the 
imperfectly bonded inclusion are not uniform, except for some 
special cases. 
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A P P E N D I X  

D e r i v a t i o n  o f  uy  a n d  o'~. 
Substituting Green's function for isotropic elastic medium 

Gu(x - x ' )  

~ij 1 0 2 
Ix - x ' l  (A1)  

- 47r/-zlx - x ' l  167r#(1 - u )  OxiOxj  

into (23), we have 
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1 
u v - [~bkl.kti- 2UC~u.i -- 4(1 -- U)d?iU] + bi (A2) 

87r(1 - u) 

4,ij = 
e * * ( x t ) d g  , 

I x  - x ' [  ( A 3 )  

f a  ** x '  qt 0 =  e U (x '  Ix)  - I d V '  (A4) 

where bi is given by (33) for point x inside ~2 and bi = 0 
for point x outside f/, and e~* is given in (24).  

Substituting (33) into (24) leads to 

e~* = --a2(~.dSij + Aij) - Bilx, xj - Batxlxi - BktXk&6ij. (A5) 

Introducing the following integrals 

fa  dV '  (A6) 
I, = ixZ~,l. 

Jl = f IX - x ' l d V '  (m7) 

~ x ' x J d V '  
I~ = ~ -  ~ ~-'7i (A8) 

4 = f~ x;x; Ix - x'ldV', (A9) 

we obtain the following expressions for ~,~ and ~ :  

q~6 ----- --a2(~-~g + Aiy)I~ - B f l  o - BjJt i  -- Bkd~t6 o (A10) 

tbij = -a2(h6ij  + Aq)J~ - Bfl~j - Bjfl~i - B~J~t6 o. ( A l l )  

IF ft is a spherical domain, it can be shown that 

,, )  A12, 

J1 = ~ ( ~  + a 2 l x l 2 -  Ix14~ 
10 / 

(A13) 

Ixl '  2a21x[ 2 
= ~ 35 15 

a4) 
J~J = 1-i-~ 7lxl + [xl 9fxl 3 6U 

4 a7( 1 
xixj (A19) 

105 Ixl 3 3 

for point x outside Q. 
In this case, u)' can he obtained by using ( A 2 ) - ( A 5 ) ,  

( A 1 0 ) -  (A19),  

u~ = 2(1 - 2 v ) a 2 h x  i + 7 - 5u a2Ait& 
3(1 - u) 15(1 - u) 

4(7 - 10u) 
+ BklXkXtX i 

35(1 - u) 

I 4 ( 7  - 4v) 2(5 - u) ] 
~ 7 - f Z -  ~ Ix[ 2 a 2 Bttx, (A20) 

15(1 u) 

for point x inside ~, and 

U ~ -  (1 + u)a  5 1 a s [ 1 
3(1 - u)  kxi ~ + 6(1 Z u) 3a2AktXkXlXi IXl 7 

1 6a 2 1 
- 3Akt&x, xi Ix I ----~ "~ Ai,x, I x t '  

Ixl ~1]  - 2(1 - 2v)Ailxl"7"~,~ 

a 5 1-30ua 2 1 1 
30(i 2_ ~,) [ - - 7 - -  n k ' x k x ' x ' ~ 7  + 6Bkix~x,xi ixl~ 

_ 12va______~ BilXl[ ~ + 4(1 -- 21J)Bilx  ̀  (A21) 

for point x outside fL 
The stress caused by Somigliana dislocation can be obtained 

v v using a o = Cijkill,lk,l, such that 

v 4#(1 + u) 
a°  = " ~  5 ~ aZh6o + 2#(7 -- 5u)a2Ao 

15(1 - u) 

- 2 ~ r (  Ix[2 aZ) 24#u 4# 
7 ~ xixj (A14) + 5(1 - u~---~ Bklxkx,6ij 35(1 -- u) 

- -  + a 6) 60 

- -  + ~ ) x i x j  (A15) 

27r [ Ixl 6 3aZlxl 4 3a4lx] 2 
Ji~ = --9 ~ 105 3----5 - - - +  5 

]xl 2a2[xl z 
- 7r 6 3  35 

for point x inside f~, and 

47ra 3 
It  = - -  ( A 1 6 )  

3[xl 

4 a3(o&) 
J' = T Ixl + (m17) 

47ra5(  1 a2 ) 47ra 7 
I° = 15 Ixl 7~13 6U + 3 5 ~  xixj (A18) 

× [ 2 ( 7  - 4v)Bijlx] 2 + 12uBit&xj + 12uBjl&xi 

7 
- 2(7 - IOu)Bklxkxtc50 -- "~ (5 -- v)a2Bo (A22) 

for point x inside f~, and 

v _ 2#( 1 + u)a  5 ~.( ~5 o 3 xi xj "~ 
°'J 3 ( 1 - ~ , )  \ l x l  3 ] ~ 7 /  

I za 7 [ _  XkXl_ 1 
+ 1 -- 12 LAk"~T ~iJ + (Ai,&X/+Aj,&&) iX[7 

_ 7AktXkXlXiXj ] ~ a5 . - -  xkXt c 
Ixl 9 ]-i-~[(1-2v)'%"]-xp 7°U 
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1 XkXtXi Xj 
"q" ( Ailxlxj "l" AjtXlXi ) "~]'~ -- 5 Akl - " ~  ] 

5 1 2#a7 [ A o ~ _ ~ ( A t t x t x j + A j t x t x , ) - ~ - ~ . ~ ]  
5(1 - u )  

2~(1-2u)a5 I 1 3 1 ] 
~ l - Z ~  Ao-----(aitxtxj+Ajtxlxi)Tx~lxl 3 2 

2/zt"a7 [ u XkXt X.. • 1 
7 ~  ) Lok, [Xl7 ~,j + (Buxtxj + nj~xtx,) ix17 

"11~ XkXlXiXj] 2#a 5 [ ~ . _  xkxt ¢ 
- - v k t - ' ~ - - j  5 0  --~) [ (1 . . . .  ~ ' w k ,  [xl  5 o,j 

1 , ~  x~xtx~xj 
+ (B,,x, xj + n i , x , x , )  ~ - -,,,~, i xl~ 

XkXtX~ xj -] 4#ua 7 
-- 5 B k l ' - ~ 7 - - ]  + 35(1-  u) 

× B 0 - ~ (B~lXlXj + Bjtxtxi) 1 

4#(1 - 2u)a5 + Bj,x,x~)[-~-~] 

(A23) 

for point x outside fL 
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Thermally Induced Instability of 
Laminated Beams and Plates 
A theoretical investigation of dynamic stability for linear elastic structures due to 
non-uniform, time and space-dependent stochastic temperature fields is presented. 
The study is based on the reformulation of stochastic stability problems as a stability 
of  It6 type equations in some appropriate Hilbert space and is adopted for stability 
problems of structures with time and space-dependent stochastic coefficients. Uniform 
stochastic stability criteria of the structure equilibrium are derived using the Lial)unov 
direct method. The energy-like functional and the generalized lt6 lemma are used to 
derive the sufficient stability conditions of the equilibrium state. A symmetrically 
laminated cross-ply plate subjected to the wide-band Gaussian temperature distribu- 
tion and a laminated beam subjected to local short-time heatings are analysed in 
detail. 

1 Introduction 
Thermal buckling problems of laminated structures have been 

considered in the literature for the last ten years. Most papers 
were concerned with time-independent temperature field in the 
structure and a static approach was applied (cf., Boley and 
Weiner, 1960; Chert and Chen, 1987; Tauchert, 1987a). More 
recently, the problem of thermally induced vibrations of plates 
was investigated by Tauchert (1987b). Based on the dynamic 
equation of laminated plates some more general thermally in- 
duced vibration problem can be solved. The temperature in the 
plate is treated as a time and space-dependent stochastic field. 
It can be decomposed into a sum of two terms of which the 
first is constant in time and the second is time dependent. The 
temperature variations have a significant effect on the dynamic 
behavior and the static component of buckling load. As a result, 
the time-dependent components of temperature field can desta- 
bilize the unperturbed state of the structure. 

The present paper examines thermal buckling of thin lami- 
nated plates due to a nonuniform, time and space-dependent 
stochastic temperature field. The structures are described by 
partial differential equations including transverse inertia 
terms, a dissipation of energy, and both force and moment 
thermal resultants. The study is based on the reformulation 
of stochastic stability problems as a stability of I t r - type equa- 
tions in some appropriate Hilbert space and is adopted for 
stability problems of structures governed by partial differen- 
tial equations with time and space-dependent stochastic coef- 
ficients. The uniform stochastic stability criteria of the struc- 
ture equilibrium are derived using the Liapunov direct 
method. The method is applied without earlier finite dimen- 
sional or modal approximations. The energy-like functional 
is proposed; its positiveness is equivalent to the condition in 
which static buckling does not occur. To estimate deviations 
of solutions from the equilibrium state (the distance between 
a solution with nontrivial initial conditions and the t r ivia l  
solution) a scalar measure of distance equal to the square root 
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of the functional is introduced. The generalized It6 lemma is 
used to show a supermartingale property of the functional 
and, in consequence, to derive sufficient stability conditions 
of the equilibrium state. From the mathematical point of view 
the temperature fields are described by a wide-band Gaussian 
process with an arbitrary space correlation function and a 
sequence of local rapid increments randomly distributed over 
the length of the beam, having independent increments and 
arriving in time according to the Poisson probability distribu- 
tion. 

Two particular problems are analyzed in detail. The first is 
devoted to stability analysis of a symmetrically cross-ply lami- 
nated rectangular plate subjected to a space and time-dependent 
Gaussian wide-band temperature field. Assuming the symmetric 
temperature distribution, the thermal moment resultants vanish 
and there exists the undetected state of equilibrium. For the 
statistically homogeneous temperature field the uniform stabil- 
ity condition is reduced to the static thermal buckling problem 
with modified plate bending stiffnesses. 

The second example is devoted to a laminated beam subjected 
to local short-time heatings described by the Poisson measure. 
The explicit criterion for the uniform stochastic stability is ex- 
pressed in terms of the damping coefficient, the mean arrival 
rate of thermal pulses, the mean square value of temperature 
changes, and the beam parameters. 

2 Assumptions, Definitions, and Basic Equations 

Consider a thin rectangular plate a by b of constant thickness 
h composed of layers of the same thickness of orthotropic mate- 
rials bonded together. It is assumed that each layer is orthotropic 
and elastic. The plate thickness is small compared to its length 
and width. The Kirchhoff hypothesis on nondeformable normal 
element to the middle surface is used and the rotary and cou- 
pling inertias are neglected. The energy of general three-dimen- 
sional motion is dissipated only in the transverse motion by 
viscous damping with a constant proportionality coefficient/~. 
Temperature variations change expansional strains in the plate 
according to the Duhamel-Neumann equation. An elastic-ther- 
mal coupling is neglected and the thermal stresses approach is 
used. The temperature field in the plate is assumed to be known 
and it can be decomposed into a time-independent and time and 
space-dependent components. 

With the stated assumptions, thermal force and thermal mo- 
ment resultants in the laminated plate are given in the form 
(Whitney, 1987) 
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N~' : Q~2 Q22 @6[  g2 dz 
N~.~, -h/z Q,6 Q~6 Q66J E6 

Ol2 o,61[ , 1 
M~ ,,-,,,2 Q,6 Q26 Q66J r6 

(1) 

(2) 

where ~,, ~2, ~-~ are thermal expansional strains, and Q0 are in- 
plane reduced stiffnesses of lamina. 

The laminate constitutive relations, from which in-plane 
force N~, N~., N[.y and moment resultants M.s,, M~, M~y can 
be calculated, are given by 

Bi6 F6~ 
/ ° B26 e~, 

B66 6 xy 
D16 [Krx 
D26 Ky 
066 ay 

Nii]  

M;y 

[ N)I FAH A12 A16 Nil O,2 
Nil I A12 a2z A26 Ba2 B22 

= IAi6 A26 A66 B16 B26 
M/! j B12 B16 D ,  Di2 NMMi /BB]: B22 826 DI2 D22 

LB16 B~6 B66 Die D2~ 

where A~j, B~j, D~j are extensional, coupling, and bending stiff- 
nesses, respectively. Using constitutive relations (3) and ex- 
pressing the strains by the displacement state w the linear equa- 
tion of motion can be derived with the trivial solution w = w, 
= 0 corresponding to the plane (undisturbed) state. 

The main purpose of the paper is to examine a uniform sto- 
chastic stability of the equilibrium state. The trivial solution 
is called uniformly stochastically stable if the following logic 
sentence is true: 

A A v IIw(., 0)11 -< r = P(sup IIw(., t)ll -> c) _< 6 (4) 
e-->O 6~0 r~0 t~0 

where [Iw(., t)l] is a measure of disturbed solution w from the 
equilibrium state. In the present analysis the direct Liapunov 
method is proposed to establish criteria for the uniform stability. 
The crucial point of the method is a construction of a suitable 
Liapunov functional (Tylikowski, 1986), which is positive for 
any motion of the analyzed system. It follows that the measure 
of distance can be chosen as the square root of Liapunov func- 
tional Ilw(., t)H = V t/z 

3 Symmetrical Cross-ply Laminated Rectangular 
Plate due to a Space and Time-Dependent Gaussian 
Wide-Band Temperature Field 

Consider a thin elastic cross-ply symmetrically laminated 
plate consisting of an odd number of orthotropic layers. Due to 
the geometrical and thermal orthotropy of layers the thermal 
expansional strains are given by 

-(2 = r ( x ,  y, z, t) (5) 
g6 

where aL and ar  are linear coefficients of thermal expansion 
parallel and transverse to the principal material axis, and T(x,  
y, z, t) is a temperature field. Therefore, from the material 
symmetry follows that Bij = 0, A~6 = A26 = 0. 

Assume that the temperature distribution has a product form 
and is symmetric with respect to z = 0, 

T(x,  y, z, t) -= T*(x,  y, t )T~(z)  = r* (x ,  y, t ) r ~ ( - z ) .  (6) 

Due to the cross-ply arrangement of layers the thermal forces 
can be calculated from Eqs. ( 1 ) and (5), 

N; 

f [oo 0][:ol = T*(x,  y, t) Qi2Q22 o Tl (z )dz .  
-/,/2 0 0 Q66 

(7) 

The thermal forces are assumed to be stochastic fields propor- 
tional to T*(x,  y, t) 

N~ = T*(x,  y, t) [ Ql2aL + 
N ~  -hi2 0 

= T*(x,  y, t) (8) 

Due to the thermal, material, and geometrical symmetry the 
thermal moments are equal to zero M~' = M~' = Mx r, = 0. 

Assuming that the plate in a prebuckling state is unde- 
formed, i.e., Kx = Ky = K,. = 0, and using Eq. (3),  we notice 
that the in-plane moment resultants are also equal to zero 
Mix = M~y = M~xy = 0. Relations between in-plane force 
resultants and thermal force resultants can be found since 
for the simply supported edges the midplane strains vanish. 

0 0 0 Therefore, substituting ex = ey = exy = 0 into the first three 
rows of Eq. (3) the in-plane force resultants are equal to the 
negatives of the thermal forces 

The plate is heated, and it is assumed that a time and space- 
dependent temperature field with known statistic characteristics 
can be calculated. With these conditions, the dynamic equation of 
transverse plate motion is given in the form (cf., Whitney, 1987) 

Dllw,x~.x + 2(D12 + 2D66)W,xxyy -q- D22w,y.vyy 

+ Nix w, xx + N~, W,yy -~- phw,t t -~- 2phflw,t = 0 

(x ,y )  C ~ ~ (0, a) X (0, b). (10) 

Consider a simply supported plate with its edges immovable 
in the plane of the plate, i.e., 

w = 0 ,  M x = 0  for x = O , a  (1!)  

w = 0 ,  M y = 0  for y = O , b .  (12) 

Let us divide the dynamic Eq. (10) by ph, denote dlj = D J  
ph, n = N/  ph, and introduce the notations 

Dw = d . w x ~  + 2(d12 + 2d66)W,xxyy -q- d22wyyyy (13) 

~ n  w = T T Akw = kxw ~ + kyw,yy.  (14) nxOW,xx + i~yOW,yy 

Assuming that the temperature is equal to the sum of a mean 
time-independent component To and a variable component 
T*(x,  y, t) equal to the difference of temperature from the 
mean. For a temporarily wide-band Gaussian process with an 
arbitrary space correlation function Qr(x~, x2, y~, y2), we can 
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rewrite the dynamic Eq. (10) as the It6 differential equation in 
Hilbert space X with the inner product (., .) over a probability 
space 

dw = w.tdt (15) 

dw,  = - [ [ ] w  + A,~w + 213wt]dt + ZXkwdW (16) 

with (x, y) E f2. Here, W is a Wiener process with values in 
Hilbert space Y with a mean zero and a nuclear covariance 
operator Q, A : X  D ~I)(A ) ---, X,  B : X  ~ 2Y(Y, X ) .  The operator 
[] corresponds to the biharmonic operator for isotropic plates. 
Introducing the operator notation we describe the plate vibra- 
tions as an equation in Hilbert space X 

d~l = A?Jdt + [BTl]dW (17) 

where °11 = col (w,  w.t) 

A = - V - l -  A, -213 , B = A~ 

In order to examine the uniform stochastic stability of the 
plate equilibrium (the trivial solution 71 = 0) we choose the 
Liapunov functional in the form 

= fo ,~(~.. ~(~. °~(=)d~2 (19) V 

where the integrand function ,~' is given by 

.c), = w.2t + 413w,,w + 4132w ~ + dHw~ + 2dl2w~Wyy 

+ 4 d 6 6 w ~  + d22w2yy Z 2 T z (20) --  n x o W , x  - -  n y o W , y .  

According to the generalized It6 lemma in infinite dimen- 
sional spaces (cf., Curtain and Falb, 1970) the differential of 
functional V is equal to 

d V  = (V ;,, ATl)dt + ½Tr([ B?l]*V'~,,[ BTl]Q)dt 

+ (v,;, [mOdW) (21) 

where Tr(.)  denotes the trace of the operator, and V ,', and 
V ~,~ denote the first and the second Frechet derivatives of func- 
tional V, respectively, 

1 
o~u L 2w,t + 413w J ' O°~l 2 413 

Substituting the operator A in the first part of differential (21 ) ,  
and integrating by parts, we have 

(V ~, A'tl) = -413 fa [dllW'2xx + 2dlzW.xxW.yy 

-1- 4d66w~xy -.k d22w~y r 2 T 2 - nxoW,~ - nyoW.y]d~ (23) 

By definition, the trace part (in Eq. (21)) is given by the for- 
mula 

k,([BTJ]e,, V'b[B21]e~}dt (24) 1 d V r ~ = ~  
i=1 

where { e~ } is an orthonormal basis in the space Y. Substituting 
the operator B and the Hessian matrix of g we obtain the trace 
part of the functional differential in the form 

dVrr = Qr(x ,  x ,  y ,  y ) A ~ w .  (25) 

Proceeding similarly as in the proof of the Chebyshev in- 
equality we may show that the equilibrium state of the plate 

with the time and space-dependent temperature field is uni- 
formly stochastically stable if the following inequality is 
valid 

= fa  [413(dnw'2xx + 2d12w.xxW,yy + 4d66w,Exy 

+ d22W,~y T 2 T 2 - -  n x o W , x  --  n y o W , y  ) 

- Qr(x ,  x ,  y,  y)(k~wx~ + kyw,yy)2]df~ >- O. (26) 

As inequality (26) depends on all parameters of the plate and 
the temperature field the sufficient stability condition (26) de- 
scribes the balance between the energy added to the plate by 
the changing temperature field and the energy extracted from 
the system by the damping. 

The inequality (26) holds for every function w satisfying the 
boundary conditions (11 ) -  (12). The functional ~B is quadratic 
and can be rewritten in the form 

= f a  [ (d l l  -- Qr(x ,  x ,  y ,  y ) k~ /413 )w~  

+ 2(d12 - Qr(x ,  x ,  y ,  y)kxky/413)w~xWyy 

+ (d22 - Qr(x ,  x ,  y,  y)k~/413)W~y 

+ 4d66w2y T 2 T 2 - -  n x o W x  - -  n y o W , y ] d x d y  ( 2 7 )  

It constitutes the variational problem 6'JJ = 0. Using the 
theorem on the minimum of a quadratic functional 
(Rektorys,  1975) the functional "B assumes its minimum 
value for function satisfying the associated partial differen- 
tial equation 

r r = 0 (28) []*w + nxoW.~. + ny0W.yy 

where the operator [] * is defined in the following way 

[]*w = [(dll - Qr(x,  x,  y ,  y)k~/413)w.=],~ 

+ [(d12 - Q r ( x ,  x ,  y ,  y ) k x k y ] 4 f l ) W y y ] , x x  

+ [(dl2 -- Qr(x ,  x ,  y ,  y)kxky]413)w,x~],yy 

+ [(d22 - QT(x, x ,  y ,  y)k~/413)W.yy].yy 

-1- 4d66w,xxyy (29) 

The problem is self-adjoint as for every pair of elements u and 
w satisfying the boundary conditions ( 11 ) - (12) we have 

JfffwG*udxdy=ffffu[]*wdxdy (30) 

Therefore the sufficient dynamic stability condition for the 
thermally induced vibration is reduced to the self-adjoint 
eigenvalue problem described by the fourth-order partial 
differential operator []* with the space-dependent coeffi- 
cients. 

Equations (26) and (28) represent the main results of this 
section. They allow to perform specific calculations. 

Example. Consider a square plate composed of a large 
number of orthotropic layers with a thermal field having the 
same properties in x and y direction, i.e., nxro = nyro, kx = ky. 
The temperature distribution has the space correlation function 
of the form 

Qr(x,  x ,  y,  y)  Qr sin 7rx sin' Try = - -  - -  (31) 
a a 

Due to the thermal symmetry, Eq. (26) reduces to 

Vq*w + A,w = 0. (32) 
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The estimation of the first eigenvalue is obtained by means of 
the Schwartz iterative method (Collatz, 1963). Assuming the 
first-order approximation in the form 

sin 7rx sin' Try = - -  - -  (33) WI a a 

the zero-order approximation given by the equation A,,wo = 
-[2*w~ has the form 

Wo = Yl  sin 7rx sin Try _ 3'2 sin 2 7rx sin2 7r._.y_y (34) 
a a a a 

where 

3", = d/n~o T2=QTk~ ~ /2f ln~o (35) 

d = (dH + 2(d12 + 2d66) + d22)12. (36) 

The Schwartz constants (Collatz, 1963) are equal to 

fffi' ao = Wo( - A , w o ) d x d y  

,71-2 
= -~- [(3"~ - 643'2/97r2) 2 + 0.23087z z] (37) 

at = w l ( - A . w o ) d x d y  

= 2 7 r z ( y t / 4  - 163'2/97r 2) (38) 

az = w l ( - A , , w l ) d x d y  = 7r2/2 (39) 

Using the Schwartz constants we calculate the Schwartz ratios 
~1 and #2, 

ao 
a !  

9 264 /( 9 264) = Yl Y2 + 0.23083'~ Yl 3'2 (40) 

a~ 64 
/z2 = - -  = yl - ~ i  y2. (41) 

a2 

In order to obtain the two-sided estimate of the first eigenvalue 
X~, the lower estimate of the second eigenvalue X2 is needed. 
It can be found by comparison of the considered eigenvalue 
problem with some simpler problem and by application of the 
minimax principle. This simpler problem can be defined, by 
substituting the minimal values of coefficients in functional 
(27). 

"/3 -~. f [ ( d l ,  - Ork ~14/3 ) w.2,~ 
a~ 

+ 2(dlz - Q T k ~ / 4 f l ) w . ~ w , .  

+ (d22 - a r k ~ / 4 f l ) W ~ y  

+ 4de6w~ - r 2 w ~ ) ] d x d y  n~o(W.~ + 0 (42) 

Thus the lower estimate of the second eigenvalue is given by 
12 = 4(y t  - 3"2)" 

If 12 < #2 the estimate #2 - (/z~ - Iz2)/(12/tz2 - 1) -< Xl -< 
#2 holds and if 12 --> #2 the lower estimate of the first eigenvalue 
is calculated for the simplified problem (42) 

f Y2 Xl -> y~ max ~ 1 , 
L yl 

1 - 0.72 Y2 0.2308(72/3'1)2"~ Y~ -~--_ ~ j .  ( 4 3 )  

Therefore, the constant inplane force nxT0 corresponding to the 
constant temperature (T0)cr cannot be greater than the lower 
estimation of the first eigenvalue h~ 

h 
To ~ [(Q,, + Qi2)OgL --b (Q12 + Q22)Cer] ~- hr. (44) 

Finally, the dynamic thermal buckling condition obtained from 
Eq. (44), determining the critical value of constant temperature 
component (T0)c, has the form 

71-2 
= -i~ ( F  + 1)  

1 + 2  
u l z F  Gl2 Qr(O, O)k~ 

+ 4  
F + 1 ( F  + 1)El  2 f l D l l p h  

°l--5-r ( 1 + ul2F) + F a--Z ( 1 + u~2) 
O~m Olm 

× max ~1 QTk~ 1 - 0.72 Qrk___~_ 
L 2/3d ' 2/3d 

- 0 . 2 3 0 8  ( Q f l ¢ ~ ) 2 / [ 3 -  3 . 2 8 Q r k ~ l ~ .  (45) 
\ 2 f l d  ] / L  2 f l d J J  

Equation (45) describes the line bounding stability region. In 
Eq. (45) F is the ratio of principal lamina stiffnesses ( F  = E2/ 
El),  where El and E2 are Young's moduli in longitudinal and 
transverse directions, respectively, Gi: denotes the shear modu- 
lus of the lamina, and u~2 is the Poisson's ratio for transverse 
strain in direction 2 when the stress is applied in direction 1. 
In addition, c~m stands for the linear thermal expansion coeffi- 
cient of the lamina matrix. Stability domains calculated for the 
glass-epoxy, the graphite-epoxy and aluminum plate according 
to Eq. (45) are shown in Fig. 1. The Schwartz iterative method 
has increased the stability domains in comparison with those 
obtained for the simplified problem (42). The stability domains 
in the simplified approach are bounded by straight lines, shown 
in part as dotted lines. The areas between the continuous lines 
and dotted lines represent the increase of the stability domains. 
The mechanical properties of those materials are given in Ta- 
ble 1. 

4 Laminated  Beam due to Local  Shor t -T ime  Heat-  
ings 

In numerous applications, for example in electronic elements, 
aircraft panels (e.g., White, 1985) and in thin-walled aerospace 
structures, intense short-time local heatings often occur. They 
may destabilize initially plane shape of elements. In order to 
evaluate the effect of such phenomena and calculate critical 
temperature we consider a laminated beam of rectangular cross 
section of the length I, width g, and total thickness h. Equations 
of symmetrically laminated beams may be derived by consider- 
ing the beam as a special case of a laminated plate. Beams have 
a high length-to-width ratio. Therefore, the transverse displace- 
ment is a function of the variable x only, w = w ( x ) .  The 
symmetry of laminate and stress-free conditions for lateral sur- 
faces imply 
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Fig. 1 Dynamic thermal buckling regions 

My =M~y = 0, N~,=N~y = 0. (46) 

The only one nonzero moment may be expressed by the trans- 
verse displacement in the classic form 

M~= g (D_l)u w .... (47) 

In the case of beam compressed by an axial force, equation 
of the plane motion has the form 

g 
pAw,. + 2pAl3w,, + ~ w ~ + gN~ W,xx = -gMy~,~ 

( D -  )11 ' 

x E  (0, l) (48) 

where N~ is the inplane force resultant. 
The beam is assumed to be simply supported, 

w ( t , O )  = w ( t , l )  = 0 ,  w ~ ( t , O )  = W.x~(t,l) = 0 ,  (49) 

and with immovable ends ex(0) = e~(l) = 0. 
For the beam geometry in the absence of axial motion we 

0 0. have ex = 
o into the first three rows of Eq. (3) and elimi- Substituting ex 

0 and 0 nating C~y ey we can write the axial force in the form 

Nix = _ A22Nx r - Ai2Nf  (50) 
Az2 

Dividing Eq. (48) by pA, substituting e = 1/[(D-1) i lph] ,  
no = No/ ph , n ( t ) = N ( t ) / ph , and assuming the uniform temper- 
ature distribution over the beam cross section T(x ,  y,  z, t) = 
T(x ,  t), the thermal moment in Eq. (48) vanishes and we have 
the following homogeneous equation of motion: 

w,. + 213w,, + ew,xxxx + (n o + n ( t ) ) w ~  = O, 

x E  (0, l) (51) 

where n 0 and n (t) are constant and time-dependent components 
of the inplane force resultant n i, respectively. 

Since the axial motion is neglected, the axial forces n o and 
n( t )  are substituted by their mean values calculated over the 
beam length 

'fo (fro, if(t)) = 77 (n t, n( t ) )d£ .  (52) 

To calculate n o and n( t )  we may observe that for an angle-ply 
symmetrically laminated beam thermal force resultants calcu- 
lated from Eq. (1) are expressed in the following way: 

Nr  = T*(x ,  t) 

x f ~'= [Q-,, O,~ Q-16]['~c°s=°+°~sin~°'l 
oil sin 2 ® + c~ cos = ® |  dz 

-hn LQlz Q22 Q26J (aL - a t )  sin (20) J 

(53) 

where ® is the lamination angle. Integration of Eq. (53) leads 
to the expression for the thermal force resultants in the shortened 
form 

(N~,  N~)  = (Ix, ly)T*(x ,  t) = hCQ,,c~m(Sx, Sy) (54) 

where Sx and Sy are known dimensionless constants: 
Finally, the components of axial forces have the form 

(fro, if(t)) = C (To(i) ,  (T(~, t) - To(~)) )d~ (55) 

where To(x) is the time mean value of the temperature field 
and C = (A22Ix - A221y)/phlA22. 

The force discontinuity is related to the temperature increa- 
ment dT in the following way (similar to Eq. (55)): 

L dn = C dT(~, t)d~, (56) 

If the beam is subjected to a sequence of random heatings 
causing temperature variations randomly distributed over the 
beam, having independent increments and arriving in time ac- 
cording to the Poisson distribution, the equation of motion (51 ) 
can be rewritten as the It6 partial differential equation of the 
form 

dw = vdt (57) 

dv = -(213v + eW,~xx + now:~)dt 

- e w ~  F uu(du,  dt), x E ( O ,  1) (58) 

Table 1 Mechanical properties of single orthotropic lamina 

glass-epoxy graphite-epoxy 
F 0.22 
; G12/E1 0.08 
ul2 0.26 
o~L/a,, 0.088 

[ c~r/~m 0.5 

0.0458 
0.0271 
0.26 
-0.013 
0.76 

a,lurnJ.num 
1 
0.4 
0.25 
0.375 
0.375 
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where e is a constant containing information on the space distri- 

bu t ion f (x )  of the temperature field c = C f ~ f ( ~ ) d ~ ,  and the 
Poisson measure v(dt, S)  denotes a random number of tempera- 
ture changes belonging to the domain S in the time interval (t, 
t + dt); its distribution has the known form 

P { v ( [ t l ,  t2], S)  = n} 

1 ( f /2  ) ) "  ( f  t2 ) )  
= - -  M[I(dt, S exp M-I(dt, S . (59) 

n! , \~t, 

The mean value of the Poisson measure v equals to the ordinary 
measure II  of (dt, S) multiplied by a mean arrival rate k of the 
temperature pulses 

Ev(dt ,  S) = k ( t ) I I (d t ,  S).  (60) 

In the steady-state condition the mean arrival rate k is constant 
and 

Ev(dt ,  S)  = kII (S)dt .  (61) 

We introduce an energy-like Liapunov functional of the form 

V = (v z + 4pvw + 4B2w 2 + ew~x - now~)dx. (62) 

The functional is positive definite if a constant component no 
of axial temperature force satisfies the classic buckling condi- 
tion, Then we can choose a measure of motion disturbances as 
a square root of functional Ilwll = v "=,  In order to calculate 
the differential of functional it is necessary to apply the general- 
ized It6 formula (Gikhman and Dorogovtsev, 1965), which 
yields 

Yo d V  = [2vdv + 4flwdv + 4~vdw + 81~2wdw 

+ 2eW.~xdw~ - 2nowxdw~]dx 

fif  + [(v + ueW,xx) 2 + 4flw(v + uewo.x) 

- v z - 413wv]v(dt, du)dx.  (63) 

Substituting dw from Eq. (57) and dv from Eq. (58), integrat- 
ing by parts, and using boundary conditions, we obtain 

f2 dV = - [4BeW~x - 4~now~ - Xe2E(Ar~)w~]dxdt 

fi + - (2v + 4Bw)ewx~dx uv(dt ,  du) (64) 

where E (AT 2) is a mean square value of the temperature incre- 
ments. Applying the Gikhman and Skorokhod (1972) stability 
theorem we can write the uniform stability condition in the 
form 

f i [ 4 B e w 2 ~  kc2E(AT2)wZ~]dx > 0 (65) 4Bnow~x 

As functions satisfying boundary conditions (49) satisfy the 
following inequality, 

fl fl w ~ d x  >- w~dx,  (66) 

we can rewrite the stability condition (65) in the form 

o ~ m ( T o ) , ~ ( t / h )  2 0 

0 10 20 30 40 50 60 70 

' I !% , 0 = ~ / 4  

3.0 \ 1~.,/ / ~ " ~  
N 

0:0 1'.0 ZO 3.0 4.0 

Fig. 2 Dynamic thermal buckling regions for a beam 
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fl 0 
Therefore, the beam subjected to a sequence of local short- 
term heatings is uniformly stochastically stable if the following 
condition imposed on the beam parameters and the temperature 
fields is satisfied: 

XE(AT2)e2 < e -  no (68) 
4fl ~ ' 

Using the inverse matrix D-1 and the relation between the axial 
force no and the constant mean temperature To Eq. (68) can be 
written in the form 

h312pt2Pt6P26dp2(LN) - p22P~6q~2(LN) - P66p22 ] 
12ph ~Jl~ 1 + P22P66 P~6492(LN) 

+ - - ~ 1 1 ~ , . ( s ~  - S y ~ , 2 / O 2 2 ) r o  
P 

kE(AT2)e 2 
> 0 (69) 

4/3 

p0 = 0 ,~  

3L~  - 3 
4,(LN) - L~ 

Finally, the thermal buckling condition in dimensionless vari- 
ables has the form 

c ~ . , ( T o ) ~ ( ~ ) 2 ~ k , - ~  (70) 

where k~ is a known coefficient depending on the material and 
geometrical parameters and the number of layers LN 

71-2 

kl = - -  
12 

X I1 q- 2pI2PI6P26~2(LN)--P22P~6~)2(LN)--P66PI22]/P22P66 - -  P226~2(LN) 

(Sx - SyQi2/Q22) (71) 
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and the independent variable ~7 in Eq. (70) depends on the 
thermal characteristics of temperature field and the dissipative 
properties of the beam 

hE (AT) 2OZ,2n 7r 2Ql t 
= 4f lph 2 

(72) 

Stability domains for graphite-epoxy and glass-epoxy beams 
with the lamination angle 0 = 7r/4 and for various numbers of 
layers are shown in Fig. 2. As anticipated, because of the nega- 
tive value of aL/am, the graphite-epoxy composites (upper right 
lines) exhibit increased stability domains compared to those of 
glass-epoxy laminate (lower left lines) which display positive 
thermal expansion coefficients. 

Stability boundaries are seen to tend to a limit with an increas- 
ing number of layers. The limit case LN ~ ~ corresponding to 
the specially orthotropic plates (as D 16 : D26 "-" 0)  overestimates 
the critical value of OZm ( To)or ( l / h )  2. The presence of bending- 
torsional coupling terms (D16, D26) decreases the stability do- 
mains for both the glass-epoxy and the graphite-epoxy beams. 

5 Conclusions 
A method has been presented for analyzing the thermally 

induced instability of elastic laminated plates subjected to time 
and space-varying temperature fields. The major conclusion is 
that the Liapunov method is an effective tool of solving the 
stability problem of laminated plates. The explicit criteria devel- 
oped in the paper define stability regions in terms of the intensity 
of excitation process and the physical characteristics of the 
plate. The analytical formulas defining the stability regions are 

derived using the calculus of variations. Stability regions depend 
essentially on the constant temperature and the plate material. 
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An Integral-Equation Formulation 
for Anisotropic Elastostatics 
In this paper a conceptually simple integral-equation formulation for homogeneous 
anisotropic linear elastostatics is presented. The basic idea of the approach proposed 
here is to rewrite the system of differential equations of  the anisotropic problem to 
enable the use of the isotropic fundamental solution. This procedure leads to an 
extended form of Somigliana's identity where a domain term occurs as a result of  
the anisotropy of  the material. A supplementary integral equation is then established 
to cope with the resulting domain unknowns. Although the solution of  these integral 
equations requires discretization of the contour of the structural component into 
boundary elements and its domain into internal cells, the numerical scheme presented 
here depends only on the boundary variables of the problem. Once the boundary 
solution is obtained it is possible to compute the unknowns within the domain, if 
required. The main objective of the present work is to develop an alternative integral- 
equation formulation that couM be used to reduce the time needed to compute three- 
dimensional solutions for linear homogeneous anisotropic problems. Another possible 
advantage of the proposed formulation is its generality, which enables its direct 
extension to include dynamic and plastic effects in the analysis. Encouraging results 
are presented for  four examples where structural elements are submitted to tension 
and shear effects. 

1 Introduction 
To solve current technological problems that occur in indus- 

try, the use of composite materials or directionally solidified 
alloys is sometimes essential. Further, as plastic deformation is 
physically anisotropic (Fung, 1965), many fabrication pro- 
cesses such as cold-pressing, forging, or spinning, usually de- 
stroy any initial isotropy which may have been present, leaving 
as a result an anisotropic material. 

As the treatment of anisotropic problems is generally re- 
garded as difficult, the increasing number of industrial applica- 
tions of anisotropic materials has attracted the attention of many 
researchers concerned with computational modeling. However, 
despite the importance that computational modeling has as- 
sumed in providing answers to realistic industrial problems, it 
seems that the progress achieved in the analysis of orthotropic 
and anisotropic problems has been relatively slow, when com- 
pared with the significant developments in numerical modeling 
made in the last decades. 

This paper is concerned with the development of an alterna- 
tive integral-equation formulation for the numerical analysis of 
homogeneous anisotropic linear elastic problems. The approach 
presented here consists of rewriting the generalized form of 
Hooke's law in a slightly different way to enable the use of 
Kelvin's fundamental solutions for elastostatics. This procedure 
leads to an extended form of Somigliana's identity which in- 
cludes a domain term that accounts for the anisotropy of the 
material. The first primary integral equation of the method is 
obtained by taking the limiting form of this equation as the 
interior point approaches the boundary. In order to cope with 
the domain unknowns arising from this formulation, a supple- 
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mentary integral equation is derived from the extended form of 
Somigliana's identity. This supplementary integral equation is 
then regarded as the second primary integral equation of the 
proposed method. 

To solve the system formed by the two integral equations it 
is necessary to discretize the contour of the mechanical or struc- 
tural element under consideration into boundary elements and 
its interior into domain cells. Two coupled systems of linear 
algebraic equations are then obtained. The solution of these 
simultaneous systems of linear equations is done using a tech- 
nique equivalent to the FEM condensation of internal degrees 
of freedom (Desai and Abel, 1972), leading to a final solution 
that is dependent exclusively on the boundary variables of the 
problem. 

The purpose of the present work is to investigate whether the 
use of the isotropic fundamental solutions for linear elastostatics 
constitutes or not a reliable alternative for the analysis of aniso- 
tropic problems. Once the formulation proposed here is verified 
for two-dimensional problems there are no conceptual difficul- 
ties in including dynamic and nonlinear (e.g., elastoplasticity) 
effects in the formulation. Most importantly, it can be directly 
extended to obtain a general integral equation formulation for 
three-dimensional homogeneous anisotropic problems. 

As regards BEM, Rizzo and Shippy (1970) (and Benjumea 
and Sikarskie, 1972) used the two-dimensional anisotropic fun- 
damental solution presented by Green (1943) in a real-variable 
direct boundary integral equation formulation. One year later, 
Cruse and Swedlow (1971) issued a report where a complex- 
variable anisotropic fundamental solution was used for plane 
elasticity. A more recent complex-variable approach for two- 
dimensional anisotropic elastic problems was presented by Lee 
and Mal (1990), where the integral equations are discretized 
in the complex plane. 

It is important to mention that although two-dimensional 
complex fundamental solutions for anisotropic elasticity present 
no particular difficulty in their implementation (see, for in- 
stance, Cruse and Swedlow, 1971), the evaluation of the con- 
tour integrals for the three-dimensional case is regarded compli- 
cated, especially for the fundamental tractions (Vogel and 
Rizzo, 1973), and too time-consuming for routine numerical 
use by Wilson and Cruse (1978). An alternative approach to 
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the problem has been presented by Mura and Kinoshita ( 1971 ). 
However, the need to compute series expansions for the funda- 
mental displacements and tractions at each integration point 
makes this formulation also unsuitable for extensive computa- 
tion. 

Barnett (1972) developed a simple numerical scheme for 
evaluating the derivatives of the anisotropic elastic Green's 
function for three-dimensional problems by using Fourier trans- 
form method. This procedure was reviewed by Mura (1987), 
together with other analytical and approximate expressions for 
the three-dimensional anisotropic Green's function. Recently, 
Voorhees et al. (i992) presented a boundary integral technique 
for a system with cubic elastic anisotropy which requires inte- 
grating the derivatives of the three-dimensional Green's func- 
tion. In this approach an analytical form for the Green's function 
described in the review paper of Bacon et al. (1979) was used. 

The inspiration for the formulation proposed here was drawn 
from the tentative approach proposed by Brebbia and Domin- 
guez (1989) for anisotropic elasticity; from the work of Shi 
(1990), where a supplementary integral equation for the solu- 
tion of bending and eigenvalue problems of anisotropic plates 
was derived from the integral equation for the displacements 
within the domain; and from the work of Telles and Brebbia 
(1979), where the complete integral formulation for plasticity 
was first presented. Moreover, the method proposed here is a 
direct extension of the formulation proposed by Perez and Wro- 
bel (1992, 1993) for the analysis of homogeneous anisotropic 
problems in potential theory. 

2 Integral-Equation Formulation 
The governing differential equation for linear anisotropic 

elasticity--Navier equation--is expressed by (Balag et al., 
1989): 

Dij~lUk,jl + bi = 0 (1) 

where Ds:~ represents the fourth-order tensor of elastic proper- 
ties; u~ denotes the components of the displacement vector, 
and b~ is the body force vector. This equation is sufficient to 
completely describe the elastic behavior of the material once 
boundary conditions are defined. As only homogeneous materi- 
als are considered in this paper, the components of the elasticity 
tensor are regarded as constant throughout the domain. 

To enable the use of isotropic fundamental solutions, the 
elasticity tensor was divided into two components, namely: 

Di~ = D°,t + 1)o~. (2) 

In this equation, D°~l stafids for an isotropic reference tensor 
while Dijk~ denotes the difference between the actual tensor of 
elastic constants of the anisotropic material and the isotropic 
reference tensor. This reference isotropic tensor is defined by 
averaging the elastic constants of the anisotropic material (Breb- 
bia and Dominguez, 1989). 

Taking Eq. (2) into consideration, the weighted residual 
statement to the anisotropic problem analysed here can then be 
written as 

f u~(~, o x)(Djklm + Djkt,n)Ut,km(X)dfl(X) 

+ f~ u~(~, x )b : (x )d~(X)  

= f_ u~(~, X)[P2(X) - t~(x)]dF(x)  
2 

+ I_ P~( ( '  X)[~(X) - u2(x)]dF(x) (3) 
~ 1  • 1 

where ~ and X are the load and field points, respectively; 
u~(~, X) denotes the isotropic fundamental displacements; 

P~(~, X) denotes the fundamental tractions; uj(x) and Pj(X) 
stand for displacements and tractions, respectively, while the 
superimposed bar denotes prescribed values (~(X) on F~ and 
~(X)  on F2); F~ + Fz = F constitutes the boundary of the 
structural component being analyzed, and ~ denotes the region 
enclosed by F. 

The appropriate expressions for the reference isotropic funda- 
mental displacements and tractions for two-dimensional plane- 
strain problems are given (Brebbia et al., 1984) by 

- 1  
u~(~, X) - [(3 - 4u) In (r)6ij - r,ir,j] (4) 

87r(1 - u)G 

P~(~, X ) -  47r(11 u)r { [ ( 1 -  2u)6,j + 2r,:,~] 
0__~r 

On 

(1 - 2u)(r,in~ - rqni) I (5) 
I 

where 6 U is the Kronecker delta; G is the shear modulus; u is 
the Poisson's ratio; r = r(£, X) denotes the distance between 

and X; r,i represents the derivatives of r with respect to the 
coordinates of the field point, i.e., r,i = Or/Oxi(x) = r~/r; n 
is the outward unit vector normal to the boundary at X, while 
ni denotes its direction cosines. The case of plane stress can be 
analyzed through the use of an effective Poisson's ratio (Breb- 
bia and Dominguez, 1989). 

Integrating by parts the first term on the left-hand side of Eq. 
(3) yields 

- f e)~i(~, x)(Dik,m° + l):ktm)Co.(x)d~(x) 
2 

+ fa u~(~, x )b : ( x )d~ (x )  

U~(~, X)Pj(x)dF(x)  

+ I_  eJn~(v',' X) [g(X)  - uj(x)]dl-'(X) (6) 
1 

where e~i (~, X) represents the isotropic fundamental strain ten- 
sor and e~m(X) the actual strain field. The fundamental strains 
e~i at any point X, due to a unit point load applied at { in the 
direction i, can be written as (Brebbia et al., 1984): 

- 1  
~ ( ~ ,  x )  = 8~r(1 - u)Gr 

× [(1 - 2u)(r,k6ij + r,j6ik) - r,i6jk + 2r,irqr,k]. (7) 

The constitutive equation relating stresses and strains for a 
linearly elastic material (generalized Hooke's law ) is used along 
with Eq. (2) to write 

where ~ is the isotropic component of the actual stress tensor 
while 6j~ is the residual one. Applying Eq. (8) to the first term 
on the left-hand side in Eq. (6) yields 

- fa e~q(~, X)C~5k(x)d~(x) 

fF 2 U/~(~, .~)/~(~)dF(~)- fF I ./~ij~(~, ~)pj(~)dF(~) 

+ f_ P~(~, X)[~(X) - uj(x)]dI-'(X). (9) 
1 
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Fig. 1 Constant (a), and subparametric discontinuous (b), parent internal cells 

Recalling that the isotropic fundamental tensors comply with 
Djkl,,,e#ni and, from Eq. (8), that G~k = Djkt,,° ~t,,,, it is G i.~. i ~ 0 

possible to rewrite the first term in Eq. (9) in the form 

f~ e~i(~, X)Cr~k(x)df~(X) 

= J~ G~,(~, x)cj~(x)df~(x). (10) 

Integrating by parts the right-hand side term in Eq. (10) and 
substituting the result into Eq. (9) leads to 

f ~ G~.,.k((, X)u,(x)da(x) - f s, aN.i({, X)~#~(x)df~(X) 

+ = - J r  
X ) P j ( X ) d F ( x )  

+ frp~((, X)uj(x)dF(x) (11) 

where the first term on the left-hand side can be shown to reduce 
to the displacement vector at point ( (Brebbia et al., 1984) and 
the dash through the integration symbols denotes integrals that 
are to be interpreted in the Cauchy principal value sense. Equa- 
tion (11 ) can then be written as 

X)uj(x)dF(x) 

(12) 

This equation can be seen as Somigliana's identity with an 
additional domain term which takes into account the anisotropy 
of the material. This additional domain term introduces a set of 
domain variables represented by the residual stress field 
aj~(x), 

An integral equation for load points on the boundary is ob- 
tained by a limiting process, taking the load point { from within 
the domain to the contour F. The resulting integral equation is 
expressed by 

+ f (¢, x)u,(x)dr(x) 

- f~ u~({, x)b;(x)df~(X) (13) 

where the elements of the tensor cu(~) are functions of the 
internal angle of the boundary at point ~. 

Whereas Eq. ( 13 ) provides the first primary integral equa- 
tion of the proposed formulation, another integral equation 
is still required to provide, after discretization, the necessary 
number of linear equations to solve the problem numeri- 
cally. This supplementary integral equation is obtained by 
differentiating Eq. (12) with respect to the coordinates of 
the load point ~, as expressed by 

Y' Yl 
p/h /.. ,.//..j./.,.-- 

I D-~ I pb/h 

: T 

× 

1 
1 I pl/h 

Fig. 2 Rectangular plate subjected to uniform tension 
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O u , ( ( )  = o 
X ) P j ( x ) d F ( x )  03xl( ( ) 03xl( ( ) a~ 

-- OX,( ( )  P ~ ( ~ '  X ) u J ( X ) d I - ' ( X )  

0 £ 

03 £ 
I u~((, X)4(x)df~(X) (14) Ox~( ~ ) 

and then combining these derivatives to obtain the strain tensor 
eu(X). This strain tensor is then related to the residual stress 
tensor 3-u(~) using the generalized Hooke's law, leading to the 
second primary integral equation of the method, that is 

1 [ OUm(~) + Ou.(~) ] 
][)ijmn 2 L 03Xn(~) 03Xm(~) ] 

+ D  1 03 , 
'J"" ~ [ Ox~,(~) frPm~(~, X)Uk(z)dF(x) 

+ - -  P~k(~, X ) u k ( x ) d F ( x )  03x,.(0 

= 19~m. ~ u~k(~,  X ) P k ( x ) d F ( x )  

+ - -  u#k(~, X ) P k ( x ) d F ( X )  

4, '\ D~61 p/x h % 

_._ ~ I I.C2161 p b / h  
V 2 Y _  _ 

• I 

-1  
D ]6 p l / h  

Fig. 4 Rectangular plate subjected to shear loading 

894 / Vol. 63, DECEMBER 1996 Transactions of the A S M E  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



- 0 . 1 2  
0 

x 
> 

E -o.13 
ID 

0 

k5 
- 0 . 1 4  

O, 

o 

o O  

,:5 o d 
Displacement uxlO -~ 

Fig. 5 

C 

8 ¢.D 
0,10 

b 
"x -0.00 

-~-o.10 

~ =0.20 
0 
0 
~--0.30 
i5 

-0 ,4~.  

)0 2.~0 5.00 7.~0 lO.bO 
Coordinate x 

0 

0 ,0  0 O 0  
t~4 q t TM ~- d o d o 

I I 31 
Displacement uxl O- 

oeoeo  Analytical results 
z~-~z~-~ Constant internal cell • Q u o d r a t i c  in te rna l  cell 

)0 2.~0 5.60 7.~0 10.b0 
Coordinate x 

Results obtained for plate under shear loading. Displacements in m. 

1[ 0 f e~.(~,X)~kt(x)d~(x) 

0 f e,,kt(,,X)O.kt(X)d,(x)] + Ox,.(~) ~ 

-19 1 iJ,,,,,-~ [ Ox~ ~ U*k('. x)bk(x)df~(X) 

+ ~ ~ u.*~(5 X)bk(X)d~(X) (15) 

where the first term on the left-hand side is equal to &~j(~). 

As the load point ~ is considered within the domain in Eq. 
(15), it is possible to apply the differentiation directly to the 
kernel of the boundary integrals. Recalling the identity 

Or(G, X) Or(G, X) 
= r , i  = (16)  Oxi(x) Ox;(~) 

the following tensors are obtained: 

1 [Ou'*k(~'x)+Ou*k(~'X)] =--e*,k(~,X) (17) 
2 OX,(~) OX,,(~) 

and 

Y'Yl I 

[ 
Z 

h 

[7- 
p 

== 

i / 2 .  

b t .5b 

Fig. 6 Filleted plate in tension 
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l I I I I I I ' l  ~ i , t  I ' 

i I l I 

Or 
- 2u(r,mr,~n. + r,.r,~n~,) - -~n [2u(r,,,,6,,k + r,.6mk) 

+ 2r,k6,= - 8r,,.r,,,r.k] 4 

J 
(19) 

However, differentiation of the domain integrals needs further 
attention due to their singular kernel. 

(o) 

i I 

I ii I 
(b) 

, I 

I 

i 

(c) 

Fig. 7 BoundarydiscreUzation(a),andinternalmesheswith26(b),and 
44 (c) internal cells 

Op,,**(~, x)] 1 Op~,({, X) + = -P.*mk({, X) (18) 
2 oxo(o gS- i j 

where e*.k(~, X) is given by Eq. (7), while p*.k({, X) is given 
by 

1 
p%(¢ x) = 4rr(1 - t/)r 2 

× ~ (1 -- 2u)(6.,.n~ - 6mkn,, -- 6.knm -- 2r,,.r,.nk) 
t 

2.1 Differentiation of the Singular Domain Integrals. 

In order to obtain the final form of the integral equation for 
the residual stresses &u(~) expressed by Eq. (15) it is necessary 
to differentiate the extended form of Somigliana's identity, Eq. 
(12), with respect to the coordinates of the load point. This 
differentiation can be directly applied to the fundamental solu- 
tion tensors for the boundary integrals. However, the same pro- 
cedure cannot be applied to differentiate the domain integrals 
as the concept of differentiation of singular integrals does not 
follow the classical rule (Mikhlin, 1962, 1970). The correct 
differentiation of these integrals yields additional terms, which 
can be determined analytically through the use of Leibnitz' rule 
(Brebbia et al., 1984; Perez and Wrobel, 1992, 1993). 

According to Telles and Brebbia (1979), where the problem 
of differentiation of similar domain terms in a BEM formulation 
for plasticity is presented in detail, the derivative of the domain 
integrals can be written as 

0 g 
T e~kt({, X ) O e i ( x ) d ~ ( x )  

Ox.(~) a 

r & % ( { ,  X) = -]- O'kl(x)df~(X) 
d Ox.(~) 

f r  C~k~((, X)  dF(x)  (20) 
Or 

+ ~kt({) ; ox.(~) 
where F{ defines a circle of unit radius centered at the load 
point and &,l({) corresponds to the first term on the left-hand 
side of Eq. (15). 

The expression for the derivatives of the domain integral 
obtained in Eq. (20) can be substituted into the second term on 
the right-hand side of Eq. (15). This term then assumes the 
form 

+ ~ ~ e~k/({, X)ffkt(x)dfl(X) 

= .L/T[P 0e~kt(~, X ) & k l ( x ) d ~ ( x  ) 
2 Ld~  Ox.(~) 

f r  e~kt(~, X) Or + 8k,({) ; ~ dF(x )  

f 0e*kl((. X) &kl(x)d~2(X) 
+ ~ Oxm(~) 

f r  Or + ak,({) ; ~,,*k,((, x)  OXm(~) d F ( x ) ] .  (21) 
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given in m and tractions in MPa. 

Combining the domain integrals in Eq. (21) yields 

1_[ f2  ~ Oe~kl({' X )  

+ f OE~kl(~ X) ~kl(X)d~)(X) 1 
OXm(~) 

f , 
= - e,,,,,kt({, X ) & k t ( x ) d ~ ( x )  (22) 

~2 

where 

e ,,%, ( ~, x )  - 
1 

87r(1 -- u ) G r  z [(1 - 2U)(5.k6,,,i + 6,,,k6,,,) 

+ 2u(6,,tr,,.r,k + 5,.tr,,,r,k + 6.~r.,,,r,l + 6mkr,,,r.t) -- 6,..6kl 

+ 26,,,,,r,kr,l + 6klr,,,,r,. -- 8r,,.r,,,r,kr,t]. (23) 

Further, combining the integrals over F[ together, it is possible 
to express the additional term resulting from the differentiation 
process in the form 

1 [ f  e~kt(~,X) Or d F ( x )  
O'k,(~) 2 Lar,, Ox. (~)  

Or 
+ ¢~t(~, x ) - - d F ( x ) ]  

; OXm(O j 

1 
- [(6 - 8U)~kl(~) -- #jj(~)6kl]. 

16(1 -- u ) G  

Finally, Eq. (15) can be rewritten as 

+ &m. fFPZ°k(¢ X ) U k ( X ) d F ( x )  

= bum,, f <,%(C X ) P ~ ( X ) d F ( x )  ~F 

(24) 
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-- l)ijmn(if~ et~nkl(~ , X)#kl(X)d~2(X) 

+ 
16(1 - v)G 

[(6 - 8v)60(~) - b;;(~)30] } 

- 19u"" fa e,,*mk(~, x)bk(x)df~(X). (25) 

Equations (13) and (25), together with appropriate boundary 
conditions, provide the necessary integral relations for the nu- 
merical solution of the problem. 

3 Matrix Formulat ion 

Following the approach used by Perez and Wrobel (1992, 
1993) for anisotropic problems of potential theory, the nu- 
merical solution of the system formed by Eqs. (13) and (25) 
is obtained by discretizing the contour F into boundary ele- 
ments and the domain f~ into internal cells. Then, by applying 
the discrete version of Eq. (13) at each boundary node, the 
first set of linear equations is obtained in the form 

HU - GP = ES - VB (26) 

where H and G are the conventional BEM influence matri- 
ces; U and P denote nodal boundary displacement and nodal 
boundary traction vectors, respectively; E is the matrix re- 
sulting from the domain integration of ej*ki; S represents the 
vector of domain unknowns &q at the internal collocation 
points; V is the matrix resulting from the domain integration 
of uij,*' and B is the actual body force vector. 

The supplementary set of linear equations can similarly be 

obtained by applying the discretized version of Eq. (25) at the 
internal collocation points. This procedure leads to 

H U -  G P = E S -  VB (27) 

where fi and C, are matrices concerned with boundary integrals; 
F, is a square matrix resulting from the domain integration of 
e~k~; and V is the matrix resulting from the domain integration 
of cj~,. 

To avoid the computation of the residual stresses &v at interior 
points, the coupling of the two equations is done by eliminating 
the domain unknown vector S. With this purpose Eq. (27) is 
written in the form 

S = E - i ( ~ u  - ~ r P  + VB). (28) 

The expression for vector S in Eq. (28) is then substituted into 
Eq. (26), resulting in 

(H - E E - ' H ) U  

= ( G - E E - I G ) P -  ( V - E E - t V ) B .  (29) 

This procedure is equivalent to the FEM condensation of inter- 
nal degrees-of-freedom (Desai and Abel, 1972). 

The final system of linear equations can be obtained by substi- 
tuting the boundary conditions and rearranging Eq. (29) in order 
to obtain an expression of the form 

AX = F (30) 

from which the boundary unknowns X of the problem are com- 
puted. Once this solution is obtained, the domain unknowns can 
be computed, if required, by referring to Eq. (5). 

The algorithm recently proposed by Guiggiani and Gigante 
(1990) for evaluation of multidimensional Cauchy principal 
value integrals was used to determine the components of matrix 
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E when the integration is performed over the cell that contains 
the load point. Standard Gaussian numerical integration was 
used otherwise. 

In this work quadratic boundary elements were used for the 
discretization of the contour F, while rectangular discontinuous 
internal cells were used for discretization of the domain fL For 
the latter, either constant or Lagrangian quadratic interpolation 
functions were used to approximate the unknowns #q within 
each cell (Fig. 1). 

4 Numerical Examples 
Four examples are presented in this paper. In these examples 

the loading is applied on the middle plane of the cross section 
of the plate, thus causing a state of generalized plane stress 
(Lekhnitskii, 1968; Ashton et al., 1969). 

In all examples the x y - a x e s  are the reference axes of analysis, 
x~y~ are the principal directions of elasticity of the material 
(Lekhnitskii, 1968), and at denotes the angle between them. It 
should be noted that the angle c~ is to be measured as indicated 
in Fig. 2, i.e., from the principal axes of orthotropy to the 
reference geometrical axes (Ashton et aL, 1969). 

The isotropic reference elastic constants were computed in 
the xy-axes E0 = (E~ + Eyy)/2, vo = (vxy + vyx) /2  and Go = 
E0/[2(1 + v0)]. 

Example 1. Plate stretching. Figure 2 depicts a rectangular 
plate subjected to tension by normal forces distributed along its 
two side edges. The D j  ~ terms are coefficients of deformation 
(components of the inverse of the elasticity matrix) (Lekhnit- 
skii, 1963). The length of the plate is l = 10 m, its height b = 
4 m, and its thickness h = 0.25 m. The load intensity per unit 
length p was taken as 0.25 MN/m. The angle c~ was made equal 
to 30 deg. 

The elastic properties of the material on the principal axes 
of elasticity were taken as Ex:~ = 144.789 GPa, Ey,y~ = 

11.721 GPa, Gxtyl = 9.653 GPa and ux~y~ = 0.21, representa- 
tive of a fiber-reinforced graphite epoxy (Snyder and Cruse, 
1975). 

Six quadratic boundary elements were used for discretizing 
the contour of the plate while both constant and quadratic 
discontinuous internal cells were used for domain discretiza- 
tion. The results obtained using one constant internal cell and 
one subparametrie quadratic internal cell are presented in 
Fig. 3, along with the analytical solution to the problem (Lek- 
hnitskii, 1968). In this figure it is important to notice that 
the magnitude of the results presented for the top side of the 
plate, 10 -4 , is one order smaller than the order for the other 
sides, 10 -3 . 

Example 2. Shear loading. In this example, the load inten- 
sity per unit length p is tangentially distributed along all edges 
of the rectangular plate (Fig. 4). This loading causes the aniso- 
tropic plate to be subjected to both shear on plane xy, which is 
determined by D if61 , and either elongation or shortening of its 
sides, depending on the signs of Di61 and D~6 ~ (Lekhnitskii, 
1968; Pagano and Chou, 1969). The results obtained using 
one constant and one subparametric quadratic internal cell are 
presented in Fig. 5, along with the analytical solution to the 
problem (Lekhnitskii, 1968). The angle a is kept equal to 30 
deg. 

Example 3. Filleted plate in tension. A rectangular filleted 
plate of fiber-reinforced graphite epoxy is submitted to uniform 
tensile loading (Fig. 6). The dimensions of the plate are l = 
10 m, b = 4 m, and h = 0.25 m, while p was taken as 0.25 
MN/m. 

The contour was discretized using 28 quadratic boundary 
elements, Fig. 7 ( a ) ,  while 26 (Fig. 7 ( b ) )  and 44 (Fig. 7 ( c ) )  
quadratic internal cells were used for the domain discretiza- 
tion. 
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Fig. 11 Rectangular plate under inertial loading 

X 

Results for the case where the principal directions of elasticity 
xly~ are aligned with the reference axes xy (ce = 0 deg) are 
presented in Fig. 8(a) for variables in the x direction and in 
Fig. 8(b) for variables in the y direction. Similarly, results for 
ce = 30 deg are presented in Fig. 9 for variables in the x direction 
and in Fig. l0 for variables in the y direction. 

It can be seen from Figs. 8 -10  that the results obtained using 
the formulation proposed here converge to the solution obtained 
using the anisotropic fundamental solution (Cruse and 
Swedlow, 1971 )• The influence of refining the internal discreti- 
zation can be noted in the graph on the right hand side of Fig. 
8(b).  

Example 4. Inertial load. A rectangular plate of mahogany, 
which is considered here as a plane homogeneous orthotropic 
material, is analysed under inertial loading due to an acceleration 
a = 9.81 rn/s 2 (Fig. 11). The axis xj coincides with the fiber axis 

of the wood whilst the axis Yl coincides with the transversal axis 
of orthotropy. The elastic properties of mahogany (13 percent 
moisture content) are Exm = 12.397 GPa, Ey,y~ = 0.483 GPa, 
Gx,y~ = 0.469 GPa and Ux~y; = 0.55, while its density is 530 Kg/ 
m 3 (Bodig and Goodman, 1973). The dimensions of the plate are 
l = 1 m, b = 0.2 m and unit thickness. 

Six quadratic boundary elements and one quadratic internal 
cell were used for modeling the problem. Results obtained using 
the formulation presented in this paper were plotted along with 
results obtained using the anisotropic fundamental solution and 
particular integrals (Deb and Banerjee, 1990). These results 
are presented in Fig. 12 and Fig. 13 for variables in the x and 
y directions, respectively. The maximum difference for dis- 
placements in the x direction, computed using the two different 
approaches to the problem, is around four percent for the dis- 
placement u at the comer x = 1 m, y = 0.2 m. 
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5 Concluding Remarks 
In this paper, an alternative boundary integral-equation for- 

mulation in which Kelvin's fundamental solutions for isotropic 
elastostatics are used for solving homogeneous anisotropic 
problems of the elasticity theory is presented. The proposed 
approach can also be used for any nonlinear or transient prob- 
lems by considering the nonlinear term or the time derivative 
as a body force type term. Therefore, it is expected that this 
generalization will extend the range of application of boundary 
integral-equation methods in anisotropy to many problems 
where the fundamental solution is not known nor ever likely to 
be known. 

The body force term, as defined in the Navier equation, Eq. 
(1),  represents the domain loading caused, for instance, by 
gravitational or centrifugal forces (Brebbia et al., 1984). In the 
classical boundary element approach to anisotropic problems, 
this body force term results in domain integrals that have to be 
evaluated numerically. However, in contrast to isotropic prob- 
lems, no Galerkin tensor corresponding to the anisotropic funda- 
mental solution is found in the literature to make it possible to 
transform these domain integrals into equivalent boundary ones. 
Therefore, alternative techniques, such as the one presented 
here, or the one presented by Deb and Banerjee (1990), which 
introduces particular integrals to account for the specific cases 
of inertial and centrifugal loads, have to be used to compute 
the influence of body forces into the analysis. 

Although the need for discretizing the domain might be seen 
as a practical disadvantage of the formulation proposed here, 
current mesh generators can greatly mitigate this possible disad- 
vantage. Moreover, apart from using the anisotropic fundamen- 
tal solution, there is no reliable alternative integral-equation 
formulation for the analysis of anisotropic materials that com- 
pletely avoids the need to define any sort of internal nodes; for 
instance, no reference has been found in the literature where 
the solution of bending problems of homogeneous anisotropic 

materials was obtained using any sort of alternative integral- 
equation formulation. 
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Exact Solutions for Laminated 
Piezoelectric Plates in 
Cylindrical Bending 
Exact solutions are presented for  the problem of  piezoelectric laminates in cylindrical 
bending under an applied surface traction or potential. An arbitrary number o f  elastic 
or piezoelectric layers can be considered in this analysis. Example problems are 
considered for  several representative cases, with resulting displacement, potential, 
stress, and electric displacement distributions shown to demonstrate the effects of  
the electroelastic coupling. 

1 Introduction 
The foundations and governing equations for linear piezo- 

electricity are well established and have been documented by 
a number of authors, including Cady (1964) and Nye (1972). 
Tiersten (1969) also presented extensive development of this 
theory as it applied to the linear vibrations of piezoelectric 
plates. Piezoelectric laminates have seen extensive experimental 
study but somewhat limited theoretical development. Ray and 
co-workers (1992, 1993) studied a single layer of piezoelectric 
material in cylindrical bending and a laminate with surface 
piezoelectric layers. In the latter case, the piezoelectric coeffi- 
cient e33 was set equal to zero. Heyliger (1994) considered a 
similar problem in which this coefficient was nonzero, resulting 
in a different form of the solution of the elastic and electric 
field variables. MOSt or me studies that have appeared to date such as the 
work of Tzou and co-workers (1989) and Lee ( 1989, 1990) on 
piezoelectric laminates have incorporated a number of simpli- 
fying assumptions regarding the nature of the elastic and electric 
field quantities. This includes the assumptions related to the 
distribution of the displacement and electrostatic potential 
through the thickness of the laminate. 

In the present study, exact solutions are presented for piezo- 
electric laminates in the two-dimensional configuration of cylin- 
drical bending. This extends the work of Pagano ( 1969, 1970b) 
for elastic laminates. The expressions for the displacements, 
stresses, potential, and electric displacement are presented for 
several representative laminates. These results should provide 
a means of comparison for simpler and more computationally 
efficient piezoelectric plate theories while also providing infor- 
mation regarding the behavior of these increasingly important 
laminates. 

2 Exact Solution 

Governing Equations. The geometry of the laminate is 
such that the thickness dimension of the laminate coincides with 
the z-direction, with the length of the plate in the y-direction 
denoted as L and the total thickness denoted as H. Each layer 
of the laminate is of thickness h; and can be purely elastic or 
piezoelectric. The general problem considered in this study is 
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to determine the behavior of the elastic and electric field compo- 
nents throughout the laminate under an applied mechanical or 
electrical loading. The forcing function is introduced through 
either an applied surface displacement, traction, potential, or 
electric charge. It is also possible to consider internally applied 
quantities in this formulation. 

A single piezoelectric layer has the constitutive equations 
given in contracted notation by (Tiersten 1969) 

or, = CijSj - euEk 

D k = ekyS j -I- ektEl. (1)  

Here cr~ are the components of the stress tensor, C o are the 
elastic stiffness components, Sj are the components of infinites- 
imal strain, eki are the piezoelectric coefficients, Ek are the com- 
ponents of the electric field, Dk are the components of the elec- 
tric displacement, and ekt are the dielectric constants. For these 
equations only, the indices i and j range from 1 to 6, and k and 
I range from 1 to 3. The poling direction is coincident with the 
x3 or z-axis. In cylindrical bending, all variables are assumed 
to be independent of the xl = x-axis. 

The displacement components ui, where u~ = u, u2 = v, and 
u3 = w, are related to the strains S O through 

1 (Oui Ouj~ (2) 
s~ = ~ \ Oxj + a x , /  " 

To be consistent with Eq. (1),  the conventional notation for 
the strain indices has been used, i.e., Su = Si, $23 = $4, etc. 
The electric field components can be related to the electrostatic 
potential ~b using the relation 

04, 
E, = - Ox-'-~ " (3) 

The materials used in this study are originally orthotropic, with 
a rotation about the z-axis then allowed. It is assumed that the 
nonzero components of the rotated piezoelectric tensor eij are 
e31, e32, e33, e~, e2~, and e36. The rotated elastic stiffnesses C o 
are those of a monoclinic material, and the necessary dielectric 
constants are given by e22 and E33. 

The equilibrium equations in the absence of body forces are 
given by 

mj, j = 0 (4) 

and the charge equation of electrostatics is given as 

Di,  i = 0.  ( 5 )  

Substituting in the constitutive relations, the stress-strain rela- 
tions, and the field-potential relations gives the governing equa- 
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tions of  the problem in terms of  the displacement components 
u, 1), and w and the electrostatic potential q5 as 

C26 021) 02W 02bt 021~ 
Oy~ 5 + C 3 6 ~ +  C 6 6 - - +  e 3 6 - -  

Oy 2 OyOz 

c / O 2 w  o21)' I 02. 
"Jc 4 5 t 0 ) ~  z ~ 0 Z 2 j  + C55 O,z----- ~ + e25 0~z = 0 (6) 

C 02v 02w 02u 0249 
22 Oy-----7 + C23 0 7  z + C26 - -  + e32 - -  • Oy 2 Oy OZ 

I O2w 
+ C 4 4 t 0 ~  + Oz2 / + C4' Oz= + e=go~z  = 0 (7) 

/ O2v 02w'~ 02. 024, 
c44  oTg z + Oy2 / + + e24 Oy---7 

C 021) 02w 02hi 02~ 
"-~ 23 - -  "1- C33 - -  .4- C36 -Jr- - -  = 0 OyOz " OZ 2 " 0 ~ Z  e33 0Z 2 

i o21) O2w] 02. 
e24t O-~z + Oy2 ] + e25 0 ~  z - e22 Oy 2 

(8) 

02v 02__ww 02u 024) 
+ e 3 2 ~ +  e33 Oz 2 + e 3 6 ~ -  e 3 3 - -  = 0. (9) 

ayOz Oz 2 

These represent the governing equation for a single piezoelectric 
layer. For a layer with no piezoelectric effects, these equations 
reduce to the three-dimensional equations of elasticity and, as- 
suming e~ = e22 = e33, the Laplace equation for electrostatics. 

For the problems considered in this study, an arbitrary num- 
ber of laminae are assumed to be perfectly bonded together. At 
the top and bottom surface of  the laminate, a specified load, 
displacement, potential, or charge can be imposed. Of  primary 
interest here are the cases in which either a known normal 
traction or potential are imposed on the top and/or  bottom 
surfaces. These are the cases considered in this study, with the 
shear tractions specified to be zero on the top and bottom sur- 
faces. The laminate is assumed to be simply supported, and the 
vertical edges of  the laminate are assumed to be grounded. 
Hence along a vertical plate edge, the normal stress Cry, trans- 
verse displacement w; and electrostatic potential q5 are specified 
to be zero. 

Both the applied load and potential can be expressed in the 
form of a Fourier series. These functions are represented in the 
form 

q(Y) = qo s inpy  (10) 

~(Y) = Co s inpy  (11) 

where 

nT1- 
p = p ( n )  = - -  (12) 

L 

and n is an integer. These expressions can be used either for 
the top or bottom of the laminate. 

At each interface between layers, continuity conditions of 
displacement, traction, potential, and electric displacement must 
be enforced. Using an indexing scheme, the conditions for the 
ith layer can be expressed as, for example, 

Here i represents the layer number, with i = 1 the top layer, 
and each layer has an individual coordinate system with the 

origin at the left end in the center of  the layer. Similar interface 
conditions exist for v, w, ~b, cry, Crx~ , cryz, and D z. 

M e t h o d  of Solution. There are two types of solution pre- 
sented here corresponding to laminae with the principal material 
directions unaligned or coincident with the x or y-axes. 

Off-Axis Laminae. Solutions for the displacement compo- 
nents and the electrostatic potential are sought in the form 

u(x ,  y, z) = 

v(x,  y, z) = 

w(x ,  y, z) = 

U(z)  cos py = U exp(psz)  cos py 

V( z )  cos py = g exp(psz)  cos py 

W ( z )  sin py = 1~ exp(psz)  sin py 

~b(x, y, z) = ° ( z )  sin py = ff~ exp(psz)  sin py. (14) 

Here the overbarred terms are constants and s is an unknown 
number. Substitution of  these expressions into the equilibrium 
and charge equations results in the system of equations 

C55s + An C45 $2 + Ai2 
C45 $2 Jr- AI2 C44 $2 + A22 

- A13s -A23s 
-ml4s -A24s 

The elements A U are given by 

A13s A14s G 
Az3S A24s I 

C33 $2 -~ A33 e33s 2 -I- A34 | 
e33s 2 + A34 A44 - E33s2 ] 

× = (15) 

An = -C66 Al2 = -C26 m13 = C36 -~- C45 A14 = e25 + e36 

A22 = -C22  A23 = C23 -+ C44 A24 = e32 -k- e24 

A33 = - C 4 4  A34 = - e 2 4  A44 = e22. (16) 

Setting the determinant of  this matrix to zero results in the 
characteristic equation 

As 8 + Bs 6 + CS 4 "q- Ds 2 + E = 0. (17) 

Expressions for the coefficients of  this polynomial are lengthy 
and are not given here. This equation can be written as the 
fourth-order equation 

r 4 + er 3 + dr 2 + er + f =  0 (18) 

where 

r = s 2 (19) 

B C D E 
c = -  d = -  e = - - f = - .  (20) 

A A A A 

The roots of Eq. (18) are a function of  the material properties 
and the form of the applied load or potential as represented by 
p. They can be real, imaginary, or complex. Regardless of the 
nature of the roots, the solutions for V(z ) ,  W ( z ) ,  and ~ (z )  
corresponding to a given root s are based on an initial construc- 
tion of  the solution for U(z) .  The remaining components can 
then be computed using Eq. (15),  which is rearranged as 

-A23s C33 $2 + A33 e33 $2 -I- A34 
-A24 S e33s 2 q- A34 A44 - E33 $2 

-C45s - A i 2 }  
= [-g Al3s . ( 2 1 )  

Al4S 

General expressions for the constants V, W, and ~ can be 
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constructed as a function of the real, imaginary, or complex 
roots. These are 

n 

~ry~ = cos py 
j=l 

9 ( s )  = f l l s6  ~- A2S4 ~- f13S2 q- f14 
/~(s)  (22) 

crx~ = cos py i 
gO(s) = s( f~s"  + f~s  ~ + f:3) ~X(s) (23) J=~ 

~(s )  s(f3's4 + f32s2 +/33) " 
= A ( s )  (24) ~rxy = sin py Y~ 

j=l 

~(S )  = dis 6 + d2s 4 + d3s z + d4. (25) 

The constants d~ and fr  are lengthy and are not given here. The 
solutions for the elastic and electric field components corre- 
sponding to each type of root are developed separately below. 

Case 1: Real Roots for r. Given n real roots for r, the 2n 
roots for s can be obtained using Eq. (19).  These roots are 
either real or imaginary depending on the sign of r. Following 
the nomenclature used in Pagano (1970),  the solution for the 
displacement components and electrostatic potential corre- 
sponding to the these roots can in either case be written as 

n n 

U(z) = Z Ur(z) V ( z )  = ~ LrUr(z) 
r =, r=~ 

w ( z )  = M3,15(z) ~(z) = 2 N%(z) (26) 
j=l )=1 

where 

ur(z) = F~C~(z) + G~S~(z) 

W~(z) = GrC~(z) + %FrSr(z). (27) 

Here F~ and Gj are real constants, there is no sum on j ,  and the 
functions C and S are defined as 

Cj = cosh(pmjz)  S~(z) = sinh(pm~z) oq=  1 ( r  > 0) (28) 

C r = c o s ( p m r z  ) Sj(z) = sin(pm~z) ce r = - l ( r <  0) (29) 

with mj = I s) l. The coefficients L~, Mj, and ~ are more specific 
representations of the parameters given in Eqs. (22) - (25) and 
are given in this case as 

(30) 
1 

L r = ~ ( f , , ~ m  6 +f~m~ + f~3arm ~ + f~4) 

(31) M~ = ~j. (f~m] + f2~arm ~ + f~3) 

Nj = ~ j  (3~1m} + j~2cgm~ + f33) (32) 

where the determinant Aj is given by 

~Xj = dlO~jm~ + dams + d3ajm~ + d4. (33) 

Using the constitutive equations in (1) ,  the corresponding 
expressions for the stress and electric displacement can be com- 
puted as 

cri = sin py ~ [ - C i 2 L  j - C i6  
j.=l 

2 
+ Ci3a) ~ (fz,m] + f2~m~cej + f~3) 

m ? 
+ e3~ar"v (f3tm~ + f3zmya~ + f33)]pUr(z) (34) 

D r  " . 

[ C44(  L j m j  --~ M j )  

+ e24Nj + C45rnr]pV~(z) (35) 

[C.5(Lrmr + Mj) 

+ e25Nj + C55rnrlpW~(z) (36) 

[ - C 2 6 L  j - C66 

+ C36c 9 ~ (f2'm4 + f22m~ce r + f23) 

+ e36c~r ~ (f3~m 4 + f~2m}c9 + A3)]pUj(~ ) (37) 

Dy = cospy  ~ [e24(Ljmj + M r) + e2~m r - e22Nr]PW/iz) (38) 
j=l 

Dz = sin py ~ [-e3zL r - e36 
j=t 

+ e33aj ~ (f2,m 4 + fzzmZc9 + f ~ )  

- e33aj ~ (f~m 4 + ~2m~c 9 + f33)]pUj(z) (39) 

Here i = 1, 2, 3 correspond to x, y, and z for the normal stress 
components. 

Case 2: Complex Roots for r. The elastic, electric, and 
geometric properties for some laminae yield complex roots. 
These occur in conjugate pairs, which result in the final roots 
for s in the form +_(a + ib), where i = ~ / - 1  and a and b are 
positive constants. The solution for U(z) in this case can be 
expressed as 

U(z) = cle "z cos bz + cze az sin bz 

+ c 3 e  -az c o s  bz + Cae -az sin bz (40) 

where c,-c4 are real constants. Following some algebraic ma- 
nipulations and using Eqs. ( 2 1 ) - ( 2 5 ) ,  the solution for V(z)  
can be expressed as 

V ( Z )  = c l eaZ(F i  cos  bz - ~,  sin bz) 

+ c2e~'~(f~ cos bz + F~ sin bz) 

+ c3e-"~(Fl cos bz + ~l sin bz) 

+ c4e-az(-~l  cos bz + I-', sin bz). (41) 

Here F, = ~ [ V ( a  + ib)] and f~ = 2~[9(a + ib)]. Similarly, 
the final expression for W(z)  can be expressed as 

W(z) = c~e"~[(aFz - bf~2) cos bz + ( - b F 2  - aft2) sin bz] 

+ c2e"Z[(bFz + a~2z) cos bz + (aF2 - b~22) sin bz] 

+ c3e-aZ[(bf~2 - aF2) cos bz + (-bF2 - aft2) sin bz] 

-I- c 4 e  "~[(bF2 + aft2) cos bz 

+ ( - a F 2  + bf22) sin bz] (42) 

where F2 = 91[W(a + ib)] and f~2 = 2qW(a  + ib)]. The final 
expression for • is identical to that of W (z) except the: subscript 
on F and f~ changes from 2 to 3, with f"3 = fJ~[~(a -t- ib)] and 
f/3 = 2~[~(a + ib)]. 

The expressions for the stress and electric displacement com- 
ponents can be obtained by the appropriate differentiation and 
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Table 1 Elastic, piezoelectric, and dialectric properties of piezoelectric 
materials 

Property PZT-4 PVDF 
E~ (GPa) 81.3 237. 

E~ 81.3 23.2 
FEz 64.5 10.5 
ua~ 0.329 0.154 
ula 0.432 0.178 
u~3 0.432 0.177 
G23 25.6 2.15 
G13 25.6 4.40 
Gas 30.6 6.43 

e~4 (C/ra ~) 12.72 -.Ol 

e31 -5.20 -.13 
ea~ -5.20 -.14 
e~ 15.08 -.28 

,. I , 1300 11.98 

~ I 1475 11.98 

(Pb.~Caaz)( ( CO.sW.s).o~Ti.~ )Oa 
127. 
127. 
119. 

0.199 
0.174 
0.174 
53.5 
53.5 
53.0 
2.96 
0.80 
0.80 
6.88 
181 
202 

combination with the constitutive equations as given in Eq. ( 1 ). 
These expressions are omitted here for brevity. 

On-Axis Laminae. If the material axes of the lamina coin- 
cide with the x or y-axes, the material constants C26 -~ C36 --~ 

C45 = e25 = e 3 6  = 0 and the displacement in the x-direction 
uncouples from the other displacements and the electrostatic 
potential. A procedure similar to that of the previous section is 
used with the matrix Eq. (15) modified such that the first row 
and column are eliminated and the exponential arguments of 
the fields are taken as (sz)  instead of (psz)  in Eq. (14). Two 
of the roots are computed as ±p  C 6 6 ~ 5 ,  with the remaining 
six roots found from the characteristic equation 

- A s  6 + Bs 4 + Cs 2 + D = 0 (43) 

where the constants A, B, C, and D are easily determined. This 
can be expressed as the third-order equation 

g3 + dg + f = 0 .  (44) 

The nature of the subsequent solution depends on the magni- 
tude of the parameter K, which is given by the value 

d 3 f2  
K - - - - - - ÷ - - .  (45) 

27 4 

If K < 0, then the three roots for g are real and distinct. For K 
= 0, there will be three real roots, at least two of which are 
equal. For x > 0, there will be one real root and two conjugate 
complex roots. The case K = 0 was not found for any of the 
materials considered in this study. Only the remaining two cases 
are considered. 

Case 1: ~: < 0. Given three real roots for g, the roots of 
the original sixth-order equation can be determined by consider- 
ing 

B 
y = s 2 = g  + - - .  (46) 

3A 

This will lead to six roots for m, which can are either real 
or imaginary depending on the sign of y. The solution for V, 
W, and ff can be cast in the same form as for the off-axis lamina 
in Eq. (26) with n = 3 and, for the expressions that follow, the 
argument of the trigonometric and hyperbolic functions in Eqs. 
(28) - (29) are (mjz) rather than (pmsz). Additionally, 

mj = + 3A ' (47) 

The values for the coefficients in Eq. (26) now take the form 

pmj 
Lj = T [(otjm~c33 -- p2E22)(C23 + C44) 

+ (o~jm~e33 - ez4pZ)(e24 + e32)] (48) 

pmj 
Rj = T [(cgm~e33 - e24p2)(C44 + Cz3) 

+ (C44P 2 - ~jm~G3)(e24 + e32)] (49) 

J j  = ( a i m } e 3 3  - p2E22)(ol jm}C33 -- pZC44 ) 

4 2 _ 2ajm~p2ea3e24 + e~4p4. (50) "-~ m je33  

The stresses and electric displacement components can be com- 
puted with little difficulty. 

If the layer is nonpiezoelectric, the coefficients e 0 = 0 and 
the elastic and electric fields uncouple within a given layer. The 
elastic solutions have been given by Pagano ( 1970a, b) for the 
on-axis and off-axis laminates and are not repeated here. The 
two roots corresponding to the potential can be computed as 

hi '2  --  ~/~33 " (51) 

The electrostatic potential within the elastic layer is therefore 
given by 

2 

~(z) = sin py ~ Bj exp(njz) (52) 
j= l  

where Bj are constants. The components of electric displacement 
for these layers are given by 

2 

Dy = - e 2 2 p  COS py ~ Bj exp(njz) (53) 
j= l  

2 

Dz = -eaa sin py ~ Bjnj exp(njz). (54) 
j= l  

Case 2: K > O. When K > 0, there will be one real root 
for g and two roots that are complex conjugate. The case of 
real roots for g has been discussed in the previous section, and 
the focus here is on the remaining two roots. When y is com- 
plex, the two complex conjugate roots of g can be used to 
express the final roots of m as ± ( a  ± ib),  where i = ~ - 1  and 
a and b are positive constants. The general solution for V in 
this case can be expressed as 

V ( z )  = e"Z(Cl cos bz + c2 sin bz) 

+ e-"~(c3 cos bz + c4 sin bz) (55) 

where ct - c4 are real constants. The corresponding solution 
for W can be written as 

W ( z )  = e"Z[(cl~, + c2fl2) cos bz + ( -cd32  + c2~i) sin bz] 

÷ e-aZ[(--C3j~l  ÷ C4~2)  COS bz 

+ (-c332 - c4/~l) sin bz]. (56) 

Here the parameters/~1 and/~i are defined to be 

/3i = aF1 - bf~l /~2 = blPl + aQl (57) 

where 

F1 = ~1~3 + ~2~4 ~ + ~ (58) 

~, ~ + ~] (59) 

where,1 = ~ ( p F , ) ,  ~2 = ~(pF~) ,  ~3 = ~ ( p F 2 ) ,  ~4 = ~(pF2) .  
The functionsF~ and F2given by 
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Table 2 Thickness distributions for two-layer piezoceramic 

z x 103 
5.0 

3.75 
2.5 
1.25 
O.0 

-1.25 
-2.5 

-3.75 
-5,0 

Applied Load Applied Potential 
V x i O  la W x i0 m @x104 Vx1011 W x10 m @ 
-170.406 1.05609 O.O -17.2277 2.21625 1.0 
-129.322 1.05896 6.17969 -14.4289 2.29892 .967338 
-88.8804 1.06105 10.5763 -11.6676 2.37336 .935611 
-48.8826 1.06236 13.2037 -8.93234 2.43971 .904762 
-9.13120 1.06291 14.0706 -6.21137 2.49809 .874736 
31.5361 1.06292 11.3823 -5.03124 2.62086 .655129 
72.3126 1.06263 8.14620 -3.85882 2.74217 .436359 
113.341 1.06203 4.35533 -2.09006 2.86221 ,218094 
154.765 1.06112 0.0 -1.52091 2.98116 0.0 

a. Displacements and potential. 

,.Z x 103 

5.0 
3.75 

0.0 
0.0 

Gy 
57.8914 
43.9608 
30,1904 
16.5305 
2.93185 

13.77076 
-13.1944 
-30.2007 

-47.3021 
-64.5526 

Applied Load 

0.0 
.958954 1.99926 
.8500951 3.45477 
.694665 4.37185 
.513734 4.75387 
.513734 4.75387 
;328502 I 4.56889 
.163623 3.71705 
.045329 2.19569 

0.0 0.0 

D. x 101~ 
-2.21625 
-2.34277 
-2.67988 
-3.16447 
-3.73402 
-3.73402 
-3.80575 
-3.87336 
-3.92364 
-3.94337 

ay 
98.0706 
29.3552 
38.9872 
.107,217 
.175.593 
135.710 
87.2734 
38.9426 
.9,43411 
58.0090 

Applied Potential 
d 

0.0 0.0 
-5.7924~ 2.50035 
-16.116~ 2.31044 
-20.429~ -.560217 
-8.2071~ -6.1122] 
-8.2071~ -6.1122~ 
6.57771 -1.7346C 
7.90257 .743546 
3.22258 1.32334 

00 0o 

b. Stresses and electric displacement. 

D= x 107 
-4.38016 
-4.14535 
-3.91847 
-3.69876 
-3.48550 
-3.48550 
-3.46700 
-3.45386 
-3.44601 
-3.44340 

Z-~y0 3 
5 .0  

3.75 
2.5 
1.25 
0.0 

-1.25 
-2.5 
-3.75 
-5.0 

Table 3 Thickness distributions for two-layer angle ply 

. . . . . .  A~ed Load . . . . . .  Ap21ied Potential 
U x I0 I0 V x I0 I0 ~,Vx I09 ~'10 -'~- U x 1012 V x I0 n W xl01~J 

-.206992 -.495662 . 3 4 6 ~  0.----'0--- -.764064 -.468075 15.6059 I 1.0 
-.206070 -.364412 .346799 .134270 -.755342 -.424885 12.2777 1.871884 
-.204588 -.240359 .346939 .230526 -.639752!-,389956 8.97940 1.745014 
-,204392 -.119897 .346995 .289930 -.420367!-,362492 5.70691 1.619210 
-.207306 .000495 .346968 .310144 -.096538-,342085 2.45603 1.494292 
-.204461 .120891 .346877 .289005 .269690 -.356217 -.77633 1.370085 
-.204705 .241306 .346704 .230483 .529472 -.377512 -3.99341 1,246419 
-.206214 ,365260 .346446 .134230 .686048 -,406159 -7,19927 1.123116 
-.207145 .496354 .346093 0.O .738964  -.442736 -10.3979 I 0.0 

a. Displacements and potential. 

Applied Load Applied P~tentlal 
z x 103 affi aF az~ a~ a~ ~ 

5,0 59.7588 79.7839 -42,1976 -.724839 1.16623 -6.72581 
3.75 34.9072 49.6298 -20.2912 -1.44536 .271217 -6.01241 
2.5 11.5045 21.2152 .293333 -1.84070 -.265246 -5.65146 
1.25 -11.4374 -6.59348 20.5300 -1.93095 -.466448 -5.62344 
0.0 -34.8876 -34.9076 41.3746 -1.72257 -.340519 -5.92280 
0.0 34.8919 34.8719 41.2207 -1.39763 -.015570 6.30743 

-1.25 11.4529 6,56881 20.3894 -1.70438 -.265235 5.81390 
-2.5 -11.4720 -21.2210 ,170115 -1.70708 -.181898 5,65351 

-3.75 -34.8512 -49.6081 -20.3923 -1,40754 .233379 5.82299 
-5.0 -59.6717 -79.7249 -42.2709 -.794152 .994541 6.33291 

b. IntrMaminar stresses. 

', x 10 3 
5.0 
3.75 
2,5 
1.25 
O.0 
-1.25 
-2.5 
-3.75 
-5.0 

_App__._~ed Lo~__ 
crz a== avz Dz X 1O I0 
1.0 --O:0 0,0 - -  - . 1 5 6 0 5 9  

.946384 -1.22100 2,53343 -.153601 

.816009 -1.61094 3.92066 -.147352 

.652840 .1.20250 4.20759 -.138952 

.499904 .009427 3.39620 -.130007 

.346993 1.21556 4.20638 -.121071 

.183886 1.61881 3.91882 -.112677 

.053581 1.22444 2.53188 -.106434 
0.0 O.O O.O -.103979 

Applied Potential 
a= Xi02 ax___~ a w x 102 D~ x 107 

0.0 0.0 0.0 -.116937 
-.064501 -.248914 2.69964 -.115712 
-.175424 -.476821 2.59877 -.114655 
-.249742 -.697131 1.05460 -.113762 
-.256322 -.922764 -.637134 -.113034 
-.221507 -.685872 -1.29919 -.112469 
-.150059 -.461787 -2.28504 -.112065 
-.054817 -.237534 -2.29396 -.111823 

0.0 0.0 0.0 -.111743 

c. Interlaminar stresses and electric displacement. 
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Fig. l (a)  Displacement in y-direction 

7--'I 

-15.0 -10.0 -5,0 0.0 5.0 10.0 15.0 20.0 25,0 

o; 

Fig. 1 (b) Normal stress o,y 

Fig. 1 Through-thickness distributions for PVDF cross-ply under applied trac- 
tion (case 1) and potential (case 2) 

F1 = [¢33(a 2 - b 2 + 2 iab)  - ez2p2](C44 + C23) 

+ [ e 3 3 ( a  2 - -  b z + 2 iab )  - ez4p2](e24 + e32 ) (60) 

F 2 = (e~3 --]- C33£33)[(a 2 - b2) 2 _ 4a2b 2 + 4 i a b ( a  2 - b2)] 

+ p 2 ( a 2  - b 2 + 2 i a b ) ( - C 3 3 e =  - C44e33 - 2e33ez4) 

"+ p4(C44£22 .-b e224). (61) 

Using similar steps, the final solution for • can be written 
as  

cb(z) = e"~[(clfl3 + c#34) cos bz + ( -c j /34 + c2/33) sin bz]  

+ e az[(--C3[~ 3 + C4/34 ) COS b z  

+ ( - c#34  - c4/33) sin bz] (62) 

where in this case 

/33 = aF2 - b~22 /34 = bl-'2 + all2. (63) 

Here the parameters 1"2 and f~2 are defined to be 

9 0 8  / Vol. 63, D E C E M B E R  1996  

F2 = r/l{3 + ~72{4 
{} + {2 (64) 

~-~2 T12~3 -- T/I~4 (65) 

where r h = R ( p F 3 )  and q2 = I(pF3), with 

F3 = [ e 3 3 ( a  2 --  b 2 + 2iab)  - e24p2](C44 + C23 ) 

+ [ - C 3 3 ( a  2 - b 2 + 2 iab)  + C44p2](e24 + e32),  (66) 

Solution for the Laminate. The form of the solution within 
each layer is given for the displacemem components U, V, and 
W, the stresses cry, Crz, ~r~, cry> and ~%., the electrostatic potential 
~I), and the electric displacement components D, and D .  In 
general, these solutions are a function of eight constants that 
must be computed using the boundary and interface conditions 
for the complete laminate. 

To evaluate these constants, the boundary conditions at the 
top and bottom surfaces of the laminate and the interface condi- 

T r a n s a c t i o n s  of  t h e  A S M E  
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Fig. 1 (c) Shear stress ~ry. 
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Fig. l (d)  Electrostatic potential 

tions between the dissimilar plies are imposed. For n layers, 
this results in four conditions on both the top and bottom sur- 
faces and eight continuity conditions at each of the (n - 1) 
interfaces. This results in a system of 8n equations with 8n 
unknowns. Once the constants are evaluated, final expressions 
for the elastic and electric field variables can be computed at 
any location within the laminate. 

3 Numerical Examples 
In this section, the solution methodology is applied to three 

basic geometries. These are ( 1 ) a two-ply laminate of dissimilar 
piezoceramics, (2) a two-layer angle ply constructed of the 
piezopolymer PVDF, and (3) a three-layer cross-ply con- 
structed of PVDF. The material properties for all of the materi- 
als considered in these examples are given in Table 1. The 
properties for PZT-4 are taken from Berlincourt and co-workers 
(1964), those for (Pb.88Ca.|2) ((CO.sW.5).04Ti.96) O3 from Yama- 
shita and co-workers ( 1981 ), and from Tashiro and co-workers 
( 1981 ) for the PVDF. The latter values were for a single crystal, 
and were used because this is one of the few complete sets of 
constants available for this material. These geometries were 

considered only to demonstrate the solution and give representa- 
tive behavior for the computed field quantities. No extensive 
effort was made to assess the influence of any of the geometric 
or material parameters in this initial study. The resulting dis- 
placements, stresses, and potential are given in meters, New- 
tons/meter 2, and volts, respectively. 

Two-Ply Laminates. Two separate laminates are studied in 
this section. The dimensions are L = 0.1 m and H = 0.01 m. 
A two-ply laminate composed of [PZT-4/(Pb.88Ca12)((CO.5 × 
W.5).04Ti.96)O3] with equal thickness layers is considered first. 
For these material properties the u-displacement uncouples 
from the remaining displacements; hence only the in-plane 
fields are considered for this example. There are two loading 
conditions. First, a transverse normal stress was applied along 
the top with qo = 1 and the potential and shear stresses at the 
top and bottom surfaces specified to be zero. The second loading 
condition considers a layer under a sinusoidal (n = 1 ) potential 
at the top surface with the bottom surface held at zero potential. 
The top and bottom surfaces of the laminate are traction-free. 
The maximum magnitudes of the through-thickness distribu- 
tions for both cases are given at several locations of z for the 
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elastic and electric fields in Table 2. For this and the next 
example, two values are given at the material interface if there 
is a discontinuity in the stress components. Integrating the shear 
stress over the end of the laminate yields a normalized value 
of exactly half the applied resultant load for the applied load 
case, and a value of zero for the applied potential case. 

The piezopolymer polyvinlidene flouride (PVDF) has seen 
significant application in piezoelectric laminates. It is of interest 
because it possesses differing properties in the 1 and 2 direc- 
tions. A two-layer angle-ply [ - 4 5 / + 4 5  ] is constructed with the 
same load conditions as in the previous case. The thicknesses of 
each layer are hl.2 = 0.005 m. The maximum value distributions 
are listed in Table 3. 

The trends of all results are dominated by the difference in 
material properties. In the first example, the displacements in 
the upper layer are slightly larger and the stress cry is smaller 
than the lower layer because of the lower modulus in the PZT- 
4. Likewise, the potential gradient in the upper layer is smaller 
than that of the lower layer in part because of the much larger 
dielectric constant. For the angle-ply, there is a mild antisymme- 
try of the results because of the location of the forcing function 
on the upper surface. This behavior increases as the length/ 
thickness ratio of the laminate is decreased. 

The Three-Layer Cross-Ply. In this example, a three-layer 
[90/0/90] laminate is constructed with H = 0.01 m with the 
90-deg plies parallel to the y-axis. The cases of applied surface 
traction and applied surface potential are considered separately. 
Two L/H ratios are considered: 4 and 100. In all plots the dotted 
(L/H = 4) and dashed (L/H = 100) lines denote the applied 
load case, with the solid (L/H = 4) and chain-dashed (L/H = 
100) lines denoting the case of applied potential. The maximum 
values of v, cry, cryz, and 4, through the laminate thickness are 
displayed graphically in Figures 1 (a)-(d). In these figures, the 
functions are plotted against the parameter ~ = z × 103. The 
scaled functions are defined for the applied load case (termed 
case 1) as v* = v × 1013 (L/H = 4) and v* = v × 109 (L/H 
= 100), cry* = cry/1000 L 2, cry*z -~ cryz/lO L, and 4,* = 4,/0.01 
L. The results for the applied potential (case 2) are also shown 
in the same figures, with the exception of the v displacement 
for L/H = 100. This distribution is nearly constant at -1 .5  × 
10 -11 m and is not plotted. The scaled field quantities are given 
as v* : v × 1013, cry* = cry, cry*Z = cryz X 100 L, and 4,* = 4'. 
As the aspect ratio increases, the quantities approach piecewise 
linear behavior through the thickness of the individual laminae. 
There are significant differences in behavior between thick and 
thin laminates, demonstrating the need to use adequate levels 
of approximation when modeling these laminates. 

4 Closure 

The field distributions in the examples considered here dem- 
onstrate the limitations of some simplified theories in making 
approximations regarding the nature of assumed elastic and 
electric fields through the thickness of the laminate. Common 
assumptions made regarding the displacement and potential dis- 
tributions can have possibly significant effects on the resulting 
approximations for the remaining field quantities. The solutions 
and results provided here should provide a means of comparison 
to assess relative accuracies, advantages, and disadvantages of 
more computationally efficient and general plate theories for 
piezoelectric laminates. 
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A Generalized Method of 
Rotational Superposition for 
Problems With Elliptical 
Distribution of Boundary Values 
An extension of  the usual rotational superposition is developed from geometrical 
considerations, This approach relates the solution of any dynamic or static elasticity 
problem which corresponds to boundary values on a circular area to the solution of 
the problem in which the same boundary values are "stretched" in one direction. 
From the two-dimensional problems that correspond by rotational superposition to 
the circular case, new two-dimensional problems are formulated which, when super- 
posed properly, result in the solution for the elliptical boundary distribution. This new 
technique is first presented for stretching the boundary values of axially symmetric 
problems, and then extended to others, including the elliptical shear dislocation 
problem. 

1 Introduction 
In general, it is a very difficult task to find the analytical 

solution for most three-dimensional static or dynamic elasticity 
problems. By contrast, several analytical techniques are avail- 
able for solving two-dimensional problems. For some special 
three-dimensional problems, however, there exists a one-to-one 
correspondence between a three-dimensional problem and cer- 
tain two-dimensional problems that can be constructed. Rota- 
tional superposition is an effective approach to expressing a 
three-dimensional problem in terms of the corresponding ficti- 
tious two-dimensional problems (Aleksandrov, 1961). 

The method of rotational superposition, which was first devel- 
oped for the solution of axially symmetric problems, can be 
traced back to Smirnov and Sobolev (1933) for dynamic prob- 
lems, but is usually ascribed to Weber (1940) for static prob- 
lems. Later, Kostrov (1964a) employed this technique to solve 
an axisymmetric dynamic problem of a tension crack propagat- 
ing in an unbound medium and extended the application to the 
problem of an expanding shear crack over a circular region 
(Kostrov, 1964b). The rotational superposition technique has 
also been used to solve static elasticity problems involving sol- 
ids of revolution (Alexandrov, 1968). 

In this paper, a brief review is first given of the usual rota- 
tional superposition for dynamic elasticity problems in a half- 
space where nonzero boundary values are specified on an ex- 
panding circular area of the boundary plane. The surface bound- 
ary values are then imagined to be "stretched" in one direction 
so that the circular area becomes an elliptical one. The main 
thrust of the analysis is then to use the geometrical relationships 
between the ellipse and the generating circle to obtain a set of 
new two-dimensional problems and a new superposition rule 
that lead to the solution of the "stretched" three-dimensional 
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problem. The new technique that results then permits solution of 
dynamic boundary value problems over an expanding elliptical 
region if the boundary values are obtainable from those of the 
corresponding problem for a circular region by merely stretch- 
ing the boundary values in one direction. It should be clear that 
in dynamic problems only the boundary values undergo a simple 
stretching, not the entire field. In general, this is also true for a 
static problem. 

As illustrative examples, the new superposition method is 
first applied to stretching the boundary values of axially sym- 
metric problems. Then the new approach is extended to find 
the solution of an elliptical shear dislocation problem in an 
elastic unbounded medium. 

2 The Rotational Superposition Technique for the 
Circular Case 

Consider a linearly elastic half space y -> 0. A plane-strain 
field (ux2, uy2, 0) and an antiplane field (0, 0, uz2) that are 
functions of x2, Y2, t and satisfy the three-dimensional equations 
of motion are applied at an angle col with the x-axis, as shown 
in Fig. 1. If these plane-strain and antiplane displacement fields 
are multiplied respectively by weighting functions wp (col) and 
w,(coi) and their effects superposed for col from 0 to 7r, the 
three-dimensional field generated is clearly a solution of the 
three-dimensional dynamic elasticity equations. This resulting 
displacement field is expressed as follows (Johnson and Rob- 
inson, 1972): 

up = ux2(p cos (Wl - co), y, t) cos (col - co)%,(col)dWl 

- uz2(p cos (col - co), y, t) sin (col - co)w~,(col)dcol 

f u~ = ux2(p cos (~i  - co), y, t) sin (col - co)wr(col)dcol 

+ uz2(P cos (col - co), Y, t) COS (coj - co)w,(col)dcol 

uy = uy~(p cos (col - co), Y, t)w~(col)dcol (1) 

where (p, ~o, y) are the cylindrical coordinates of Fig. 1. 
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The geometry of rotational superposition 

If the three-dimensional problem is axially symmetric, a 
plane-strain problem (with wl,(col ) = 1 ) can be found that when 
superposed rotationally as above gives rise to the specified axi- 
symmetric problem. The antiplane problem is absent here. If 
the plane-strain problem is taken to be symmetric, i.e., 

Ux2(-x2, Y2, t) = -ux2(xz, Y2, t) 

Uy2(-x2, Y2, t) = Uyz(X2, Y2, t), (2) 

then the plane-strain problem is unique and the following sim- 
plified expressions can be obtained (Thompson and Robinson, 
1969): 

Up = btx2(P COS ~/, y, t) COS r/dr/ 

u ~ = O  

Uy = uy2(p cos r/, y, t)d~. (3) 

The expressions for the stresses are 

2 crp = [c~z - 2#ex2 sin 2 r/]dr/ 

£ cr~ = [Ox2 - 2#ex2 cos 2 r/]dr7 

f0 Gy = Oy2d~ 7 

f: 7"yp -'~ Txy 2 COS ~dr/ 

7"y~o = %~o = O. (4) 

The task of finding the fictitious plane problem, i.e. its bound- 
ary and initial conditions, that corresponds to an axisymmetric 
problem is usually done by solving a set of Abel integral equa- 
tions (Aleksandrov, 1961). For example, assume that the 
boundary and initial conditions for the axisymmetric problem 
are specified functions of Cry and %,, then the first and fourth 
of Eqs. (4) can be solved to determine the corresponding quanti- 
ties for the plane strain problem. The result is 

~y2(X2, y , t ) = l O { f [ ~  r } 7 ~X2 ffY(r' y' t) ~ /7~--~  dr 

%y2(x2, y , t )  l O { f ]  2 r2 } 
7TX2 0X2 q-yp( r , y, t) ~ dr . (5) 

For the axisymmetric problem in which the normal and tan- 
gential tractions are specified on the boundary y = 0, Eqs. (5) 
for y = 0 give the boundary tractions for the corresponding 
plane-strain problem. The plane problem can then be solved 
directly (Smirnov, 1964; Thompson and Robinson, 1969; Er- 

ingen and Suhubi, 1975). The results when superposed in accor- 
dance with Eqs. (3) and (4) yield the solution of the axisymme- 
tric problem. 

A more general type of rotational superposition that is often 
useful results in nonaxially symmetric distribution of boundary 
tractions or displacements. One very useful example of this is 
a case in which a displacement or a traction in one direction, 
say x, is applied to an expanding circular area on the boundary 
plane (Kostrov, 1964b; Johnson and Robinson, 1972). Corre- 
sponding to this kind of problem, a fictitious antiplane problem 
as well as a fictitious plane-strain problem is now necessary 
and the weighting functions in Eqs. ( 1 ) are taken in the follow- 
ing form: 

w/,(col) = cos col wa(col) = sin col. (6) 

To guarantee uniqueness, the plane-strain problem is taken as 
antisymmetric with respect to the y-axis and the antiplane prob- 
lem as symmetric, i.e., 

ux2(-x2, Y2, t) = Uxz(X2, Y2, t) 

Uyz(--X2, Y2, t) = -uy2(x2, Y2, t) 

Uzz(-Xz, Y2, t) = uz2(&, Y2, t). (7) 

With these assumptions, the following simplified expressions 
can be obtained by a change of variable ( r /=  col - co) in Eqs. 
( 1 ) :  

up={f~ux2(pcosrT, y,t) cos2~Tdr7 

- Uz2(p cos r/, y, t) sin 2 ~Tdr/ cos co 

u~ = - u~z(p cos ~7, Y, t) sin 2 ~Tdr/ 

+ Uzz(P cos ~, y, t) cos 2 ~d~7 sin co 

U Y = I f : u y 2 ( p c o s r l ,  y , t )  cos~Td@cosco. (8) 

Similar expressions for the stresses can be found in Johnson 
and Robinson (1972). 

Depending on the given boundary values, the fictitious plane 
problems can then be determined in a way very similar to the 
axisymmetric case. For instance, consider the dynamic problem 
of an expanding circular shear dislocation nucleated from the 
origin on the y = 0 plane in an unbounded medium. The bound- 
ary conditions on the dislocation plane are given by the follow- 
ing equations: 

Up(p, CO, t) ly=O + = --Up(p, W, t ) ly= 0- = Ux(p, t) cos co 

u~(p, co, t ) l y = 0  + = -u~(p, co, t ) l y - 0  = -ux(p, t) sin co 

~ y = 0  for y = 0  (9) 

where ux(p, t) is the distribution function of the tangential 
relative displacements in the x-direction. The fact that the ~ry = 
0 everywhere on the y = 0 plane follows from the antisymmetric 
nature of the problem with respect to the plane y = 0. To solve 
this problem, first we can examine the form of the first two of 
Eqs. (8). It can be observed that if one chooses 

u , z = - u z 2 =  U(x2, t) for Y2=0,  (10) 

the three-dimensional motion resulting from superposition will 
always be in the x direction (co = 0) on the y = 0 plane, as 
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z = m x + ~ m 2 ( l  + s )  2 +  1 (16) 

A ( ~ I ~  A I((I + s)x t, z I) 

~ B I  x 

Fig. 2 A simple stretch in the x-direction 

required by the first two of Eqs. (9).  The following equation 
can then be obtained: 

UP" y=O + - -  Ua2 
COS ~ sen  ~ y=O + 

f0 = U(p cos r b t)d~ = ux(p, t). (11) 

From this the function U(x2, t) is then also determined, i.e., 

U(x2, t) 1 0 
2 2 7r Ox2 

Therefore the fictitious plane problems corresponding to the 
circular shear dislocation problem are determined uniquely and 
their boundary conditions for y2 = 0 + are as defined below. 

(1) The plane-strain problem: 

Ux2(X2, t )  = U ( x 2 ,  t )  

O'y 2 = 0. (13) 

(2) The antiplane problem: 

u:2(x2, t) = -U(x2 ,  t). (14) 

3 T h e  G e o m e t r y  o f  a S t r e t c h  i n  t h e  x - D i r e c t i o n  

Up to this point, known results have been summarized for 
dealing with three-dimensional problems with boundary values 
over a circular region. In order to develop the new rotational 
superposition with a stretching effect, some necessary geometri- 
cal relationships will first be established in this section. Consider 
a line OA on the xz-plane as shown in Fig. 2. The point 
A(xl ,  zl) will move to the point A t ( ( l  + s)x~, zl) if the whole 
surface is stretched (1 _+__s) times in the x-direction. Then 
a point B on the line OA will move to a point Bl on the 
line OAi also. Because AA: is parallel to BBt, it is apparent that 
the triangle OAA~ is similar to the smaller triangle OBB:. There- 
fore the following geometrical relationship holds: 

OB OB l 
- - -  ( 1 5 )  

OA OA1 " 

Similarly, any shape on the xz-plane will change when the 
whole surface is stretched ( 1 + s) times in the x-direction, e.g., 
a circle is stretched into an ellipse. The geometrical relationships 
between a circle with center at the origin and the resulting ellipse 
after stretching can be easily found. As shown in Fig. 3, Ai, B~, 
C1, and Di are the transformed points on the stretched surface 
corresponding to the points A, B, C, and D on the original 
surface, respectively. Point A2 is determined such that line 
A1A2 is tangent to the ellipse and perpendicular to the 
line OA2. Point B2 is the intersection of lines BiCi and OA2. In 
any standard analytic geometry textbook (e.g., Lehmann, 1942, 
p. 161), it is shown that 

is the equation of the tangent A~A2 where 

1 
m , ( 1 7 )  

tan fll 

r is the radius of the circle, and/31 is the new angle that the line 
OA2 makes with the x-axis. The length OA2 is the distance from 
the origin (0, 0) to the line A1A2. Again from (Lehmann, 1942, 
p. 72), it is seen that 

OA2 = M/(1 + s) 2 cos 2/31 + sin 2/3~. (18) 

It will be convenient to set OA2 = r "p(/31)  with 

p(/31) = ((1 + s) 2 cos 2/31 + sin 2/31. (19) 

In addition, the condition that the tangent A~A2 passes through 
the point A1((1 + s)r  cos col, r sin wl) leads to the following 
relationship between wl and/31: 

tan/3t = (1 + s ) tan  w~. (20) 

Taking the differentials of both sides, 

sec 2/31d/31 = (1 + s) sec 2 ~ ld~l ,  

we can deduce that 

1 + s 1 + s 
d~l = d/3~ - -  d/31. (21) 

(1 + S) 2 COS 2 /31 + sin2 /31 P2(/31) 

By noticing in Fig. 3 that the triangle OAiA 2 is similar to 
the triangle OBiB2 and employing Eq. (15), we readily de- 
rive a useful equation which relates the segment OB to OB2 and 
OC to OCt: 

OB2 OB 1 OB 

OA2 OAl OA 

or 

OB2 = OA2.~--~ p(/3,) ,  r O--B = p ( f l , ) 'O B ,  
OA r 

and finally 

0C1 "cos (/31 - ~)  = p( /31) 'OC'cos  (e l  - w0). (22) 

z x2 

- -  ,a 

xe2 

Fig. 3 Geometrical representations of a circle and the resulting ellipse 
after a stretching in the x-direction 
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4 Rotational Superposition With Stretching on the 
xz-Plane 

In Section 2 it has been shown how to solve three-dimen- 
sional axisymmetric dynamic problems by finding a correspond- 
ing plane-strain problem, solving it, and applying rotational 
superposition to the two-dimensional results. The solution of 
the fictitious plane-strain problem is, of course, determined by 
its boundary values. 

Now consider a three-dimensional problem with nonzero 
boundary values uy or ay on the y = 0 surface that can be 
interpreted as a "stretch" in the x-direction of an axisymmetric 
distribution on the xz-plane. For convenience, this problem will 
be called a "stretched boundary value problem." As noted in 
the Introduction, in general the entire field is not simply 
stretched in the same way. The analysis of the present section 
and an example following will show how to obtain modified 
two-dimensional problems and from these to find the solution 
for the stretched boundary value problem. After this method is 
developed, it will be shown in Section 6 that the same stretching 
process is applicable to problems arising from the stretching of 
a nonaxisymmetric problem that can be solved by rotational 
superposition. In that section a shear dislocation over an ex- 
panding elliptical region is found by beginning with the corre- 
sponding problem for an expanding circular area. 

First for an axisymmetric distribution normal to the xz-plane, 
consider a known plane distribution f ( x2)  which is an even 
function of x2 along the x2-axis (see Fig. 3). As before, an 
axisymmetric distribution on the xz-plane can be constructed 
readily by defining the value of the distribution F at any point 
C(po, wo) as follows: 

f0 F( C) = F(po, Wo) = f (Po cos ( Wl - Wo) )d~Vl 

f = f(Po cos col)dwl. (23) 

Here f (x2)  and F(po, wo) can be the normal component of 
displacement or traction that enters the boundary conditions. It 
is apparent that the resulting distribution F is a function of Po 
only. If the function F(po) is known beforehand, the inverse 
problem of constructing the corresponding distribution f ( x2)  
can be solved readily. The solution to the inverse problem is, 
as in Eqs. (5),  

1 0 { f ~  ~ d~} (24) f (x2)  = -~ Ox-"-~2 F(~) ~ . 

The problem now is to construct a surface distribution which 
is a stretch in one direction of an axisymmetric distribution on 
the xz-plane. A new rotational superposition with stretching 
effect is defined for the value of the distribution Fe at any 
point Cl(p, w). A weighting function We(ill) for stretching 
is included in the superposition, as shown in the following 
equation: 

Fe(Ci) = Fe(p, w) 

f = fe (P  COS ( i l l  -- 031, i l l )We( i l l )d i l l  ( 2 5 )  

where the distribution fe(Xe2,131) is a stretch of the distribution 
f ( x2)  with a stretching ratio as a function of i l l .  The function 
fe(Xe2, ill) is defined in terms of the function f (x2)  by 

fe(Xe2, i l l )  = f  (p~,))X,z . (26/ 

The weighting function w,( i l l )  is derived from the geometrical 
relationships between 0~l and i l l ,  as follows: 

dwl= l + s  _ l + s  (27) 
we(/31) = dill (1 + s)2cos2ill  + sin2ill p2(il l  ) ' 

From the geometrical relationships established in the previous 
section, the following equalities can be easily proved, from 
which the relationship between the axisymmetric distribution F 
and the stretched distribution F, is verified: 

p "cos (ill - Lv) = p ( i l l ) ' p 0 " c o s  (¢Vl - ~v0) 

fe(p COS (/31 -- ~V), i l l )  = f ( P 0  COS (COl -- ~0)) 

so that 

W e ( l / l / "  d i l l  = d ~ l  

Fe(Cl) = F(C)." (28) 

Therefore, the new rotational superposition with the stretching 
effect defined by Eq. (25) results in a value of the distribution 
Fe at the stretched point Cl that is the same value that F has at 
the original point C. It is now clear that the surface distribution 
Fe is a stretch of the axisymmetric distribution F in the x- 
direction. 

5 An Expanding Uniformly Distributed Elliptical 
Normal Load on the Surface of a Half-Space 

Consider the problem of a linearly elastic half-space sub- 
jected to an expanding elliptical normal traction on the surface. 
The normal load intensity is assumed to be uniformly distributed 
of unit magnitude acting downward in an expanding elliptical 
region on the surface y = 0. The boundary conditions are as 
defined below: 

ay(X,Z , t )  = - 1  for + z  2 < a t  
+ s) 2 

= 0 for + z 2 > at 

~-yp=0 for y = 0  

Ty~ = 0 for y = 0 .  (29) 

5.1 The Corresponding Plane-Strain Problem. The 
problem for the elliptical distribution is solved by first examin- 
ing its counterpart, an axisymmetric problem with an expanding 
circular normal load on the surface. The axisymmetric boundary 
values on the surface y = 0 are given by 

cry(p, t) -- - 1  for p--<at 

= 0 for p > at 

ryp(p, t) = 0. (30) 

The fictitious plane-strain problem corresponding to this axi- 
symmetric problem can then be found by substituting the above 
boundary values into Eqs. (5),  which gives the boundary condi- 
tions for Yz = 0 of the plane-strain problem as follows: 

Cry2(X2, t) = _ _1 for IX2I --< at 
71" 

1 [1 I~J ] 
= - 7 ~x~ S a z t 2 J  for Ixzl > at  

Txyz(X2, t) = 0. (31) 

After the plane-strain problem corresponding to the axisym- 
metric case is found, the plane-strain problem corresponding to 
the elliptical normal load problem can be determined readily 
by stretching the boundary values in Eqs. (31) according to Eq. 
(26). That is, for Y2 = 0, 
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a;2(&2, t , / 3 , ) =  - - 1  for Ixe=l ~_o~,t 
71" 

= -  1 ~ / x ~ _ . ~ ,  t~ 
for [x~2l > ° % t  

r{yz(Xe2, t, /31) = 0 (32) 

where 

aa, = p ( / 3 t ) ' a  = ~/(1 + s)2 cos2/31 + sin2/31 "a. (33)  

Here it should be noted that the stretched plane problem for the 
elliptical case is a function of/3~. 

5.2 Solution to the Stretched Plane-Strain Problem. 
Since the tractions on the surface Y2 = 0 in Eqs. (32) are 
homogeneous functions of  degree zero, the stretched plane- 
strain problem can be readily solved by using the method of 
self-similar potentials (Smirnov, 1964; Thompson and Rob- 
inson, 1969; Eringen and Suhubi, 1975). The displacement and 
stress fields for the fictitious plane-strain problem are then deter- 
mined readily as below: 

fO ! If: 1 f i t 2  ] uYc2 = - Re Od~'dO + ~fb -2 - -~Sqd'dO d r  

Rey2 = - £  Re[ f]' q a-2 - 02~ 'dO - fi'O~'dO]dr (34) 

cr*---2 = Re (b -2 + 202 - 2 a - 2 ) ~ ' d O  
# 

°'Y¢2 = R e l  f f '  ( b -2  - 202)49'd0 - f f 2  20~-b-2 - - ~ q d ' d O  

r~y2 = Re 20~/a -2 - 020 'dO 

+ f ] 2 ( b - 2 - 2 0 2 ) ~ ' d O ]  ( 3 5 )  

where a and b are the speeds of the P and S waves,/.z is shear 
modulus, 

a 2& O(b -z - 20 l)  

~ ' (0 , /31 )  /zTr R(02)(1  - 0 /~102)  3/2 

O~1 2 0 2 ~  --~ _ 02 
• ' ( 0 , / 3 , )  - 

/zTr R(02)(1 - a2&O2) 3n 

in which 

R ( O  ~) = ( t ,  -~ _ 20~)2  + 4 0 2 ~ , / t ,  -~ _ 02 
is the Rayleigh function, and 01 and 0z are the complex functions 
defined implicitly by 

t - OlX~z - y 2 ~ -  O~ = O 

t - 02Xe2 -- y2qb -2 - 0 z = 0. (36) 

5.3 The Displacement and Stress Fields for the Elliptical 
Load Problem. After the displacement and stress fields for 
the stretched plane-strain problem are determined, the three- 
dimensional displacement and stress fields for the elliptical nor- 

Tangential relative displacement 

Y (I ~2s)2+z2=ct2t: 

a = 5.6 km/sec, b = 3.2 kin/see 

s = 0.5, a = ~ km/sec I + s  

Fig. 4 An expanding elliptical shear dislocation (circular when s = O) 
on the y = 0 plane 

mal load problem can be found by superposing the two-dimen- 
sional fields using the rotational superposition with stretching, 
which results in the following equations: 

up = u~2(p cos (/31 - ~o), y, t,/31) 

X COS (/31 --  OJ)We(/31)d/31 

yo u~ = u~a(p cos (ill - w), y, t,/31) 

X sin (il l  - co)w~(/31)d/31 

u, = u~a(O cos (/31 -- w ) ,  y ,  t, /3,)we(/31)d/31 (37) 

2 a e = [crY2 - 2#G2 sin 2 (/31 - w)lw~(/31)d/31 

Io o'~ = [o'~2 - 2#G2 cos 2 (/3J - w)]w~(/3,)d/31 

fe O'y = O'y2We(/31)d/31 

%~ = ~e~a sin 2(/31 - W)w~(/31)d/31 

£ = e rye rxy2 COS (/~l -- CO)We(/31)d/31 

Y: Ty~ = T.~y2 s i n  (/31 - W)We(/31)d/31 ( 3 8 )  

where We(~3, ) is the weighting function for stretching as defined 
in Eq. (27).  Because the displacement and stress fields resulting 
from superposition satisfy the boundary conditions on the sur- 
face y = 0 as given by Eqs. (29) ,  they are the solution to the 
elliptical normal load problem being considered. 

6 Application to the General Elliptical Shear Dislo- 
cation Problem 

In addition to the problem of normal tractions or displace- 
ments on an elliptical area, the problem with tangential bound- 
ary values in one direction over an elliptical region can also be 
dealt with by a different rotational superposition with a stretch- 
ing effect. Consider the problem of an expanding elliptical shear 
dislocation nucleated from the origin on the y = 0 plane in an 
unbounded medium as shown in Fig. 4. The boundary condi- 
tions on the y = 0 plane are taken as follows: 
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up(x, z, t ) l y = 0  + = -up(x,  z, t ) l y = o -  = u~(p~, t) c o s  co 

u~(x, z, t ) l ~ = 0  + = -u~(x ,  z ,  t)lr=0- = --Ux(Pb, t) sin ~v 

tTy -~ 0 f o r  y = 0 (39) 

where 

X2 

p ~ ( x , z )  = (1 + s )  z + z~' (40) 

In this problem, the elliptical shear dislocation can be consid- 
ered as a stretch in the x-direction of the circular dislocation in 
Section 2. The rotational superposition defined by Eqs. ( 1 ) and 
(6) can now be modified in a similar manner as in Section 4. 
The new rotational superposition used for the elliptical shear 
dislocation problem is then defined by the following equations: 

up= u ~ ( p  cos ( / 3 , -  co),y, t,/31) cos ( / 3 , - c o )  

Y0 X C O S ~ l W e ( ~ l ) d / 3 1  --  U ~ 2 ( ~  COS ( / 3 1 - - a ~ ) , y , t , / 3 , )  

× sin (/31 --  CO) sin/31w~(/31)d/31 

f; u~=  u~2(p cos ( / 3 , - c o ) , y , t , / 3 1 ) s i n ( ~ , - c o )  

× cos/3,w~(~)d/3,  + u ~ ( p  cos ( /31-  w ) , y , t , / 3 1 )  

× COS ( ~ 1  --  CO) sin/31w~(/31)d/3, 

fo ./~y = U~2(p COS (/3, -- CO), y, t, /31) 

× cos/3,w~(/3,)d/3, (41) 

where the weighting function w~(/3~) for stretching is as given 
in Eq. (27).  

It will now be verified that the same stretching approach used 
for the axisymmetric case, Eq. (26) can also be applied to find 
the plane problems that lead to the superpositions of Eqs. (41).  
That is, the plane problems corresponding to the elliptical shear 
dislocation problem are determined readily by stretching the 
boundary values of the plane problems for the circular case 
found in Section 2 in accordance with Eq. (26).  For Y2 = 0 +, 

(1) the plane strain problem is determined by 

U~-2(Xe2 , t ,  /~l) = U X 2 ~ Z ,  t = \P(/3I) ' 

G;2 : 0 (42) 

and 

(2) the antiplane problem is determined by 

u~z2(x~2, t , / 3 , )  = #ZZkp(/3, ) , t = \ P ( [ ? , )  , (43) 

where U(x2,  t)  is as given in Eq. (12).  

In order to confirm that the new rotational superposition de- 
fined by Eqs. (41.) together with the above plane problems give 
rise to the elliptical shear dislocation problem, the superposed 
three-dimensional boundary values on the surface y = 0 + are 
examined, as follows: 

up = [uxe2 COS ( /3 ,  - -  CO) COS /31 - -  U~2 

× sin (/31 - co) sin/3,]we(/3,)d/31 

= u ~ , 2 [ c o s  ( p ,  - co)  c o s  ¢~, 

+ sin (fl, - co) sin/3,]w~(/3,)dfl,  

f; = u~2We(~,)d/3," c o s  co 

Y/ u~ = u~z[sin (/3, - ~o) cos Pl 

- cos (/3, - co) sin ~ , ]we(~ l )dB,  

y0 = - u~zwe( /3 , )d /3 , ' s in  co 

O'y ~ O. 

In addition, the following equality can be verified from the 
results in Section 4. 

fi~ ue2(p COS (/3, -- CO), t, t 3 , ) W e ( / 3 1 ) d ~ l  = Ux(Pb, t) 

Therefore, the three-dimensional fields resulting from superpo- 
sition have the same boundary values on the surface y = 0 + as 
given by Eqs. (39) for the elliptical shear dislocation problem 
being considered. 

Once the boundary conditions are established as the superpo- 
sition of two-dimensional fields by the new rotational superpo- 
sition, any other field quantities can be expressed as 

cro = [a~-2 - 2#e22 sin 2 (/3, - w)] cos/3lWe(/3,)d/3, 

fo - r ; z  sin 2(/3, - co) sin/3,w~(/3,)d~l 

2 c ~  = [ c ~  - 2 ~ e ~  c o s  ~ ( ~  - ~o)1 c o s / 3 ~ w ~ ( p , ) d ¢ ~ l  

2 + r ; 2  sin 2(/31 - co) sin ~,w~(~l )d /3 ,  

O'y = Cry 2 COS / 3 1 W e ( / 3 1 ) d / 3  l 

f/ %~ = [#ee2 sin 2(/3, - co) cos/3, 

+ 7-~2 cos 2(/3, - co) sin/31]w~(/3,)d/3, 

"Typ "~ ['7-;ty 2 COS (/31 -- CO) COS /~l 

- ~-z~,2 sin (/3, - co) sin/31]w,(/3,)d/3, 

f0 ~'y~ = [r~y2 sin (/3, - co) cos/31 

+ rz~2 cos (~,  - co) sin/3,]We(/3,)d/3,. (44) 

7 A Specific Spreading Elliptical Shear Dislocation 
in an Infinite Medium 

As a specific application of the general results of Section 6, 
the problem of an elliptical shear dislocation spreading in an 
infinite medium is now treated. The relative displacement distri- 
bution function ux(p~, t)  that, together with Eqs. (39) ,  defines 
the boundary conditions on the y = 0 plane is taken in the 
following form: 
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Ux(pb, t) = D a~Z~- p~, for Pl, <- at 

= 0 for Pb > at (45) 

where D is a constant, a is the speed of propagation of the 
elliptical dislocation boundary along the minor axis, and the 
parameter ph(x, z) is as defined in Eqs. (40). It has been shown 
that Eq. (45) is also the solution form for the crack surface in 
self-similar problems of an elliptical shear crack propagating in 
an isotropic medium subjected to a homogeneous shear (Bur- 
ridge and Willis, 1969). Thus, the results given in this section 
will correspond to a solution for an elliptical shear crack prob- 
lem. 

To solve this problem, again the corresponding circular shear 
dislocation problem is examined first. The boundary conditions 
on the y = 0 plane of the circular problem are given by Eqs. (9) 
together with the following relative displacement distribution: 

Ux(p, t) = D~/a2t 2 - p2 for p <-at 

= 0  for p > a t .  (46) 

Kostrov (1964b) showed that these boundary conditions actu- 
ally correspond to the case of an expanding Circular shear crack 
in an infinite elastic solid. From the previous results, the bound- 
ary values given by Burridge and Willis (1969), Eqs. (39) and 
(45), should then be the solution form on the crack plane for 
an expanding elliptical shear crack. In their paper, Burridge and 
Willis assumed that this is the case and then verified the solu- 
tion. The results of this paper show much more simply that 
their reasonable assumption was indeed correct. 

To return to the calculations, the distribution Eq. (46) is 
substituted into Eqs. (13) and (14) to give the boundary values 
on Yz = 0 ÷ for the plane problems corresponding to the circular 
dislocation problem. The results are 

(1) for the plane-strain problem 

[ I ] u~2(x2, t) = P- at + Ix~l log 
~- 2 a t  Ix21 

and 

(2) 

O'y 2 : 0 (47) 

for the antiplane problem 

u~2(x2, t) = -Uxz(X2, t). (48) 

The fictitious plane problems for the elliptical shear dislocation 
problem can then be readily determined from stretching as in 
Eqs. (42) and (43), which results in the boundary conditions 
on Yz = 0 + for the stretched plane problems as follows: 

(1) the stretched plane-strain problem 

D an,t + Ix~2[ log 
U~2(Xe2't'/~l)--Trp(/~,) 2 a~t  + IXe2[ 

and 

(2) 

where 

ay2(X,z, t, p,) = 0 (49) 

The stretched antiplane problem 

Uz2(X~z, t, /31) = --b/e2(Xe2, t ,  hi)  (50) 

an, =p(/31) 'a =~/(1 + s )  2cos z ~ '  + sin z /71 'a .  (33) 

7.1 Solution to the Stretched Plane Problems. It is ap- 
parent that the tangential displacement for Y2 = 0 ÷ in Eqs. (49) 
is a homogeneous function of degree 1. Thus this stretched 
plane-strain problem can also be solved straightforwardly by 

0.30 

0.20 

0.10 

~ 0.00 , 

- 0 . 1 0  
0 

I I 

0 . I 0  [ 

,~ 000 t : " - o . l o  

~ 3  - 0 . 2 0  

-0.30 
0 

0.30 

~ 0.20 

0.10 

0.00 I I 

-0.i0 
0 

- -  oo = O" 
0~ = 45" .- 
0o = 90 ° . . - " "  

5 10 15 
T i m e  ( s e e )  

5 10 15 
Time (see)  

5 10 15 
T i m e  ( s e c )  

Fig. 5 Response at (0 = 10 km, ¢o, y = 15 km) due to a spreading 
elliptical shear dislocation (s = 0.5) 

employing the method of self-similar potentials, which gives 
the following two-dimensional displacement fields: 

L If? 2Da~lb 2 203 

u~2 - 7rp(/31) Re (1 - a~,(02) 2 

+ f]=O(b-Z- 2Oz) dO]d r 

2Da~,b2 fo [ f~1202~/a-2 - Oz 

f l  ~z 0 2 ( b  - 2  _ 202) ] 
- (1 - a~,o2)24b-2  - o 2 dO d~.  (51)  

The solution of the antiplane problem can also be found 
readily by using the method of self-similar potentials (Johnson 
and Robinson, 1972). The result is 

e 2 2 / a ~ '  uzz 7rp(/3j) Re 1 - %0102] 
(52) 

7.2 Determination of the Three-Dimensional Fields. 
Once the stretched plane problems have been solved, the three- 
dimensional displacement fields for the expanding elliptical 
shear dislocation problem are completely determined by super- 
posing the two-dimensional fields for the stretched plane prob- 
lems according to Eqs. (41). The stress fields can be found 
from the fundamental stress-displacement relationships for 
plane fields and Eqs. (44) if they are of interest. 

A numerical example with properties shown in Fig. 4 has 
been examined. The calculated displacement responses at some 
points are illustrated in Fig. 5. By symmetry, the radial and 
vertical displacements are zero when ~v = 90 deg, and the 
circumferential displacement is zero when • = 0 deg. In addi- 
tion, it can be readily seen from the results that the body has 
not been disturbed until the arrival of the first P-wave front at 
the point at which the field is calculated. 
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8 C o n c l u s i o n  

An extension of the usual rotational superposition to include 
a stretching in one direction of a boundary value distribution 
on a plane has been presented. This stretching technique is 
applicable to three-dimensional boundary value problems when- 
ever the distribution of boundary values can be considered a 
"stretch" in one direction of a circular surface distribution. By 
means of the generalizations developed, the rotational superpo- 
sition technique becomes even more powerful and more versa- 
tile. In addition to the two examples given in this paper, this new 
approach could prove useful in a number of other applications 
including problems in layered media. In this way, it is possible 
to increase the small number of unsymmetric three-dimensional 
static and dynamic elasticity problems that have been solved 
exactly. 
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Subsonic and Intersonic 
Crack Growth Along a 
Bimaterial Interface 
An experimental investigation has been conducted to study the dynamic failure of 
bimaterial interfaces. Interfacial crack growth is observed using dynamic photoelas- 
ticity and characterized in terms of crack-tip velocity, complex stress intensity factor, 
and energy release rate. On the basis of crack-tip velocity two growth regimes are 
established, viz. the subsonic and transonic regimes. In the latter regime crack-tip 
velocities up to 1.3 times the shear wave velocity of  the more compliant material are 
observed. This results in the formation of  a line of discontinuity in the stress field 
surrounding the crack tip and also the presence of a pseudo crack tip that travels 
with the Rayleigh wave velocity (of  the more compliant material). 

Introduction 
In recent years there has been a resurgence of interest in the 

dynamic failure of bimaterial interfaces. This interest is primar- 
ily motivated by the role of interracial fracture in determining 
the macroscopic response and failure modes of various multi- 
phase materials. The first experimental study of this phenome- 
non of dynamic interface fracture was by Tippur and Rosakis 
( 1991 ). Their investigation demonstrated the possibility of in- 
terracial crack propagation at velocities up to 80 percent of the 
shear wave velocity of the more compliant material comprising 
the bimaterial interface. This experimental study motivated sev- 
eral analytical and numerical investigations of the same problem 
(Yang et al., 1991; Wu, 1991; Nakamura, 1991; and Deng, 
1992). A higher order asymptotic stress field for dynamic crack 
propagation along bimaterial interfaces was provided by Liu et 
al. (1993). The same paper also presented experimental evi- 
dence of the highly dynamic and transient nature of this phe- 
nomenon. Most recently, Lambros and Rosakis (1994) demon- 
strated that dynamic crack propagation along a bimaterial inter- 
face can occur at transonic velocities (with respect to the more 
compliant material). However, experimental data, especially in 
the transonic regime, is still limited and analytical studies are 
nearly nonexistent. 

This study is motivated by the need to employ experimental 
techniques to investigate the phenomena of both subsonic and 
transonic crack propagation along bimaterial interfaces. Thus, 
dynamic photoelasticity was employed in conjunction with 
high-speed photography to study the failure of bimaterial inter- 
faces in the subsonic and transonic regimes. Failure was ob- 
tained by subjecting the bimaterial specimen to dynamic impact 
loading. Varying the velocity of the projectile used to impact the 
bimaterial specimen results in very different crack propagation 
characteristics. Low-velocity impact leads to subsonic crack 
propagation, in which the crack-tip velocity is less than the 
shear wave velocity of the more compliant material. Whereas, 
high-velocity impact leads to transonic crack propagation, in 
which the crack-tip velocity is greater than the shear wave 
velocity but less than the plane wave velocity of the more 
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compliant material. This paper investigates and discusses the 
various physical phenomena that characterize crack propagation 
in both the subsonic and transonic regimes. 

Experimental Procedure 
The experimental setup used to investigate crack propagation 

along a bimaterial interface subjected to impact loading is 
shown in Fig. 1. As demonstrated in the figure, the bimaterial 
specimen is placed on the optical bench of a high-speed Cranz- 
Schardin spark-gap camera and subjected to impact by a projec- 
tile fired from a gas gun. This impact results in a compressive 
wave that traverses the width of the specimen and reflects as a 
tensile wave from the opposite free surface. The reflected wave 
loads the crack tip resulting in crack initiation and subsequent 
crack growth. The dynamic stress field produced by the propa- 
gating crack is observed using dynamic photoelasticity in con- 
junction with high speed photography. This is made possible 
by the transparent and photoelastic nature of the compliant half 
of the bimaterial specimen. The high-speed Cranz-Schardin 
camera provides a total of twenty images at framing rates of 
up to one million fi'ames per second. These photographic images 
represent the full-field isochromatic fringe patterns for the stress 
field surrounding the propagating interface crack. Note that the 
isochromatic fringe patterns are observed only in the compliant 
and transparent half of the specimen. 

The bimaterial specimen used to investigate interface fracture 
is shown in Fig. 2. It consists of a compliant half bonded directly 
to the stiff half. The compliant half was chosen to be a transpar- 
ent and photoelastic polyester resin (Homalite-100), while alu- 
minum was chosen as the other half. This combination provides 
a significant mismatch in the mechanical properties of the two 
materials comprising the bimaterial interface. The properties of 
both the materials are listed in Table 1. 

The bonding of the two materials comprising the interface is 
done by a direct-bonding procedure to ensure a "true bimaterial 
bond." First, the Homalite and aluminum halves of the speci- 
men are machined to size, mechanically abraded by sand-blast- 
ing and cleaned. Then, a thin layer of uncured polyester resin, 
to which a curing agent (Methyl ethyl ketone peroxide) has 
been added, is applied to the bonding surfaces and the two 
specimen halves are held together until the resin cures. After 
room temperature curing for 48 hours the resin achieves the 
same mechanical and optical properties as Homalite-100 re- 
sulting in a true bimaterial bond. This bonding procedure was 
evaluated by conducting tension tests on two Homalite-100 
halves bonded with this technique. The experiment provided a 
tensile strength of 21 MPa (3000 psi) which compares well 
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Fig. 1 Experimental setup for investigating the fracture of a bimaterial 
interface subjected to impact loading by a projectile fired from a gas 
gun 

with the standard value of 28 MPa (4000 psi) for homogeneous 
Homalite-100. The starter crack along the interface is formed 
by incorporating a strip of Teflon tape during the bonding proce- 
dure. 

In this experimental investigation the bimaterial interface 
specimen was subjected to two different magnitudes and rates 
of loading, as determined by the velocity of the gas gun fired 
projectile. The same steel projectile (12.5 mm diameter and 
100 mm long) was used for both experiments. The impact veloc- 
ities used were a "low" velocity of 5 m/s and a "high" velocity 
of 30 m/s. These projectile velocities correspond to impact 
energies of 1.25 J and 45.4 J, respectively. The low and high- 
impact velocities resulted in very different crack-tip propagation 
histories. 

Analysis of Isoehromatic Fringe Patterns 
Isochromatic fringe patterns obtained from the high-speed 

camera were analyzed to determine various fracture parameters 
such as the crack-tip velocity, the complex stress intensity fac- 
tor, and the energy release rate. This analysis procedure is based 
on the transient higher order asymptotic stress field equations 
for a crack propagation along a bimaterial interface (Liu et al., 
1993). Consider a crack propagating along a bimaterial inter- 
face as shown in Fig. 3. From the higher order asymptotic 
analysis of Liu et al. (1993) the stress field in vicinity of the 
crack tip is given as 

cru(~, ~2, t) = ~ Er.,~r}j")(n,, zh, t) ( 1 )  
m=O 

where ~7~ = ~/e ,  i ~ {1, 2}, and e is a small arbitrary positive 

k=,---- 125 m m ----~'~ 

T Mat~'ial- 1 

1 50 ~r~ 

A B 

150 nr~ 

Material - 2 

T h i c k n e s s  = 6, 35 Mrq 

,_~20 mM 

Impact 

A - Starter Crack 
B - Int~face 

Fig, 2 Schematic of bimaterial interface specimen 

Table 1 Material properties of bimaterial system 

6061 
Property Homalite- 1001 Aluminum 

Young's modulus, E, (GPa) 5,3 
Poisson's ratio, v 0.35 
Density, p, (kg/m3) 1230 
P-wave velocity (plane-a), c~, (m/s) 2220 
S-wave velocity, c .  (m/s) 1270 
Surface wave velocity, cR, (m/s) 1186 
Fracture toughness, K~, (MPa,/m) 0.45 
Material fringe value, fi, (kN/m) 23.7 

71 
0.33 
2770 
5430 
3100 
2890 
99 

t Maufactured by Homalite, Inc., Delaware, USA. 

number. This parameter is used to scale a small region around 
the crack tip such that the scaled coordinates rT~ fill the entire 
field of observation. Now, P0 < P~ < P2 < . . . .  i.e. ~r}~ ~ are 
the primary terms, a b~ are the first-order corrections and so on. 
The exact form of the stress field equations in terms of positional 
coordinates, crack-tip velocity, material properties, and various 
fracture parameters is given by Liu et al. (1993). 

The generation of the isochromatic fringe patterns, which are 
contours of constant maximum shear stress, is governed by the 
stress optic law, 

2h = 7m,x - ~ = .V \ 2 ] -}- Txy (2) 

where f i  is the material fringe value and h is the thickness of 
the specimen. The stress optic law is coupled with the higher 
order asymptotic stress field to yield the relation that defines 
isochromatic fringes in the vicinity of a crack tip propagating 
dynamically along a bimaterial interface, 

( N f i ~  2 
2h ] = #2{[(1 + eel) ReF~(zl; t) + 2a~ ReG,(z,; t)] 2 

where 

+ [2al ImFg(Zl; t) + (1 + o~) ImG"o(Zs; t)] 2 } 

= #2{(1 + o~) 2 [ReF~(zl; t)] 2 

+ 4c~[ReGg(zs; t)] 2 

+ 4ces(1 + a j  2) ReFg(z~; t) ReG]'(zA t) 

+ 4o!~ " • [ImF0(Zl, t)] 2 

+ (1 + a~)2[ImG~(z,; t)] 2 

+ 4a~(1 + a~) ImFg(z~; t) ImGT(zs; t)} (3) 

13 2 1) 2 

a~ = 1 c~ 2 ,  c~ = 1 cs2 ( 4 )  

with v being the crack-tip velocity, and c~ and Cs the P and S- 
wave velocities, respectively, of material-1. The modified coor- 
dinates z~ and zs are defined as zl = ~7~ + ia~72 and z, = rh + 
ia~.~72. The functions F~', and G~ have been defined by Liu et 

Mater ia l  1 

Fig. 3 S c h e m a t i c  o f  a crack propagating along a bimaterial interface 
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Fig. 4 A typical sequence of isochromatic fringe patterns for the crack propagation along 
a Homalite/aluminum bimaterial interface subjected to low-velocity impact loading. The 
fringe pattern is determined on the Homalite half of the specimen. 

al. (1993). Equation (3) is used to analyze the experimental 
isochromatic fringe pattern to determine various fracture param- 
eters, such at the dynamic complex stress intensity factor, the 
energy release rate, and the nonsingular stress field component. 
The analysis procedure employs a nonlinear least squares 
method based on the Newton-Raphson technique. 

R e s u l t s  a n d  D i s c u s s i o n  

Subsonic  Crack Growth. This sections presents and dis- 
cusses crack propagation along a bimaterial interface resulting 
from low-velocity ( ~5 m/s) impact loading. A typical sequence 
of isochromatic fringe patterns for crack propagation for such 
an experiment is shown Fig. 4. The photographs depict the 
dynamic stress field that surrounds the crack tip as it propagates 
along the bimaterial interface. Also, the location of the crack 
tip is indicated in each frame. The crack-tip velocity history 
corresponding to this experiment was determined from the 
crack-tip location as a function of time and is plotted in Fig. 5. 
This plot shows that after initiation the crack-tip velocity in- 
creases rapidly to around 80 percent of the shear wave velocity 
of the more compliant material, c HOMALITE. Thereafter, the 
crack-tip velocity continues to increase, but at a slower rate, 
and finally reaches the shear wave velocity, cP °MAuw. 

Broberg (1960) has shown that the crack-tip velocities for 
unassisted crack growth in homogeneous materials cannot ex- 
ceed the Rayleigh wave velocity due to energy considerations. 
However, for bimaterial interfaces the energy to the propagating 
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Fig. 5 History of the crack-tip velocity for subsonic crack propagation 
along a Homalite/aluminum bimaterial interface 

crack tip is supplied from the stiff half, which has higher wave 
velocities than the compliant half, and higher crack-tip veloci- 
ties are possible. Such crack-tip velocities have been observed 
previously under similar loading conditions but for a different 
bimaterial system (Tippur and Rosakis, 1991 ). 

For the major duration of the experiment described above 
the crack-tip velocity was less than the shear wave velocity of 
the more compliant material (v < c~OMAL~T~). This phenomenon 
of subsonic crack growth was observed typically for all experi- 
ments that involved low velocity impact. Moreover, for this 
crack-tip velocity regime the higher order asymptotic field equa- 
tions of Liu et al. (1993) are applicable and were used to 
determine the various fracture parameters. Figure 6 shows the 
variation of the real and imaginary parts of the complex stress 
intensity factor, K a. The magnitudes of both the real and imagi- 
nary parts of the stress intensity factor (K~ and K2) decrease 
rapidly to zero with crack propagation. The variation of the 
energy release rate with crack propagation also shows a decreas- 
ing trend and is plotted in Fig. 7. As the crack propagates along 
the bimaterial interface, the crack-tip velocity increases and the 
energy required to drive the crack decreases. Yang et al. ( 1991 ) 
have shown that for a crack propagating faster than the Rayleigh 
wave velocity (but less than the shear wave velocity) of the 
more compliant material, the energy release rate goes to zero. 
This accounts for the decreasing trend of the energy release rate 
as shown in Fig. 7. In actual experiments the energy release 
rate does not go to zero even after the crack-tip velocity exceeds 
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Fig. 6 Variation of the real and imaginary parts of the complex stress 
intensity factor, K #, for crack propagation along a Homalite/aluminum 
bimaterial interface 
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Fig. 7 Variation of the energy release rate, G, for crack propagation 
along a Homalite/aluminum bimaterial interface 

the Rayleigh wave velocity of the more compliant material. 
This is possibly due to the presence of some dissipative mecha- 
nism such as crack tip plasticity that is not accounted for in 
theories based on elastodynamics. 

Lambros and Rosakis (1994) have proposed a fracture crite- 
rion for crack propagation along bimaterial interfaces at crack- 
tip velocities less than the shear wave velocity of the more 
compliant material (v < c H O M A L I T E ) ,  This criterion is based on 
an earlier criterion proposed for quasi-static crack growth along 
bimaterial interfaces (Liechti and Knauss, 1982). The criterion 
requires that the ratio of the shearing and opening crack-face 

displacements at a given point behind the crack tip should re- 
main a constant, i.e., 

6a = _1 tan [~ + e In r - tan -~ (2e)] = constant (5) 
~2 r=~ r/ 

where 6] and 62 are the shearing and opening displacements of 
the crack faces as defined in Fig. 8; ~7 and e are interface 
parameters that depend on material properties and crack-tip 
velocity; ~ is the mode mixity; and r = a is some given point 
behind the crack tip. Equation (5) is fitted to experimental 
data for subsonic crack growth along a Homalite/aluminum 
bimaterial interface as shown in Fig. 9. As shown in the plot 
the experimental data shows the same trend as the theoretical 
equation which indicated that for subsonic crack propagation 
along a Homalite/aluminum bimaterial interface the quantity 
6]/62 is a constant. The fact the quantity 6]/62 is a constant is 
employed Lambros and Rosakis (1994) to propose a relation 
between the energy release rate, G, and the velocity of crack 
propagation. Figure 10 shows a plot of the normalized energy 
release rate as a function of crack-tip velocity. The experimental 
data exhibits the same trend as the fracture criterion proposed 
by Lambros and Rosakis (1994). 

T r a n s o n i c  C r a c k  G r o w t h .  When the bimaterial interface 
is subjected to high velocity impact (~30  m/s) the resulting 
fracture phenomenon is different from the earlier case. Typical 
isochromatic fringe patterns obtained for the fracture of a bima- 
terial interface subjected to high velocity impact is shown in 
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C r a o k  T i p  
Velocity, v ,  

(Stiff Material) 

Fig. 8 Opening of crack faces behind the propagating crack tip for 
subsonic interface fracture 
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Fig. 9 Fit of constant crack face displacement ratio (Eq. (5)) to experi- 
mental data for subsonic crack propagation along a Homalite/aluminum 
bimaterial interface 

Fig. 11. The history of the crack-tip velocity for this experiment 
is plotted in Fig. 12. The crack tip rapidly accelerates directly 
up to the shear wave velocity of the more compliant material, 

H O M A L I T E  c~ , and stabilizes around this value for about 20 ,as. 
Thereafter, the crack-tip velocity continues to increase beyond 
the shear wave velocity of the more compliant material. 

The terminal crack-tip velocity observed in these high veloc- 
ity impact experiments was around 130 percent of the shear 
wave velocity but less than the plane wave velocity of the 
more compliant material. This phenomenon of transonic crack 
propagation (c~ °MAuTE < v < c~ °MAUrE) was observed typi- 
cally for all high impact velocity experiments. The experimental 
evidence for transonic crack propagation is still limited 
(Lambros and Rosakis, 1994, 1995) and theoretical develop- 
ments are nearly nonexistent. Thus, there is significant specula- 
tion as to the nature of the fracture phenomenon under such 
velocity regimes. 

A direct consequence of transonic crack propagation is the 
formation of a line-of-discontinuity in the stress field sur- 
rounding the moving crack tip. The propagating crack tip acts 
as a source of shear and plane waves which radiate out in to 
the material and establish the stress field that surrounds the 
crack tip. If this source (the crack tip) propagates faster than 
the shear wave velocity then the spreading out of the shear 
waves is limited and a line-of-discontinuity forms. This line- 
of-discontinuity represents jumps in the stress and displacement 
fields and is akin to the formation of shock waves in fluids. 

Experimental evidence of the line-of-discontinuity is shown 
in Fig. 13 in the form of discontinuous isochromatic fringe 
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Fig. 10 Comparison of the experimental variation of the energy release 
rate with the crack growth criterion proposed by Lambros and Rosakis 
(1994) 
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Fig. 11 A typical sequence of isochromatic fringe patterns for the crack propagation along 
a Homalite/aluminum bimaterial Interface subjected to high-velocity impact loading. The 
fringe pattern is determined on the Homalite half of the specimen. 

contours. The line originates at the crack tip and radiates out 
into the material. The angular orientation of the this line-of- 
discontinuity can be related to the crack-tip velocity and the 
shear wave velocity of the material as (Cole and Huth, 1958), 

C s  
sin a = - -  (6) 

V 

where ot denotes the angular orientation of the line-of-disconti- 

1.6i ~_ - c - -  Location of Crack Tip 
1.4 - e -  LocatIonof"Pseudo-CrackTip" 

1.2 
c ~ a l l  

1.0 .. .~ ...................................................................  0000 i 
:~ o.0 

0 10 20 30 40 50 60 70 80 

Time, t, (ps) 

Fig. 12 History of the crack-tip velocity for transonic crack propagation 
along a Homalite/aluminum bimaterial interface 

nuity, c, is the shear wave velocity of the material, and v is 
the velocity of the crack tip. The orientations of the line-of- 
discontinuity determined from the experimental isochromatic 
fringe patterns were compared with the angles predicted by Eq. 
(6) and are listed in Table 2. The correspondence between the 
experimentally observed and theoretically predicted angles is 
excellent and substantiates the presence of the line-of-disconti- 
nuity. Recently, Liu et al. (1995) have considered steady-state 
transonic crack propagation along an elastic-rigid bimaterial 
interface. Their asymptotic analysis predicts the presence of the 
line of discontinuity in the stress field. The angle of orientation 
of the iine of discontinuity as predicted by Liu et al. (1995) is 
the same as that given by Eq. (6).  

The experimental isochromatic fringe patterns also show the 
presence of a secondary disturbance that trails behind the propa- 
gating crack tip. This secondary disturbance, indicated in Fig. 
13 as the pseudo-crack tip. This "pseudo-crack tip" propagated 
along the debonded interface (on the compliant side) at the 
Rayleigh wave velocity of the more compliant material, 
c~ °MAHTE. Experimental measurements of the velocity of the 
"pseudo-crack tip" are plotted in Fig. 12. The disturbance was 
produced when the crack tip accelerated beyond the Rayleigh 
wave velocity of the more compliant material, c~ °M^L'TE. 

An additional phenomenon observed during transonic crack 
propagation is the presence of a "zone"  directly behind the 
propagating crack tip that is marked by the lack of isochromatic 
fringe patterns that intersect the interface. This zone is also 
shown in Fig. 13 and represents large-scale contact occurring 
behind the dynamically propagating transonic crack tip, as pos- 
tulated by Liu et al. (1995). The exact nature of this contact 
zone is yet to be determined. The mechanics of transonic crack 
propagation are schematically presented in Fig. 14. 

Conclus ion 
An experimental study was conducted to investigate crack 

propagation along bimaterial interfaces that were subjected to 
impact loading. The bimaterial specimens were loaded by im- 

"Pseudo Crack Tip" ~-.<--,-----l~,,-f - -  
/ Crack Tip 

3 mrn "Contact Zone" - -  
i ................................................................................................. a 

Fig. 13 Discontinuities of isochromatic fringe contours representing the 
formation of a line-of-discontinuity 

Table 2 Comparison of experimentally measured and the- 
oretically predicted orientations for the line-of-discontinuity 

Frame number V / c ~  t O M A L I T E  OiTH EORY ~EXPT. 

13 1.16 59.5 deg 63 deg 
14 1.19 57.5 deg 55 deg 
15 1.21 55.7 deg 53 deg 
16 1.30 50.3 deg 48 deg 
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Fig. 14 Opening of crack faces behind the propagating crack tip for 
transonic interface fracture 

pacting them with a projectile fired from a gas gun. This dy- 
namic loading caused the interface crack to initiate and subse- 
quently grow along the interface. The crack propagation phe- 
nomenon was observed using dynamic photoelasticity in 
conjunction with high-speed photography. 

Varying the velocity of the projectile used to impact the 
bimaterial specimen resulted in different crack propagation 
characteristics. Low-velocity impact led to subsonic crack 
propagation, in which the crack-tip velocity was less than the 
shear wave velocity of the more compliant material (v < 
C~ OMALITE) whereas high-velocity impact led to transonic crack 
propagation, in which the crack-tip velocity was greater than 
the shear wave velocity, but less than the plane wave velocity 
of the more compliant material (c~ °MALtTE < v < c~OMALI~E). 

For subsonic crack propagation along the bimaterial interface, 
the isochromatic fringe pattern surrounding the crack tip was 
analyzed to determine various fracture parameters. These pa- 
rameters of interest are, namely, the crack-tip velocity, the com- 
plex stress intensity factor, and the energy release rate. After 
initiation the crack-tip velocity was found to increase rapidly 
to around 80 percent of the shear wave velocity of the more 
compliant material, c~ °MALtTE. Thereafter, the crack-tip velocity 
continued to increase, but at a slower rate, and stayed less than 
the shear wave velocity of the of the more compliant material, 
c~ °MALITE, for the major d0ration of the experiment. The magni- 
tudes of both the real and imaginary parts of the stress intensity 
factor (K1 and K2) decrease rapidly to zero with crack propaga- 
tion. The energy release rate also showed a rapidly decreasing 
trend. Finally, the crack propagation was determined to occur 
in accordance with the fracture criterion proposed by Lambros 
and Rosakis (1994). 

For the case of transonic crack propagation, the crack-tip 
velocity was found to increase rapidly to the shear wave velocity 
of the more compliant material, c~ °MALtTE. Thereafter the crack- 
tip velocity continued to increase up to 130 percent of the shear 
wave velocity of the more compliant material, c~ °MALtrE. A 

direct consequence of this transonic propagation was the forma- 
tion of a line-of-discontinuity in the stress field surrounding the 
moving crack tip. This line-of-discontinuity represents jumps 
in the stress and displacement fields surrounding the crack tip 
and appeared in the form of discontinuous isochromatic fringe 
contours. Additionally, transonic crack propagation resulted in 
large-scale contact of the crack faces behind the propagating 
crack tip. The stress field also showed the presence of a second- 
ary disturbance, termed the pseudo-crack tip, which propagated 
and trailed the moving crack-tip at the Rayleigh wave velocity 
of the more compliant material. 
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The Elastic Field in a 
Half-Space With a Circular 
Cylindrical Inclusion 
The problem of a circular cylindrical inclusion with uniform eigenstrain in an elastic 
half-space is studied by using the Green's function technique. Explicit solutions are 
obtained for the displacement and stress fields. It is shown that the present elastic 
fields can be expressed as functions of the complete elliptic integrals of the first, 
second, and third kind. Finally, numerical results are shown for the displacement 
and stress fields. 

1 I n t r o d u c t i o n  

The problem of determining the elastic field in an elastic 
medium caused by an inclusion with uniform eigenstrain is of 
interest in engineering. Early work by Eshelby (1957, 1959) 
showed that an ellipsoidal inclusion with uniform eigenstrain 
induces a constant stress state within the inclusion. Since then, 
the inclusion problem has been greatly developed, as pointed 
out by the extensive reviews of Mura ( 1987, 1988). A number 
of techniques have been used to deal with the class of problems. 
However, many results at present are not expressed in explicit 
form but are in the form of numerical solutions. 

Using the Galerkin vector stress function, Mindlin and Cheng 
(1950) investigated the thermoelastic stress field in the semi- 
infinite solid when a uniform dilatational thermal expansion is 
given inside a spherical region. Youngdahl and Sternberg 
(1966) analyzed the stress concentration around a cylindrical 
hole in a semi-infinite medium by using the Papkovich stress 
functions. Chiu (1978, 1980) obtained the stress field and sur- 
face displacement field by superimposing the solution for a half- 
space under some normal surface stress on the full solution due 
to two cuboidal domains with initial strains. Utilizing Mindlin's 
(1953) solution for Green's function in a half-space, Se t  and 
Mura (1979) studied the problem of an ellipsoidal inclusion 
with uniform eigenstrain. Numerical results are obtained for the 
stress field. An alternate method for solving the axisymmetric 
elastic fields in the half-space with an isotropic spheroidal inclu- 
sion was proposed by Yu and Sanday (1990). In their study, 
Eshelby's method for the ellipsoidal inclusion and the Hankel 
transformation method for the prismatic loop were used. Hase- 
gawa, Lee, and Mura (1993) gave the axisymmetric stresses 
and displacement fields caused by a solid or hollow circular 
cylindrical inclusion in the present of uniform eigenstrain in a 
half-space. Their solutions were obtained from the solution of 
an infinite body by applying to the boundary plane equal and 
opposite normal and shear stresses in order to satisfy the trac- 
tion-free surface condition. 

In comparison to the axisymmetric elastic field given by Ha- 
segawa et al. (1993), a general case to a circular cylindrical 
inclusion with arbitrary uniform eigenstrains in a half-space is 
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considered in the present paper. Analytical solutions for the 
displacement and stress fields are obtained by using the tech- 
nique of Green's function. From Wu and Du (1995a, b) and 
Appendixes B and C it can be found that the displacement and 
stress fields can be expressed as functions of the complete ellip- 
tic integrals of the first, second, and third kind. Finally, numeri- 
cal results are shown for the displacement and stress fields. 

In what follows, the summation convention over repeated 
Greek and Latin indices is adopted. Greek subscript varies from 
1 to 3 and Latin one does from 1 to 2. Furthermore, a comma 
indicates partial differentiation, thus f~ means Of/Ox~. 

2 S t a t e m e n t  of  t h e  P r o b l e m  

A semi-infinite domain is defined by x3 -> 0 as shown in Fig. 
1. The surface x3 = 0 is free from external tractions. The present 
analysis considers a circular cylindrical inclusion ~2 with radius 
a and length h = hz - hi where ht and h2 are the distances 
from the free surface (x3 = 0) to the upper and lower surfaces 
of inclusion, respectively. Its objective is to determine the dis- 
placement and stress fields when the eigenstrain e ~, (x) is given. 
From Wu and Du (1995a), when eigenstrain e~*,(x) is uniform, 
the induced displacement field u,(x)  due to e~*, is given by 

u.(x)  = C~3xue~*u G. , (x  - x ' ) d x i d x ;  
~1 L x~=hl 

f21r f th2 + C~e~ '~  G~t~(x - x')n~,adOdx~ (1) 

where Car× u are the elastic moduli, G.~(x - x ' )  are the elastic 
Green's functions for the semi-infinite isotropic medium, f~l is 
the area of the base of circular cylinder, nv is the outward unit 
normal to cylindrical surface, and (r,  0, x~) are cylindrical 
coordinates, namely, there are relations x~ = a cos 0, x~ = 
a sin 0 on the cylindrical surface. 

Following Green's functions in a semi-infinite isotropic me- 
dium (see Appendix A) and taking into account the symmetry 
in directions xt and x2, we only need to solve the following 
kinds of integrals: 

T(x, x2, z)=f~ f dxldx~ 
' h R1 

T,,~(x],x2, z)=f f(x°-x'~)(xa-xS)~dx; 
l, R~ 

T(Xl,X2,~)=f~ f dx~dx~ h ez 
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Cylindrical inclusion in a half-space Fig. 1 

~,,(x,,x2, r~=~,f(x ' -x;)(x~-xJ)ax[ax~ 
, R ~  

r°3<x"x 'z'z)=f.f R~ dx,dx~ 

fx3x  . . . .  , R--T ax lax2  

~)3(xl,x2, z, ~ ) =  fa  f x3x;(& - x[)(x j  - xJ) dx[dx~ 
1 R ~  

~ i 3 3 ( x " & ' z ' ~ - ) = L  f x 3 x ~ ( x i - x [ ) ( x 3 + x ' ) t  R~ dxldx2' ' 

r '~ (x"x~ ' z ' z~=fa f  x3x~(x3+x;)2~ R~ dx~dx~ 

f a f  x ' - x ;  T i (X I '  X2' Z) = R~-RT ~?_) dxIdx~ 

LAx,, x2, z) 

fof[ '0 (Xi--X[)(Xj--Xj) 1 
= , R 2 + r  ( 2 )  

and 

Q l ( x l , x z ,  x 3 ) = a f f ' f [  '~c°sOdOdx; 
h~ Rl 

Qo,/~(xl, xz, x3) = a R~ 
1 

 c°s°d°dx  
R2 

O, x f[J~c°sO(x~-x' .)(x,-xb)dOdx ~ ,,a( 1, x.~, x3) = a g~ 
1 

R~ 3 

fo~ fh~ cos Ox3x~(x, - x~)(x~ - x]) dOdx ~ O~3(Xl ,  22, X3) = a 
< R~ 

Q]33(Xl ,  X2, X3) 

=a f[" g~c°s Ox~x~(x, ~[')(x~ + x;) dOdx~ 
R2 
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--1 x 5~Trfh'~2COSOX3X~(X3"}-X;)2dOdx ~ 
Q333( 1, x2, x3)  = a R2 5 

1 

;?f?cos0( , x,, 
Q](&, x2, x3) = a R 2 ~ 2  -~ ~ dOdx~ 

hi 

Oh(x,, x~, x3) 

= a cos OdOdx~ (3 )  
h, LR2 + ~ R2(R2 + ~-)2 

where d~ 0 is the Kronecker  delta and 

z = x 3 - x ;  Z - = x 3 + x ;  

R~ = [ (& - x~) 2 + (x2 - x~) 2 + z2] 1/2 

R2 = [(& - x~) 2 + (x2 - x~) 2 + ~-211/2. (4 )  

3 Solution of Eq. (2) 
In this paper, we use a similar procedure as in Wu and Du 

(1995a,  b)  to solve the integrals of (2 )  and (3) .  Since there is 
no substantive difference in the derivation, some details will be 
omitted. For this purpose, we shall only give the final expres- 
sions below. From Wu and Du (1995a,  b ) ,  it can be seen that 
the solution of (2)  is related with the position of point  x = (&,  
x2, x3), so we shall use some symbols with superscripts i and 
o to express the corresponding integrals in (2 ) ,  respectively. 
When  point  x is located within V~ :x21 + x~ -< a 2, - ~  < x3 < 
~ ,  superscript i is used. But  when  x is located within V2:x~ + 
x~ > a 2, -co < x3 < 0% we use superscript o. 

3.1 W h e n  Po in t  x is Loca ted  Ins ide  V 1. Following Wu 
and Du (1995a)  and Appendix  B, the integrals of  (2 )  can be 
expressed as 

Ti(x t ,  x2, Z) = I(Xl, X2, Z) T~(xli , X2, Z) = lo~(Xl, X2, Z) 

T' (x l ,  &,  Z) l (xt ,  x2, r) - i  ' - = T,,,,,(xj, &,  ~) = l,,.,(xl, x2, ~) 

--i . T,n3(xl, x2, Z, Z-) = Z lma(&, X2, ~') 

Z 2 
T~3(Xl,  X2, Z, Z-) = 7 133(&, x2, Z) 

~-2 _ Z 2 
Ti3(xl, x2, Z, ~) - - -  133(x,, x2, r) 

4~ 2 

- z )x2 U, (xl, x2, z) Th3(x~,x2, z, Z) - (Z-2 _ ~ 2 
12(x~ + x~) 

(z -~ - z~)(x~ - x~) (z ~ - z2)~ - 
+ 48~.2(x~ + x~)2 U2(xl, x2, ~-) + 6~ 

T{23(x~, x2, z, z) (z-2 - z2)xl& U~(xl, x2, z') 
12(x~ + x 2) 

T~33(x1, x2, z ,  z )  - 

(~-2 -- Z2)XiX2 
+ 24z---5(~ 7 x~-S ~ g~(xl, x~, z-~ 

( r  2 -- Z2)Xi [ I I ( X l , X 2 ,  ~-) 
24(x~ + xZ)z  

- z-212(x1, x2, z) - (a 2 - x~ - x~ + z -2) 

× (a  2 - x~ - x~ - r2)13(xt ,  x2, z-, _~2 ) ]  

T~33(X1, X2, Z, Z) 

~-2 _ Z 2 
- 1---2--- [ ( a z  - x ~  - x ~  - ~-2)13(&, x2, ~-, _~-2) 
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( ~  - zZ)Tr 
- ( a  z - x~ - x ~ ) 1 3 ( x , ,  x z ,  ~, 0)] + 

6 ~  

~. Dq  [ l ' ( x ~ ,  x2,  ~) - 2(a  z + x~ + xz ~) T~(x,, x~, Z) = 2(x~ + x~) 

X 1 2 ( x , , x 2 ,  ~') + ( a  ~ - x~ - x 2 2 ) 2 1 3 ( X l ,  x 2 ,  Z-, 0) ]  + NiT 

~ - ~X~x~ G ( x , ,  x~, ~) T~,(x~, x:, ~) x l  ~ 

X 2 U 4 ( x , ,  X2, 27) + X 2 -- X~ 
+ x~ + x------~ 4(x~ + x~ )  ~ U s ( x , ,  Xz, r )  - 277r 

~. 272x, x2 
T ] z ( x , ,  x2,  ~) - x~ + x 2 U 3 ( x t ,  x2,  ~) 

XlX_.._._._.~__ U4(Xl, x2, ~.) -q- x , x 2  
+ x~ + x~ 2(x~ + x~) ~ Udx , ,  x~, r) (5 )  

with 

U, (Xl ,  x2, Z) = 31~(x~ ,  x2, 27) 

+ 2 (a  2 - x2~ - x 2 2 ) 1 3 ( X l ,  x2, 27, 0) 

+ ( a  2 _ X12 _ Xz2 _ ~2)13(X, ,  x2 ' 27, _ ~ 2 )  

U a ( x , ,  xa,  Z-) = - 3 ~ - 2 1 ' ( x ~ ,  X2,  27) 

+ ~213(a z -- x~ 2 -- x~) + ~2]IZ(x,, x z ,  ~)  

- (a 2 - x~ - x Z ) Z ( a  2 - x~ - X~ - 2272)I3(x,, x2, 27, 0) 

+ (a 2 - x~ - x~ + ~-2)2(a2 - xl ~ -  x~ - ~-2) 

X 13(Xl, X2, 27, _ ~ 2 )  _ 2U2(a  2 _ x ~  - -  x 2 2 ) 3 1 4 ( x , ,  x 2 ,  i f )  

U3(x~,  x z ,  ~') = 12(x~,  x2, 27) - ( a  ~ - x~ - x ~ ) 1 3 ( x , ,  x 2 ,  Z', O) 

U4(x1, X2, Z) -~ l ' ( x , ,  x~, ~') + (a 2 - x~ - x ~ ) I Z ( x , ,  x2, 27) 

+ 227Z(a 2 - x~ - x2~)13(x , ,  x~, 27, O) 

U s ( x , ,  x2,  r )  = - l ° ( x , ,  x z ,  r )  + ( a  ~ - x~ - x ~ ) l l ( x ~ ,  x~, ~) 

+ ( a  ~ - x~ - x ~ ) ( a  ~ - x~ - x~ - 2~2)12(x,, x z ,  27) 

- ( a  2 - x~ - x ~ ) 2 ( a  ~ - x~ - x~ - 4272)I~(x~, x2, Z, 0) 

- 2272(a 2 - x~ - x ~ ) 3 l * ( x , ,  x2,  27) (6) 

where l k ( X , ,  X2, z ) ( k  = 1, 2, 4),  13(x~,  x z ,  Z, s ) ,  l ( x , ,  x2,  Z) 
and l ~ a ( x , ,  x2,  z )  in (5) and (6) can be found in Wu and Du 
(1995a) and l°(Xl, x2, z) is given in Appendix B. 

It should be shown that the remaining components can be 
obtained by the following formulae: 

T~23(Xl, X2, Z, 27) ---- T]13(X2, X,, Z, Z') 

G3~(x, .  x~, z, z-) = ~ ( x ~ ,  x , ,  z, z-) 

/~(x~,  x~, 27) = / ~ ( x ~ ,  x,,  27) 

T~2(X,, x2, ~) = T],(x2, x,, ~-). (7) 

3.2 When Point x is Located Inside V ~. Following Wu 
and Du (1995b),  the integrals in (2) can be written as 

T ° ( x ~ ,  x2, Z) = /-(x~, x2, z )  T ~ ( x ~ ,  x2,  z )  = ~ o ( x ~ ,  x z ,  z )  

T°(x , ,  x~, z-) = f ( x , ,  x~. 27) T°,.(x,, x~. 27) = i-.,.(x~, x2, ~) 

7°.3(x~, x~, z, z-) = zr . ,~(x~,  x : ,  z-) 
Z 

Z 2 
T ~ ( x , ,  x~, z, r )  = ~ / ; ~ ( x , ,  x~, z) 

~ 2  _ Z 2 

T ~ ( x ~ , x 2 ,  z , ~ )  - 4 ~  ~ L3(x~, x2, z)  

--o ~,~(x , ,  x~, z, T,13(x , ,  x2, Z, 27) = Z) 
( ~  - zZ)~  

627 

7~/:~(x~, x~, z, rr) = r ~ 3 ( x , ,  x2, z, z-) 

--o --' 
Ti33(xi ,  x2, z,  27) = T~33(x1, x2, z,  if) 

T ° "X 333t 1, X2, Z, if) = ~33(X1,  X2, Z, Z-) 
(~2 __ Z2)~  

627 

~o --" T l ( x , ,  x 2 , ~ )  = T ~ ( x , ,  x z , ~ )  + 
( a  2 - x 2 - x~)x ,Tr  

X~l + x~ 

a~(x~ - x~)~lr 
+ D r  

(x~ + x~) ~ 
7~7~(x,, x2, z-) = 7~,(x , ,  x2, Z-) + 

2a  2 x ~ xzDr 
'~'~2(X,, X2, r )  = T~2(Xi, X2, Z') "t- iXl2 + X~)2 (8)  

where I( x t, x z ,  z )  and / , a (x l ,  X2, Z) have already been given in 
Wu and Du (1995b).  It should be pointed out that the remaining 
components can still be obtained by the relations given in (7) 
but the corresponding superscript i should be replaced by letter 
o. Thus, we fully determine the integrals of (2) .  In the next 
section, we shall solve the integrals of (3) .  For these integrals, 
we do not need to consider the position of point x. 

4 So lu t ion  of  Eq.  (3 )  

For brevity, let us first introduce functions )c(Xl, x2, z) and 
.]~B(x~, x2, z) which satisfy the following relations: 

h ye(x, ,  x2, x3) = Jc(xl, x2, z)[x;=-h 

c J; , (x~,  h J a l 3 ( X l ,  X2 ,  X3) : X2, z ) l x ~ : - h  ( 9 )  

where functions j C ( x ~ ,  x2,  x3)  and J ~ p ( x l ,  x2,  x3)are defined 
and given in Wu and Du (1995a).  Using a similar procedure 
shown in Wu and Du (1995a),  the integrals of (3) can be 
expressed in the following form: 

h2 
Q ' ( x , ,  x2, x3) = YC(xl, x2, z) x;=hL 

' X ^c h2 = J . ~ ( x , ,  z)lx~=h, Q ~  ( l, x2, x3) x2, 

h2 
O ' ( x ~ ,  x2, x3) = -YC(x , ,  x2, z-)l~=h, 

= - J . , , , ( x , .  x2, r)lx;=~, 

Ol~(x,, x~, x~) 

- -  . 2 2 8ax3Z [ _ a x ~ j 4 ( x l  ' x2,  Z) + x c f ~ - +  x22 J S ( x l ,  x2,  ~) 
x~ + x~ 

h 2  ^ x~=lh - a ( x ~  - x z 2 ) j 6 ( x , ,  x2,  r)]l~;=~, + J~3(Xl, x2, z-)l h2 

8 a x , x 2 x 3 z  r --4 " 
' X ~23( ,, x2, x3) - '25-- 777 ta , t  t x , ,  x2,  27) 

X, --]-X 2 

h2 
+ ~ x l  2 + x2  z J S ( x , ,  x2,  ~') - 2 a j 6 ( x l ,  x2,  27)] Ix~=h, 

h2 
+ Y~3(x~,  x2,  ~)l~=h, 

O~(x~, x2, x~) 

- -  , . h2 _ 4 a x , x 3  [JS(xl x2, ~) + x 3 ~ J S ( x l ,  x2,  ~-)] Ix~=h, 
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^ h 2 
03~a(x,, x2, x3) = - 4 0 ~ ( x ~ ,  x2, x3) - J ~ ( x ~ ,  xz,  ~) ~=~, 

~7~,~(x,, x~, x~) 

_ 4ax,  x3 [ - 2 a x ~ x Z ~  + x~ V , (X l ,  x2. x3. x ; .  ~) 
3r4(x~ + x~) ~ 

2 2 + (x  4 + x , x 2  + 3a2x~)V2(x~,  Xz, x3, x ; ,  27) 

2 2 - 2a (x~  - Xz)~X~ + x~ V3(x , .  x2, x3, x~,  ~) 

tl 2 
+ a2(x~ -- 3 x ~ ) V 4 ( x l ,  X2, X3, X;, ~')] Ix;=ht 

4ax2 x3 
~.~ 123(Xl, X2, X3) 

3r4(x~ + x~) ~ 

2 2 × [a(x~  - x~)~x~  + x 2 V,(x~,  x~, x3, x ; ,  27) 

2 2 _ 2a2x~ + a2x~)V2(x , ,  x2. x3, x~, 27) -'1- ( 2 4  "~ X l X  2 

- a ( 3 x ~  - x ~ ) ~ x ~ +  x 2 V3(x , ,  x~, x3, x ; .  ~) 

h~ 
+ a2(3x~  2 - X 2 2 ) V 4 ( x , ,  X2, X3, X~ ,  27)11x;=h 1 

- I  x 4ax~x~ 
Q223( 1, x2, x3) = 327((x~ + x~) ~ 

× [ 2 a x ~ x ~  + x~ V~(x~, x2, x3, x ; ,  r )  

2 2 t - -  -1- (X 4 q- XIX2 + a2x  2 -- 2a2x22)g2(xl,  x l ,  x3, x3 ,  Z) 

- 4ax~f-fx~ + x 2 V3(Xl, x2, x3, x~, ~) 

h2 
- aZ(x~ - 3x~)V4(x~,  x2, xa, x ; ,  27)]lx;=h, 

-~ 4ax3 
Q .~ ( x, . x~, x3 ) - [ ax~W,  ( x~ , x~. x ;, ~) 

3(x~ + x~) 

2 2 - x,i~x~ + x~ W~(x~, x~, x ; ,  27) 

h2 
+ a(x~  2 - x ~ ) W 3 ( X l ,  x2 ,  x ; ,  27)] Ix~=hl 

0~33(Xl, X2, X3) = 4axax2x3 [ - a W , ( x a ,  x2, x~, 27) 
3(x~ + x ,  ~) 

- ~xx~ + x~ W2(x~, x2, x ; ,  27) + 2 a W 3 ( x , ,  x2, x~, ~-)] I~i=h~ 

4ax,  x3 tUx~j l~r  x 
0~33(X1' X2' X3) -- 3 ~ / ~ - - ~ - ~  t 3 t ,, x2, ~) 

h2 q- ~3J5(Xl ,  x2, 27) -I- 2JS(xl ,  x2, 27)] ]x~=h~ 
Ol(Xl ,  x2, x3) 

_ 7r(h___.2. Z h,_) {aZ(x2 ~ _ x 2 ) [ s g  n (a  2 _ x~ - x~) - 1] 
2(x~ + x~Z) 2 

- (x  2 + xZ)2[sgn (a  ~ - x 2 - x~) + 1] } 

1 
+ {(x~ - x ~ ) J ° ( x , ,  x~, 27) 

(x,  ~ + x~) ~ 

+ [ (x  2 _ x ~ ) ( 2 a  a + 272) + 2x~(x~  + x~)]J~(x~ ,  x2, 27) 

+ (a  a - x~ - x ~ ) [ a 2 ( x ~  - x~)  

h 2 
"~ (X2  -}- x 2 ) 2 ] [  J 2 ( x l ,  x2 ,  27) Jff z - 2 j 4 ( x , ,  x2,  z ) ]  } I x'3=h 1 

~' x 7ra~x~xz(h2 - h~) [1 - sgn (a  2 Xl ~ - x~2)] Q2( ,, x2. x3) = 
(x~ + x~) ~ 

2x~xz 
+ (x~ + x~) ~ { - J ° ( x ~ '  x2, 27) - (2a ~ + x~ + x~ + 27~) 

× J l ( x , ,  x2, 27) + a2 (a  ~ - x 2 - x~z) 

h2 X [ j2(x l ,  x2, 27) q- 272j4(xl,x2, Z-)]}lx~=h, 

O.l,(x~, x2, x3) - x'~2~ [ ( a  2 x~ - x~)(X~l + x~) 
2 ( x  2 + x~) 3 

- 4a2x~] [ sgn  (a  2 - x~ - x~) - 111 1'2 x'3=h I 

h2 
x, Y (x t ,  x2, 27) I x~=h~ 

+ 2(x~ + x 2) 

4ax,27 [2ax~(x  2 + X~Zl(Xl .  x2, 27) 
,/(x~ + x~) 3 

2 2 - (x  4 + XlX2 + 3aZx~)Zz (x , .  x2, 27) 

+ 2a(x~ - x~)~x~ + x~Z3(Xl, x2, 27) 
h2 

+ a2(x~ - 3x~)Z4(x , ,  x2, 27)] ]x~=h, 

~1 X Q,2( l, x2, x3) 

aZ(x~ - 3XZl)X22727r [sgn (a  2 - x~ - x~) - 1] I~=h, 
2(X~ + X~) 3 

4axz27 [ a ( x  2 - x~)~x~  + x~ Z l (X l ,  xz .  27) 
+ ~/(X~l + x~) ~ 

2 2 + (x  4 + x l x 2  + a2x~ - 2a2x~)Zz(Xl ,  x2, 27) 

- a(3x21 - xZ)~xal + x 2 Z3(x , ,  x2, 27) 

h2 
+ a 2 ( 3 x ~  - x~)Z4(x , ,  x2, 27)] Ix~=,,, 

O:~2(x,, x2, x3) = x'2727r [ (a  2 + x~ + x~) (x~  + x~) 
2(x~ + x~) 3 

4aZx~][sgn  (a  z x~ x 2) 1,~ 
. . . .  11 [x~=hl 

h2 
X, y ( Xl ,  x2, ~_) i.r~=h I 

+ 2 ( x  2 + x 2) 

4ax,27 [2ax~xZj  + x 2 Z, (x , ,  xz ,  27) 
~/(x~ + x~) ~ 

2 2 + (x~x2 + x~ + a2x~ - 2a2x~)Ze (x l ,  x2, 27) 

- 4axZ~x~ + x~ Z3(x , ,  x2, 27) 

h2 
- a2(x~  - 3 x ~ ) Z 4 ( x , ,  x2, 27)] I~;=h, (10)  

with 

V i ( x , ,  x2, x3, x ; ,  27) = x~j i+9(x1,  x2, z )  

y ji+3~ %" 3 [ ,Xl ,X2,27)  "if" 2 x 3 2 7 2 j i + 1 3 ( X l , X 2 , 2 7 )  (11)  

W i ( x l ,  x2, x~, ~) = x~J i+9(x j ,  x2, ~-) - ~-ji+3(x,, x2, 27) (12)  

Y ( x l ,  x2, 27) = -327J ' (x1.  x2, z) 

+ [ 4 ( a  2 + x~ + x~) + 272127J2(xl, x2, 27) 

+ (a  2 x~ o 2 - - x S ) ( a  - x~ - x~ - 2272)j3(x,.  x2, 27, _272) 

+ 4 ( x  2 + x ~ ) y 3 j 4 ( x l ,  x2, ~) + 27zTr (13)  

Z i ( X l ,  X2, 27) = j i + 3 ( x , ,  x2 ,  27) q- 272 j i+13(X l ,  x2 ,  27) 

( i =  1 , 2 , 3 , 4 )  (14)  

where  sgn (x)  is s ignum x ,  f ( x ~ ,  x2, z)  ( i  = 1, 2, 4 . . . . .  9)  
and j 3 ( x ~ ,  x2, z .  s )  have  already been given in Append ix  B of  
W u  and Du (1995a)  and J~(x~, x2, z) (k = 10. 11 . . . . .  17) 
are expressed in Append ix  C of  this paper. 

Evident ly,  i f  var iable  cos 0 in (3 )  is replaced by sin 0 and 
the corresponding integrals are expressed by QZ(x , .  x2, x3), 

2 X --2 X Q ~ (  , ,  x2, X3), 0 2 ( X , ,  X2, X3) , Q , ~ (  , ,  x2. X3),  02(317,, X2, X3) , 
--2 ~2 X ~2 X , Q.~3(x , ,  x2, x3),  Qm( ~, x2, x3) and Qm,,( , x~, x3). all the 

other  components  related with the d isplacement  field are g iven 

928 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



by exchanging 1 and 2 in the 
example, 

Q2(Xl ,  X2, X3) 

O~(x~, x2, x~) 

O.~(x,, x~, x3) 

Offx,, x~, x~) 

superscripts and subscripts, for 

= Q'(x~,  xt, x3) 

: Ol~(x~,  x , ,  x~) 

= ~ l ~ ( x ~ ,  x , ,  x~) 

= O_i(x~, x l ,  x~) 

O~(xl, x~, x~) = 0h(x~,  x~, x~). (15) 

5 The Displacement and Stress Fields 
According to Green's  functions in a semi-infinite isotropic 

medium and ( 1 ) -  (3) ,  the induced displacement field within 
the region V~: x~ + x~ ~ a z, - ~  < x~ < ~ due to uniform 

eigenstrain 6.*t~ can be written as 

1 
u~,,(x) = { 2/.~ey3[(3 - 4u)(Ti(x~,  xz, z)6,,,,, 

16~r/z(1 - u)  

+ T~.,(x~. xz, ~)) + "P(x~, xz, ~)~5,.. + T~,,,,(x,. x2. Z) 

+ 21r~(x~. xz. Z, ~-)~,.. - 6T[..3(x,, xz, z. z-) 

+ 4(1 - u ) ( 1  - 2u ) ' i ~ i . . ( x , ,  x=, r)]l~]=,,, 
+ (he*. + 2#6*)[T/ ,3(x~,  x~, z) 

+ (3 - 4u)T~,,3(x~, xz, z, ~') + 6T~n33(xl, x2, Z, ~-) 

- 4(1 - u)(1  - 2u)7~i.(x~, xz, z-)]l~p-h 
2 

+ ~ (k6,,~e*. + 2#e*~)[(3 - 4u)(Q~(x l ,  x~, x3)6 .... 
k=l 

+ Q~,,,(x,, xz, x3)) + Oh(x, ,  x~, x3)6m. + Q~,,.(x,, xz, x3) 

+ 2O[(x , .  xz, x3)6.,,, - 6O~.,.~(Xl, x2, x3) 

+ 4(1 - u) (1  - 2u)0,~.,,(xl, x~, x3)] 
2 

+ Y. 2#e~[Q,~.~(x~, x~, x3) ~ (3 - 4u)Q,~.3(x,, x~. x3) 
k=l 

+ 6Q~33(xl, xz. x3) - 4(1 - u)(1  - 2u)0,~.(x~. x~, x3)]} 

1 
US(X) { 2/ze~3[Ti, ,3(xl,  x2, z) 

167r#(1 - u) 

+ (3 - 4/~')T~,3(xI, x2, Z, Z) - 6T/,33(xl ,  x2, Z, Z-) 
h2 

+ 4(1 - u)(1  - 2u)7~i.(x~, xz, ~-)] ~=~ 

+ (h6*~ + 2#6*3)[(3 - 4u) (T i (x l ,  xz, z) 

+ T~3(x~, x~, z, ~-)) + (5 - 12u + 8uZ)TZ(x~, xz, ~) 

+ T~3(x~, xz, z) + 2(5 - 8u)T~(x~, x~, Z, ~') 

+ 6T~33(x,, xz, z, ~-)] Ih~=,,, 

2 
+ ~ (h.6mk6~ -F 2/J~e~k)[Q~n3(Xl, X2, X3) 

k=l 

+ (3 - 4u)Q~,3(xt, x~, x3) - 6O,~.33(x,, x~, x3) 

+ 4(1 - u) (1  - 2u)0~,(x~, x~, x3)] 
2 

+ ~ 21ze~*3[(3 - 4u)(Qk(x~,  Xz, X3) + O~3(Xl, X~, X3)) 
k=l 

+ (5 - 12u + 8u~)Q~(x~, xz, x3) + Q~a(x~, xa, x3) 

+ 2(5 - 8u)0.~(Xl, x2, x3) + 60~3(x~, x2, x3)] } (16) 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  

1,2 O,g 
h i  = 0.5 

@,8 a ~ t ~  / ~  . . . . h ~  =t'~ 0,4 
a=i  

/ tl d o 

-0 ,4  0,~ 

-O,E -0,4 

-1 '80 ~ 11 _1~ _ ~ 0,6 

X3 

F i g .  2 Variations of the displacement field along the x~-axis under the 
conditions ~ = ~ = ~ = 1, ~a  = ~ a  -- ~a~* = 0 for ua and ~ = ~*aa - 
e ~  = O, et~ = eta -- ~=~* = 1 fo ru l (u~ )  

where )t and # are the Lame constants and u is Poisson's ratio. 
Obviously, the corresponding displacement field within V2: x~ 
+ x 2 > a, - ~  < x3 < w, can easily be obtained by replacing 
the superscript i of  (16) with letter o, 

Following Wu and Du (1995a, b)  and Appendixes B and C, 
it is found that the present displacement field can be expressed 
as functions of the complete elliptic integrals of the first, second, 
and third kind. In order to determine the stress field, we only 
need to solve the first partial derivatives of the three complete 
elliptic integrals with respect to variable x~. These three first 
partial derivatives have been obtained in Wu and Du (1995a) 
and they are still functions of the complete elliptic integrals of 
the first, second, and third kind. Thus, according to Hooke 's  
law 

"k6~Lu~,~ (x )  - 6 ~ 1  

0".,(x) = + #[u~,,(x) + u, , . (x)  - 2 6 ~ ]  x C f~ (17) 

X~.~u~,y(x) + ~[u~.~(x) + u~,. (x)]  x ~ f~, 

we can determine the corresponding stress field. Because of  the 
complexity of stress field, here we will not give its concrete 
expressions. 

6 Results and Discussions 
It is seen from the results in Sections 3 - 5  that the displace- 

ment field and stress field caused by a circular cylindrical inclu- 
sion with arbitrarily uniform eigenstrain in a half-space can be 
expressed by functions of the complete elliptic integrals of the 
first, second, and third kind. Following Appendix D, we can 
find that the logarithmic singularity caused by eigenstrain c ~, 
exists at x~ + x~ = a 2, x3 = hi or h2. This conclusion is similar 
to one given by Hasegawa et al. (1993).  

Figures 2 - 4  show the variations of the displacement field 
and stress field along the x3-axis. The figures are sketched in 
nondimensional form for a constant value of Poisson's ratio u 
= 0.3. Figure 2 illustrates the distribution of the displacement 
field along the x3-axis under the conditions 61"l = 6~2 = 6~3 = 
1.6~2 = 6,*3 = 62~ 0 for .3 and 6,*, -- 6~2 = ~3~ 0, ~2 = 
c~3 = 623 = 1 for uj(u2). From this figure, it can be seen that 
the displacement field has the minimums and maximums at x3 
= hj and h2, respectively. When x3 increases, u~(u2) and u3 
tend towards zero. 

Figure 3 shows the variations of the stress field (a~  = 0-22 
and 033 ) along the x3-axi, s under the condition e~L = 6~2 = 633 
= 1, 6~2 = 6~'3 =- c]3 = 0 when radius a equals 0.1, 1 and 5, 
respectively. From this figure where three continuous changing 
curves correspond to the stress 0"33 while other three ones whose 
variations are discontinuous correspond to 0"~ (cr22), we can see 
that the stress a n  (0"22) is positive outside the inclusion while it 
is negative within the inclusion, Evidently, when the cylindrical 
inclusion becomes slender (radius a decreases), the stress corn- 
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1 , £  

0,8 a=o o=1 

6 ~ O ~ _ 0 . 4 0 ' 4  a=o.t a=e, 

-Oil I .-----.--k a=o.a 

-1,~ ~ Z Z Z ~  a~: ~h 0.=5 

-1,6 ~=o.~ 
8 =0. IX______/ ha=~.~ 

-~'°b ~ 5 s 
Xz 

Fig. 3 Variations of the stress components along the x~-axis under the 

condition ~t'~ = ~'~ = ~ = 1, ~?= = ~ s  = ~'~ = O. Here, three continuous 
changing curves correspond to ~ra~ while other three ones which are 
discontinuous correspond to ¢ ,  (era). 

0, 

- 0 , 4 |  L ~ ht  =0.5 

- N  ~ L  I i 

~'~0 1 £ 3 
X~ 

Fig. 4 Variations of the stress components m2 and m3(¢=3) along the 
xa-axis under the condition et'~ = ~ =  = ~ = O, e ~  = ~?a = ~'~ = 1 

ponents 0-,  ( a = )  and 0-~3 vary sharply. When a = 5, however, 
the change of  the stress field (0-1~ = 0-= and a33) is stable. It 
should be shown that the stress component 033 is continuous at 
x3 = hi and h2. 

Figure 4 illustrates the variations of  ors2 and e13(u23) along 
* = 0,  el~2 = el~3 = e2~3 "~ 1. the x3-axis under el*l = ez*2 = E33 

From this figure, it can be seen that ~ri2 has a discontinuous 
change, whereas a13(0-z3) is continuous. 
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A P P E N D I X  A 

Following Mura (1987) ,  Green's functions in the semi-infi- 
nite isotropic medium can be expressed as 

1 ( 3  - 4u 1 
Gij (x  - x ' )  - 16rr#(1 - u) ~ [ Ri 60 + ~ 6o 

+ (xl - x[)(xj - xj)  + (3 - 4u)(xi - xi')(xj - x]) 
R~ R~ 

+ 2X3X~ I 3(xi - x ' ) ( x j -  x j ) ]  
R---~- 6ij - R~ 

+ 4 ( ! :  ~)~=_2~o [e,,-(x'=xL)(x'--x;)]} 
R2 '+ x3 + x~ R2(R2 + x3 + x~) J 

( x j -  x;) { x 3 -  x~ 

+ 
(3 - 4v)(x3 - x~) 6x3x~(x3 + x~) 

R~ 

4(1 - v ) ( 1 Z 2 u ) ]  
+ 

R.(R2 + x, + 4)  J 

x , - x  A { x , - x ~  
Ga(x - x') 1 6 ~  u) R13 

(3 - 4 v ) ( x 3  - x ~ )  
+ + 

e~ 
6X3X~(X 3 q- X~) 

n~ 

4 ( l  - v ) ( 1  .S 2 v ) ]  

1 { 3  - 4v 
G33(x - x ' )  = 16rr/z(1 - v)  R i  

8(1 - v)  2 - (3 - 4v)  (x3 - -  X . ~ )  2 
+ + 

+ 

R2 

(3 - 4 t J ) (x3  + x~ )  2 - -  2x3x~ 

R~ 

+ 6X3X~(X3 + X~)2 l 

g~ J 
( i , j  = 1 ,2 )  (A1)  
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where  ~ is the  shear  modu lus ,  u is P o i s s o n ' s  ratio,  and  

R~ = (x~ - x~) 2 + (xz - x~) 2 + (x3 - x~) ~ ( A 2 )  

R~ -~ (Xl - x l )  2 -1- (x2 - x~)  2 --l- (x  3 ,-Jr- x~)  2. ( A 3 )  

A P P E N D I X  B 

A c c o r d i n g  to W u  and  Du  ( 1 9 9 5 a )  and  the  f o rmu la  

f x ~ f ( x ) d x  _ x~- t~ax 2 + bx + C f ( x )  _ (2n - 1 ) b  

+ bx + c na  2na  

f x " - ~ f ( x ) d x  (n-1)cf x " - 2 f ( x ) d x  
X - ~ - +  bx + c n a  ~/ax z + bx + c 

f d f ( x )  1 x"-tx/ax 2 + bx + c dx ( B 1 )  
na  dx 

we can  ob ta in  

l°(x~,  x~, Z) 

= f t  h t2dt 
1 ~/(t + z 2 ) ( t  - h ) ( t 2  - t)  

1 
3 { ( 2 h  + 2t2 Z2)P(Xl ,  x2, z)  

+ [Z 4 + ( t l  + t2)z 2 -- tlt2] 12(Xl, X2, Z) 

- zE(h + Z2)(t2 + z2) la (x t ,  xa, Z, - z  2)} ( B 2 )  

whe re  P(x~ ,  x2, z ) ,  I2(xt ,  x2, z)  and  I3(x~, x2, z,  s )  are g iven  
in A p p e n d i x  A of  W u  and  Du ( 1 9 9 5 a )  and  

tt = ( a -  ~ + x z 2 )  2, t2 = ( a  +x /x~  2 +x22) 2 ( B 3 )  

A P P E N D I X  C 

1 Evaluat ion of  the Integrals ji(xl, X2, 
10, . . . ,  13) 

Let t ing  ~ = ~ ( t  2 - t~)/(t~ - t~) t2/t, we have  

f [  dt 
J~°(x , ,  x2, z)  = , t2x/(t~ 2 - t ~ ) ( t  2 - t~) 

z ) ( i  = 

t2t~ \ t= ] 

j l l ( x l ,  X2, Z) 

- -  1 f ' 2 a  2 + x ~  + x~  + z 2 - t 2 
_ 2a x t Z ~ x ~  J'~ t2~/(t22 _ t2)( t2 _ tl 2) dt 

a 2 + x~ + x~ + z 2 j 2 ( x l ,  xz, z)  
= 2a~x~ + x2 2 J ' ° ( x l ,  x2, z )  - 2 a - - - ~ -  ( C 2 )  

Jt2(x~, x2, z)  

1 f ' ~  ( a  2 + x~ + x22 + z 2 ~-2 t2)2 dt 

4 a 2 ( x l  2 + x22) JtL t2~/(t~ 2 - t 2 ) ( t  2 - t~) 

_ 1 [ ( a  z + x~ + x22 + za)~Jl°(x~,  x2, z)  
4aZ(x~ + x~ z) 

- 2 ( a  2 + x~ +'x~ + z 2 ) j z ( x l ,  x~, z) 

-I- J l ( x l ,  X2, Z)] ( C 3 )  

j13(x1,  X2, Z) 

Journal of Applied Mechanics 

1 f t2  ( a  2 + x~ + x22 + z 2 - t2) 3 

8a3~x21 + xzZ) 3 _~ t2x[(t22 - t z ) ( t  2 - t~) dt 

= 1 [ ( a  2 + x~ + x~ + z2 )3 j l ° ( x l ,  x2, z) 
8a3,/(x~ + x~) 3 

2x212ZX X - 3(aZ + xl2 + X~ + Z ) t l, z , z )  

+ 3 ( a  2 + x~ + x2 z + z 2 ) J l ( x l ,  xz, z) 

- -  Y°(x l ,  x2, z ) ] .  ( C 4 )  

2 Evaluat ion of  the integrals J i ( x l ,  x2, z ) ( i  = 14, 
. . . ,  17) 

Fo l lowing  the  fo rmu la  

f f ( t ) d [ ( t ~  - t2) ( t  2 - t~)] = 2f ( t )x / ( t2  z _ t2 ) ( t2  _ t2) 
~(t~ - tE ) ( t  2 - t l  2) 

f d f ( t )  - 2 ~(t22 - t2)( t  2 - t~) ~ dt,  ( C 5 )  

we can  ob ta in  

f [  dt 
j l 4 (Xl ,  x2, z)  = 1 ( t  2 - Z2)2~/(t~ - t2) (  t2 - t~) 

= 1 " { - z 2 j 2 ( x l ,  x2, z)  
2z2(t~ - z 2 ) ( t ~  - z 2) 

2 2 t 2 z 2 - [t i t2 2 ( t l  2 + 2) + 3 z 4 ] j 4 ( x t , x 2 ,  z)  

t2t2Jl°r X + 1 2 ~ ~,xz,  z )}  ( C 6 )  

1 
j15(XI,  X2, Z) "~ 2a  X 2 1 ~ X 2 2  

f [  a 2 + x l  z + x ~  + z  2 -  t 2 

× , ( t  2 - z2)2~/(t~ - t 2 ) ( t  2 - t~) dt 

= a 2 + x~ + x~ j~4(x,  ' x2, z)  
2aCx  + 

J4 (x1 ,  x2, z )  
- 2aUx  + (c7) 

1 
J16(xl, x2, z)  - 4a2(x~  + x22) 

J• '~ (a 2 + x ~ + x ~ + z  2 - t ~ )  2 
× , ( t  2 _ Z2)2~(t22 _ t2)( t2 _ t21) dt 

-- 1 [ ( a  2 -.t- X~ "}- x~)2 j l4(Xl ,  x2, Z) 
4a2(x~  + x~) 

- 2 ( a  2 + x~ + x~)J4(x l ,  x2, z)  

+ J2(x~, x2, z)] (C8) 

1 
JlT(xl ,  x2, z)  - 8a3x/(x2 + x2)3 

f'~ ( a  2 + X~ + X~ + Z 2 -- t2) 3 

X ,L~ ( t  2 - z2)Z~/(t~ - t 2 ) ( t  2 - t~) dt 

1 { ( a  2 + i 2.1 t. 1, X2 + X2"~3jI4[x X2,Z ) 
8a 3 ~ ] ~  + 2) Xz~3 

- 3 (a  2 + x~ + x22)2j4(xl, x2, z)  

+ [ 3 ( a  2 + xl  2 + x ~ )  + z 2 ] J 2 ( x l , x 2 , z )  

- J t ( x l , x 2 ,  z ) }  ( C 9 )  
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where j i ( x t ,  x2, z ) ( i  = 0, 1, 2, 4) are obtained in Appendix B 
of Wu and Du (1995a) and 

tl = ¢ ( a  - ~/x~ + x ~ )  2 + z 2, 

t2 = x/(a + ~/xl z + xz2) 2 + z z. (C10) 

A P P E N D I X  D 
Following Magnus et al. (1966),  the complete elliptic inte- 

gral of the third kind can be expressed by the elliptic integrals 
of the first and second kind. From the definitions 

f: F(k ,  ~o) = (1 - k 2 sin 2 t )- l /2dt  

E (k ,  qo) = (1 - k 2 sin 2 t)t:2dt Ikl --< 1 (D1) 

where F ( k ,  ~p) and E(k ,  ~o) are the elliptic integrals of the 
first and second kind, respectively, it can be seen that only the 
complete elliptic integral of the first kind has singularity when 

k = ± t. Below, we investigate this singularity. According to 
Magnus et al. (1966),  F ( k )  ( F ( k ,  7r/2)) can be expressed as 

F ( k )  = Q_l/2(2k 2 - 1) (D2) 

where Q,(x )  is a Legendre function of the second kind of order 
n. For function Q,,(x), Byrd and Friedman (1971) gave the 
following relation: 

lim Q,(x )  ~ const, log (1 - x). (x < 1) (D3) 
x--'H 

From Wu and Du (1995a) and the expressions of variable k 
in F ( k ) ,  we find that when ~x~ + x~ ~ a and x~ ~ h~ or h2, 
F ( k )  can be expressed as the following form: 

F ( k )  = const, log [(a - ~/x~ + x~) 2 + (x3 - x~)2]. (D4) 

Since x; in (D4) is evaluated at x~ = hi and h2, F ( k )  has the 
logarithmic singularity when ~ - ~  ~ a and x3 ~ ht or h2. 
Performing the detailed examination and manipulation, we can 
find that each component of eigenstrains e~p has some effect 
on the singularity of the elastic field. 
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Effect of 0rthotropy on 
the Intersonic Shear 
Crack Propagation 
Of concern in the present paper is the steady-state elaswdynamic problem of a semi- 
infinite shear crack, propagating in an orthotropic medium. An intersonic regime is 
assumed which leads to a significant change of the singularity at the crack tip. 

1 Introduction 
The study of crack propagation in anisotropic media is of 

great interest in the fracture analysis of a wide class of compos- 
ite materials and the field of research is particularly motivated 
by its engineering importance: 

Many engineering composites exhibit strong directional elas- 
tic effects associated with elastic symmetry with respect to three 
mutually orthogonai planes, orthotropic materials, and this justi- 
fies the increasing interest in the analytical solutions for elasto- 
dynamic crack propagation in such materials. 

Significant contribution has been made in subsonic regime 
by Achenbach and Ba2ant (1975), Kassir and Tse (1983), 
Arcisz and Sih (1984), Piva (1987), Piva and Viola (1988), 
and Piva and Radi (1991) among others. 

After the pioneering contribution of Winkler et al. (1970) 
and Curran et al. (1970) in which it was shown that under 
particular conditions a very rapid crack growth should be possi- 
ble, some analytical studies concerning super-Rayleigh crack 
propagation in an isotropic medium were treated by Burridge 
(1973), Burridge et al. (1979), Freund (1979), Georgiadis and 
Theocaris (1985), Georgiadis (1986), and more recently by 
Broberg (1989) among others. 

In the above mentioned studies some peculiar features of the 
intersonic shear crack propagation (c~ < c < ct, where c is 
the crack velocity, cs is the shear wave velocity, and cl is the 
longitudinal-wave velocity) were put in evidence. 

One of these features is the role played by the velocity of 
the crack as a control parameter which determines stable or 
unstable growth. In particular, it was found that the stress singu- 
larity at the propagating crack tip is influenced by a parameter 
which is a function of the crack velocity, and is weaker than 
the inverse square root singularity, unless for c = ~ c , .  

More recently, a number of significant contributions which 
extended the subject to interracial crack propagation have ap- 
peared. Particularly noteworthy are the works by Lambros and 
Rosakis ( 1995 ) and Liu et al. (1995) where extensive investiga- 
tions about the intersonic crack growth along an elastic/rigid 
bimaterial interface have been presented. 

Throughout these works it was given evidence of intersoni- 
cally stable shear crack propagation in the velocity range "f2c., 
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Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Professor 
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Manuscript received by the ASME Applied Mechanics Division, Mar. 30, 1995; 
final revision, Apr. 9, 1996. Associate Technical Editor: I. M. Daniel. 

< c < ct, where c~ and cl are the shear and longitudinal wave 
speeds of the elastic material, respectively. It was also shown 
that for cs < c < ~c~., crack propagation is still possible but 
unstable. 

A significant feature put in evidence by the above mentioned 
authors and of particular interest in the present work is that the 
stress singularity at the propagating crack tip was always weaker 
than the inverse square root singularity (Liu et al., 1995). 

The aim of this paper is to extend, from the analytical point 
of view, the topic concerning the intersonic regime to the prob- 
lem of a shear crack propagating through an orthotropic elastic 
solid. Particular attention is paid to the stress singularity and to 
its variation as a function of the crack velocity as well as of 
the material orthotropy. 

A semi-infinite shear crack, propagating at constant velocity 
greater than the shear-wave velocity and less than the longitudi- 
nal-wave velocity, is considered. The crack propagates under 
the action of constant shear stresses applied to a segment of its 
lips, following the moving crack tip. 

The basic analysis is performed by using a complex variable 
approach, proposed in previous papers by Piva (1987), Piva and 
Viola (1988), and Piva and Radi ( 1991 ) to solve elastodynamic 
crack problems in orthotropic media. The solution of the prob- 
lem reveals a significant change of the stress singularity at the 
crack tip with respect to that in the case of subsonic regime, as 
well as to that obtained for intersonic crack propagation in an 
isotropic medium. 

The parameter which has a controlling effect on the strength 
of the singularity at the crack tip is represented as a function 
of the velocity for various orthotropic materials. It can be seen 
that the results obtained for a bimaterial interface compare rea- 
sonably well with those derived herein. 

2 Mathematical Preliminaries 

Let an orthtropic elastic medium be referred to a Cartesian 
coordinate system whose axes X, Y, and Z coincide with the 
three mutually orthogonal principal directions of the material. 

An elastodynamic plane problem concerning a semi-infinite 
crack propagating at constant velocity c in the X direction, will 
be studied. 

Because in  the sequel the motion will be referred to as one 
in the X-Y plane, it is convenient to introduce the Galilean 
transformation. 

x = X -  ct, y = Y, (1) 

where t is time and c is a constant velocity. 
The stress-strain relations in the xy-plane are 
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O'xx "-~ C l l U x  --~ C121)y, (2a) and 

o. ,  = C,2ux + C22vy, (2b) 

r ~  = C66(Uy + vD,  (2c)  

in which u = u ( x ,  y ) ,  v = v ( x ,  y )  are the displacement compo- 
nents in the x and y directions, respectively; and subscripts, 
except for stress components, indicate partial derivatives with 
respect to the subscripted variables. The coefficients Cu, C~2, 
Cz2, and C66 are four independent elastic moduli of the material. 

The system of equations governing the elastodynamic dis- 
placement field reduces to 

u~ + 23V~y + o~Uyy = O, 

with 

V.x + 2131U~y + o~Vyy = O, (3) 

C66 C12 + C66 
oz = Cn(1 - M  2) ' 2/3 = Cn(1 - M  2) ' 

C= C12 + C66 
oz, C66(1 - M22) ' 2/3, C66(1 - M~) (4) 

The quantities M1 = c lc l  and M2 = c/ca are the Mach num- 
bers with Cl = ( G u l p )  112, c 2 = ( C 6 6 / P )  112 and p is the mass 
density. 

The system (3) may be rewritten as 

where 

~b~ + Aq~y = 0, (5) 

= ((~I (~2 q~3, ~4)T ~ (blx ' bly, 1)x, 1)y) T 

and A is a 4 × 4 constant matrix, given by 

(° t - 1  0 0 0 
A = 231 0 0 al  ' 

0 0 - l  0 

(6) 

P = 

/ 2/3p 2 2/3p 2 _2 ~fl.~ \ 
- a + p 2  o~+p2 0 o~-  q 2 \  

/ 2/3p 2/3p 213q 

+ qil qo 
o o o) 

B = P - l A P =  - p  0 0 0 0 - q  ' (10b) 

0 q 0 

Furthermore, the system (8) may be decomposed into the two 
systems 

C- + P¢~ = 0, (11) 

~0~ - p~b 2 = 0, ( 1 2 )  

and 

0~ - q00~ = 0 ( 1 3 )  

0~ + q~0~ = 0. (14) 

It should be noted that the latter system defines the analytic 
function 

f~(z)  = ~b3(x, y )  + i ~ 4 ( x ,  y ) ,  z = x + i yy ,  y = 1 /q ,  

whose real and imaginary parts may be obtained using (9) and 
(10a) as follows: 

R e f ~ ( z ) = ~ b 3 ( x ' Y ) = - k (  4 9 2 + q  oe 2 / 3 ) +  p____..._5 ~ 3 (15) 

Imf~(z) = ~4(x, y) = ~ o~ + p--'----~ ~/14 , (16) 

where 

The characteristic equation of (6) is 

k 4 + 2a~k 2 + a2 = 0, 

where 

2a~ = ol + oq - 4fl/31, a2 =ot te l .  

In the intersonic regime the Mach numbers are 

Mi = C/Cl < 1, Mz  = c/c2 > 1 

and Eq. (7) provides the eigenvalues 

•1 = P,  h2 = - p ,  h3 = iq,  

with 

p = [(a~ - a2) 1/2 - al] 1/2, 

positive constants. 

q = [(aT - a2) 1/2 + al] 1/2, 

According to the approach proposed in previous papers (Piva, 
1987), Eq. (5) may be transformed to 

qtx + Bqty = 0, 

0 = P-14, ,  

where 

k = (or + p 2 ) ( a  - q2) 
(7) 2/3(P2 + q2) 

In addition, as the problem of concern is antisymmetric with 
respect to the x-axis, the following relations hold: 

~b'(x, y) = -4~ ' (x ,  - y ) ,  ~b2(x, y) = ~b2(x, - y ) ,  

~b3(x,y) = ~ 3 ( x , - y ) ,  ~ 4 ( x , y )  = - ~ 4 ( x , - y ) .  (17) 

Hence, applying (17) to (15) and (16) leads to the symmetry 
condition 

a ( z )  = ~(Z-). (18) 

Consider now the pair of Eqs. (11 ) and (12) whose integra- 
tion yields 

~0l(x, y) = F ( x  - 6y) ,  

t p 2 ( x , y )  = G ( x  + 6y) ,  6 = 1/p  (19) 

with F and G arbitrary functions of their arguments. 
It should be noted that as the Cauchy data for Eqs. ( 11 ) and 

(12) are prescribed on the half-line y = 0, x < 0, the function 
(8) F ( x  - 6y) represents a signal travelling to the fight and wave- 

fronts x - @ = const, invade the half-plane x > 0, as y in- 
creases. In view of the fracture problem to be studied the above 
region must be assumed undisturbed and therefore it may be 

(9) stated that F ( x  - by) vanishes. 
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Y ~y 

ct  

$0 
I ..ib ..ib .1~ 

L-2: 
II 

X , x  

G ( x )  = - /3imf~(x), - ~  < x  < co. (27) 
14 

Fu~hermore, insertion of (27) in to  (22) evaluated at y = 0 
produces 

1"'5- yxy(X, O) = 141s RelY(x) - I~16 Imf~(x), 
C66 

- ~  < x  < ~.  (28) 

Fig. 1 Moving crack in orthotropic material 

On the other hand, the function G ( x  + @) which represents 
a backward signal with wavefronts x + 8y = const., confined 
into the half-plane x < 0, contributes to the shear field. There- 
fore, keeping in mind Eqs. (5),  (8),  (9),  and (10), the stress- 
strain relations (2) may be rewritten as follows: 

a~---~- = 1~ Imf~(z) + 12G(x + 6y), (20)~ 
C66 

CrYY = 13 Imf~(z) + 14G(x + ~y) ,  (21) 
C66 

~-xy = 15Re~2(z) + 16G(x + 6y) ,  (22) 
C66 

where 

=--C12 __Cll { 2flq 2 
l, + / - - - - - ~  , 

C66 C66 \ a - q -  ] 

12 Ci2 C,1 ( 2/3p 2 \ 
- 

I3 C22 + C|2 ( 2/3q2 ~ Cz2 Ci2 ( 2/3p2 ~ 
. : C6~--- ~ C6"~- ~ ~ - - ~ ] ,  1 4 -  C66 C66 ~--p-2  J ' 

= ~ q2 , I6 

3 Statement  and Analysis  of  the Problem 

Consider the antisymmetric problem of a semi-infinite crack 
situated along the half-line y = 0, x < 0 and propagating with 
a constant velocity c in the positive direction of the fixed X- 
axis. A shear traction To is applied to a segment Xo of crack 
faces and follows the moving crack tip (Fig. 1 ). 

The corresponding boundary value problem is written as fol- 
lows: 

Through the position ~-xy(x, 0) = Txy(x, 0 +) ~ T + ( x ,  y )  for 
-co < x < 0, the boundary conditions (23) and (24) specialize, 
respectively, to 

14T o 
14 l sRe f~+(x ) - l f l 6 Imf~+(x )=  C66, X o < X < 0  , (29) 

/415 Ref~+(x) - 1316 Im~2+(x) = 0, - ~  < x < -xo,  (30) 

or, because of (18), to the following Riemann-Hilbert prob- 
lems: 

f ~ + ( x ) -  g~2 (x) = f ,  -Xo < x  < 0, (31) 

f~+(x)  - g ~ 2 - ( x )  = O, _co < x < - x o ,  (32) 

where 

and 

1316 + i1415 2i14 (1316 + il415)7-o 
f -  

g - 1316 - i1415' C66 D 2 

D 2 = (1415) 2 + (/316) 2. (33) 

Under the assumptions that stresses vanish at infinity and 
displacements are one-valued functions, the solution to problem 
(31) is (Gakhov, 1966) 

x (z___2 I [  fat  
f~(z) = 27ri xo x ( t ) - ~ - -  z) ' 

(34) 

where X (z) is the Plemelj function for the semi-infinite crack 
obtained as solution to the homogeneous problem of (31 ) and 
problem (32). It is found that 

X ( z )  = z r, ( 3 5 )  

with 

F -- R 
log (g) -- 1 _1[1415\ 

27ri ~ tg ~1~6)  " (36) 

7xy(x, 0) = -To ,  -Xo < x  < 0, (23) 

"rxy(x,O) = O, - ~  < x <  - x o ,  (24) 

O'yy(X, 0) = 0, --00 < X < ~ ,  (25) 

Vy(X,O) = 0 ,  0 < X < 0 %  (26) 

where the constraint (26) by virtue of (18) is identically ful- 
filled. 

Equation (21) evaluated at y = 0 along with condition (25) 
yields 

In the case of isotropic material the elastic moduli C 0 may 
be related to Lamb's coefficients k and/z as Cll = C22 = X + 
2~,  C12 = h, C66 = ~ so that expression (36) reduces to 

1 [ 4 ~ / ( 1 - M ~ ) ( M ~ -  1) 1 r = - tg -1 (37) 

which is the result given by Freund (1979) and Georgiadis 
(1986). 

The Cauchy-type integral in Eq. (34) may be evaluated in 
asymptotic form. When l arg z t < rr, it is found that 
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f~(z) = 

fe-"'[l__ 
x;  ~ + o , Iz[ > Xo 

t 
[e-~r~ [~ ~ ( @ ) r  1 (~o)  + o ( . Z t 2  ] 
L x~ sinrTr r +  1 \Xo/  d '  [z[ <xo  

(38a,b) 

~ P  

~tte 
II 

Thence, by utilizing (38) in (34) one finds the asymptotic behaviour for the potential function ~2(z) as 

X o l - r  ~-r 
- -~ - - - (  ~ r - i  \ z ]  + O ( ~ )  , [z[ >Xo 

ro sin rTr (39a,b) 

~c~d,  _. ~ + ! + o Izl < Xo, 
sin aTr r 

from which one recognizes that Imf~(x) = 0 for x > 0. 
Thus, bearing in mind Eq. (27) and substituting the asymp- 

totic behavior (39b) into Eq. (22) leads to the following singu- 
lar shear stress distribution in the neighbourhood of the crack 
tip: 

K2 rx~(x, 0) ~ ~ xr; x > 0, (40) 

where the above expression has been normalized with respect 
to the Mode II stress intensity factor 
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4 D i s c u s s i o n  o f  R e s u l t s  

In Figs. 2-3,  the order of singularity given by (36) is plotted 
against the Mach number M2. 

Figure 2 is referred to an isotropic material (dotted line) with 
Poisson ratio equal to ½ and to a Steel-Aluminium composite 
(solid line) whose relevant material parameters can be found 
in Table 1. 

Due to the weak anisotropy of the Steel-Aluminium compos- 
ite the behavior is nearly the same for both materials and corre- 
sponds to that obtained from formula (37). The exponent r 

Table 1 Material parameters 

Composite type 

Steel - Aluminium 

Glass - Epoxy 

Graphite - Epoxy 

¢111c~ 

3.952 

c~/c~ 

4.155 

q2 t c~ 

1.959 

3.139 12.190 1.155 

3.504 29.822 1.723 

varies continuously from r = 0 at M2 = 1, up to a minimum 
value r = - ½ at M2 = ~ ,  and back to r = 0 at M2 = 
(C111C66) 1/2 ~ 2. 

In Fig. 3 the order of singularity is represented for Graphite- 
Epoxy (dashed line) and Glass-Epoxy (solid line) composites, 
which are strongly orthotropic materials (Table 1). 

A comparison with Fig. 2 shows that the exponent r 
varies continuously from 0 to - ½ again, but its minimum moves 
toward higher values of Mz and becomes more pronounced as 
the degree of material orthotropy increases. 

It should be noted that there is a close analogy between the 
trend of profiles shown in Figs. 2, 3 and those provided for a 
bimaterial interface by Liu et al. (1995). Although they found 
a stress singularity always weaker than - ½, the two sets of 
results show a good qualitative agreement. The quantitative 
discrepancy between the maximum values of the order of singu- 
larities is due to the different boundary value problems taken 
into account. 

In Fig. 4 the behavior of the dimensionless shear stress given 
by (40) is represented as a function of M2 for Steel-Aluminium 
(dashed line) and Glass-Epoxy (solid line) composites with 
(x/xo) having the values 0.01 and 0.07 for the sake of illustra- 
tion. 

In Fig. 5 the shear stress given by (40) is represented as a 
function of (X/Xo) for the above mentioned composites and 
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various values of M2. In this figure it can be seen that the 
effect of the degree of material orthotropy is significant in the 
immediate neighborhood of the crack tip. As the distance from 
the crack tip increases, in the range of Mz common to both 
materials, the shear stress distribution is nearly independent of 
the degree of material orthotropy as well as of M2. 
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On the Analysis and Design 
of Fiber-Reinforced 
Composite Shells 
Closed-form solutions based on a general homogenization composite shell model are 
obtained for the effective stiffness moduli of the high-stiffness fiber-reinforced angle- 
ply composite shell. The design problem for the fiber-reinforced shell having the 
required set of effective stiffnesses is formulated and solved. The set of prescribed 
stiffnesses for which the design problem is solvable is described, and the effective 
method of the design parameters calculation based on convex analysis is developed. 
The minimum number of reinforcing layers required for the design of the fiber- 
reinforced angle-ply shell with the prescribed stiffnesses is determined. The solution 
of design problem is generalized on account of minimization of the fiber volume 
content. 

1 Introduction 
The large-scale introduction of reinforced composite thin- 

walled structural members has created a need for further prog- 
ress in rigorous theoretical modeling capable of predicting both 
effective characteristics and micro structure of processes oc- 
curring under various types of environment. 

The mechanical model which allows the prediction of the 
behavior of multiple inhomogeneities in composite structure is 
provided by the sets of equations with rapidly varying coeffi- 
cients which characterize the properties of the individual phases 
of the composite material. The resulting boundary value prob- 
lems are rather complex, and it is quite natural, therefore, to 
seek mechanical models with some averaged coefficients. 

Different averaging techniques have been adopted to estimate 
the effective elastic properties of composites, see e.g., Sen- 
deckyj (1974), Hashin (1983), Went et al. (1990), Chris- 
tensen ( 1991 ), Tsai (1992), Vasiliev ( 1993 ), and Vasiliev and 
Tarnopol'skii (1990). Analytical averaging schemes were also 
utilized by Christensen (1990), Milton and Kohn (1988), Vin- 
son and Sierokowski (1986), Vinson (1993), and Nemat-Nas- 
ser and Hori (1993) to provide an estimate of the overall elastic 
properties of inhomogeneous composite structures. The method 
of optimal design of fiber-reinforced composite shells on ac- 
count of dynamics and buckling is described in Obraztsov and 
Vasiliev (1989) (see also Voitkov, 1979). 

The effective properties of the composite material of a peri- 
odic structure can be calculated by means of the asymptotic 
homogenization method. The mathematical framework of the 
asymptotic homogenization technique can be found in Bensous- 
san et al. (1978), Sanchez-Palencia (1980), Lions (1981), 
Bakhvalov and Panasenko (1989), and Kalamkarov (1992). 
This method is mathematically rigorous, and it enables the pre- 
diction of both the local and overall averaged properties of the 
composite solid. 

The homogenization model of planarly periodically inhomo- 
geneous plate has been developed by Duvaut (1976). It should 
be noted, however, that the direct application of the asymptotic 
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homogenization technique to a two-dimensional plate or shell 
theory will not provide the satisfactory results if the spatial 
inhomogeneities of the material vary on a scale comparable 
with the small thickness of the three-dimensional solid under 
study. A modified approach developed by Caillerie (1984) con- 
sists in applying the two-scale asymptotic homogenization for- 
malism to three-dimensional problem for a thin inhomogeneous 
layer. The similar approach was applied by Kohn and Vogelius 
(1984) to the problem of bending of a thin homogeneous elastic 
layer with a rapidly varying thickness (see also Lewinski, 
1992). 

The rigorous general homogenization composite shell model 
was developed by Kalamkarov (1987, 1989, 1992, 1993) by 
applying a modified asymptotic homogenization technique to 
three-dimensional elastic problem for a thin curvilinear periodi- 
cally inhomogeneous composite layer with rapidly varying 
thickness. The application of this general model to the analysis 
of the fiber-reinforced composite shells provides the accurate 
analytical determination of their effective stiffnesses as well as 
the local stress distribution (see Kalamkarov, 1992, 1993). 

In the present paper, these results are taken as a basis to 
formulate and solve a design problem for reinforced composite 
shell with the required values of effective stiffnesses. 

Following this Introduction, Section 2 deals with some basic 
relations of the general homogenization composite shell model. 
In Section 3, the tiber-reinforced angle-ply shell is considered, 
and the analytical formulas for the effective stiffnesses of this 
shell are provided. Section 4 is devoted to design problem for- 
mulation, while in Sections 5 and 6 the effective method of 
the design parameters calculation based on convex analysis is 
developed, and the minimum number of reinforcing layers re- 
quired for the design of the fiber-reinforced angle-ply composite 
shell with the prescribed effective stiffnesses is determined. 
Section 7 deals with the generalization of the design problem 
solution on account of minimization of the fiber volume content. 
In Section 8, the effectiveness of the developed approach is 
illustrated by the design examples. Finally, Section 9 concludes 
the paper. 

2 General Homogenization Composite Shell Model 
Let us consider a thin three-dimensional composite layer of 

a periodic structure with the unit cell f~ (see Fig. 1). In this 
figure, C~l, c~2, and y are the orthogonal curvilinear coordinates, 
such that the coordinate lines al and o~2 coincide with the main 
curvature lines of the midsurface of the carrier layer, and coordi- 
nate lines y are normal to its midsurface (3, = 0). Thickness 
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Fig. 1 Curvilinear reinforced composite layer; unit cell ~n 

of the layer and scale of the composite material inhomogeneity 
are assumed to be small as compared with the dimensions of 
the solid in whole, and characterized by a small parameter 6. 
The unit cell ~2~ is determined by the following inequalities: 

- 6 h l / 2  < o~ < 6h~/2, - 6h2/2 < o~2 < 6h2/2, y -  < y 

< y+,  y-+ = +6/2 +- 6F±(oq/rh~, o~2/6h2). 

Here 6 is the thickness of the carrier layer, and 6hi, 6h2 are 
tangential dimensions of the periodicity cell fie. Functions F + 
model the shape of the reinforcing elements at the upper (S +) 
and lower (S - )  surfaces of the carrier layer, see Fig. 1. These 
functions are equal to zero in the absence of surface reinforce- 
ments, and then 6 represents the thickness of the composite 
layer. The periodic inhomogeneity of the composite material is 
modeled by the assumption that the stiffness tensor components 
a~,(ce~, o~2, 3') are piecewise-smooth periodic functions with 
unit cell fla. 

It is a common practice in performing stress analysis of a 
composite structural member that the inhomogeneous medium 
being studied is replaced with a homogeneous anisotropic me- 
dium whose response is supposed to be equivalent to that of the 
actual composite in a certain averaged sense. If the composite 
material has a periodic structure, the averaged (or effective) 
properties of the equivalent anisotropic homogeneous material 
can be estimated by means of the asymptotic homogenization 
method, which also gives asymptotically correct results for the 
local stress field in the bulk of the composite solid. This method 
is based on representation of solution of three-dimensional prob- 
lem in form of two-scale asymptotic expansion in powers of 
the small parameter 6. In the previous studies (see Kalamkarov, 
1987, 1989, 1992) this approach was adopted in the analysis 
of composite and reinforced thin-walled structural members. As 
a result, the general homogenization composite shell model has 
been developed. It is shown (see Kalamkarov, 1987, 1989) that 
it is possible to calculate both the effective and local properties 
of this composite layer by first solving appropriate three-dimen- 
sional local problems set on the unit cell, and subsequently 
solving a two-dimensional boundary value problem for a homo- 
geneous (or quasi-homogeneous) anisotropic shell with the ef- 
fective stiffness moduli obtained at the first step. 

T h e  constitutive relations of the anisotropic homogeneous 
shell, that is those between the stress resultants N~, Nz, Nl2 and 
moment resultants M~, M2, M~: on one hand, and the midsurface 
strains ell, ~22 (elongation), e12 = e~ = w12 (shear), rH, T22 
(bending), r~= = r2~ = r (torsion) on the other, can be repre- 
sented as follows (see Kalamkarov, 1992): 

Nz = 6(b~)exu + 62(c~)r×. ,  

m/3 "~ 62(zb~>E~# ~- 63(ZC~)TXlu, 

3 k# Mi2 = 62(zblX~)exu -4- 6 <ZCl2)Thl u ( l )  

where/3 assumes the values 1 and 2, and is not summed here; 
h, # = 1, 2. The functions b~}"(~, {2, z) and c~}"({t, ~2, z) ,  

k, 1, m, n, = 1, 2, 3, can be calculated from the solution of 
local problems on the unit cell (Kalamkarov,. 1992). Here ~ 
= a l A l / ( 6 h i ) ,  ~2 = azA2/(6h2), z = y /6 ,  and A l ( a l ,  a2) and 
A2(a~, oe2) are the coefficients of the first quadratic form of the 
midsurface of the layer. The above functions are determined as 
follows: 

OUT" 1 oum° + ak,3 aklmn 

c~" = 1 OV 7" OV 7'" 
h S a k n , o ~ - + a k l i 3  ~Z +Zak, .... (2) 

where functions UT"(~, ~2, z) and V T " ( ~ ,  ~2, z)  are periodic 
in variables ~ and ~2 with periods A~ and A2, respectively. 
These functions are determined by solving the following set of 
local problems ( i , j  = 1, 2, 3;/3, h, # = 1, 2): 

L O b ~/] 
n~b~?/;+n~b~;~=O, at z = z  -+ + O, 

h a 0 ~  Oz 

10c~/J + Oc~ = O, 
h a 0 ~  Oz 

1 ++. h + n ~ c i ~ + n ~ c ~ = O ,  at z = z  -+ (3) 

where n{ are components of the normal to the upper (S +) and 
lower ( S - )  surfaces of the unit cell, (see Fig. 1 ) respectively, 
related to the coordinate system ~ ,  ~z, and z. 

In the case of perfect bonding at the interface of the composite 
material, the functions U~", V x,, as well as the expressions 
[(l/h~)n~)b~/: + n ~ ) b ~ ]  and [(l/hB)n~)e~/] + n~3~>c~)] 
should be continuous at the interface. Here n} c) are components 
of the normal to the interface. 

The averaging symbol ( . . . )  in Eq. ( 1 ) denotes the integration 
over the three-dimensional unit cell of composite layer, as fol- 
lows: 

z)> = z ) < , < 2 a z .  (4) ( f ( ~ l ,  

Local problems, Eqs. (2) and (3),  having been solved, the 
functions b~3~(~l, ~2, z) and c~'~"(~l, ~2, z) are averaged by 
application of Eq: (4),  giving the effective stiffnesses of the 
anisotropic homogeneous shell, (b~X~), <zb~X~} = (c~,~) and 
(zc ~ ) .  One may proceed then to solution of the boundary value 
problem for the homogeneous shell, that can be found in Ka- 
lamkarov (1992, p. 141 ), to calculate the functions e×,(aa, oe2) 
and rxu(a~, a2). 

It should be noted that the formulas for the coordinates ~ 
and ~2, that are involved in the formulation of local problems, 
contain metric coefficients A=(a~, a2) and A~(a~, a2). If A~ 
and A2 are not constant (and they can be constant only if the 
midsurface of the shell is a developable surface), then the effec- 
tive stiffness moduli will also depend on the tangential coordi- 
nates a~ and a2. Consequently, the averaged anisotropic shell 
can be quasi-homogeneous depending on the geometry of the 
midsurface of the shell. 

The notation for the effective stiffnesses used in Eq. ( 1 ) are 
naturally related to the local problem formulation in the general 
homogenization composite shell model, see Eqs. (2) and (3).  
There is the following simple correspondence between this nota- 
tion and the conventional notation for the effective stiffnesses, 
see e.g., Vinson (1993, p. 316): 

A,, = 6(bl l ) ,  B,t = 62(,zb[tt) = 62(ci',), D,, = 63(zc',',) 

a,~ 6(b~2), B,2 6~(zb~ 2) 2 ~2 = = = = 6 ( c , , ) ,  D,2 63{ZC~) 

A~6 = 6(b}l~), B,6 = 6~(zbl~) = 62(c]~2), D,6 = 63{zc]~) 

A22 22 2 22 63/ZC22\ 6(b22), B~2 = = = ~5 <zb22 ) 2 22 = 6 <c22), D22 \ 22/ 
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Fig. 2 Fiber-reinforced angle-ply composite shell 

A~6 6(b12), B26 = 52(zb~) 2 12 = = = 6 (C22) ,  026  ~3(ZC12) 

A66 = 6(b~2),~2 B66 = 5 2"~zb 12,12) : 62 (c12),12 D66 = 63(ZC122). 

(5) 

Both notations related by the Eq. (5) will be used in the sequel. 
The general homogenization composite shell model also pro- 

vides an asymptotic result for the three-dimensional local stress 
distribution in the composite layer. These stresses can be calcu- 
lated by means of the following formula (k, l = 1, 2, 3; tz, v 
= 1, 2): 

+ 5 c ~ ( ~ ,  ¢2, z)%,(a~,  a2). (6) 

Analysis of local deformations and stresses was performed 
earlier by Kalamkarov (1992, 1993). It has been shown, in 
particular, that the large local shear stresses arise in the matrix 
material in the case of dense placement of fiber plies. The 
effect of torsion failure of the matrix material occurs if the fiber 
volume content exceeds 60 percent. Torsion failure of the matrix 
causes the delamination of the high-stiffness fiber-reinforced 
angle-ply shells. It should be noted, however, that the failure 
of angle-ply composite structures involves many different fac- 
tors: The experimental results show that the other modes of 
failure could prevail (see Vasiliev ( 1993, pp. 130-136)  for the 
details). 

The application of the general homogenization composite 
shell model is limited to the case when thickness of the shell 
and the scale of periodicity, i.e., parameter 6, is much smaller 
than the overall dimensions of the solid. This requirement is 
fulfilled in a large number of applications. 

3 Fiber-Reinforced Angle-Ply Composite She l l  

The fiber-reinforced angle-ply composite shell is shown in 
Fig. 2. There are no surface reinforcements in this case. The 
shell is formed by N layers reinforced by parallel fibers. The 
fiber within a j th  layer, j = 1, 2, . . . ,  N, makes an angle ~o: 
with the coordinate line a~. The thickness of laminate is 5, and 
the departure of the axis of the fiber of the j th  ply from the shell 
midsurface ( y  = 0) is equal to 6aj. We assume that material of 
fibers is much stiffer than the matrix material, i.e., E~ >> EM. This 
assumption is typical for the polymer matrix fiber-reinforced 
composites. Local problems (see Eqs. (2) and (3))  are much 
simplified, on account of the above assumption, by a decoupling 
in the regions of fibers and matrix. 

3.1 Effective Stiffnesses. Local problems of the homoge- 
nization composite shell model (see Eqs. (2) and (3)) ,  can be 
solved analytically for the elliptical cross section of the fibers 
(see Kalamkarov, 1987). Having solved the local problems, we 
average the functions b ~ ( ~ ,  (2, z) and c ~ ( ~ t ,  (2, z) and then 
sum them up over the all N layers to obtain the following 
formulas for the effective stiffness moduli of the high-stiffness 
fiber-reinforced angle-ply shell: 

N N 

j=l j=l 
N 

t~)vAajn j + uj))-~].  (7) 
j=l  

Here E i and v: are Young's  modulus and Poisson's ratio of 
fibers of the j th  layer; 0j is the fiber volume content in the j t h  
layer; and the parameters BJ ~t~xu) and CJ ~xu) are determined by 
the following formulas for each combination of superscripts a,  
/3, k, # = 1,2: 

B)  l l l l )  -~ A~Df  4 cos 4 tpj, 

B) m2) = uj~q('2") = A~A2Df4 cos 3 ~pj sin tpi 

B!1122) = j~(2211) = BJl212) = A2A21-~-4  
J uj  Zal-'-12~ j COS 2 ~pj sin 2 ~pj 

B~ 2222) = A42D] -4 sin 4 tpj, 

B) 1222~ = BJ 22j2) = A1A~Dj* cos ~oj sin 3 ~pj (8) 

CJ Ill,) = Aa, D f  4 cos 2 ~o i 

× [2A24 sin 2 ~oj(1 - e~)A: + cos 2 ~o:(1 + v:)] 

C)  2222) = A24Df 4 s i n  2 tpj 

× [2A~ cos 2 ~aj(1 - e~)A; + sin 2 cpj(1 + uj)] 

C(1122) ~ C)2211) = A2A2T,~-4 sin 2 cos 2 j • ~ 2 ~ j  ~pj ~pj 

× [-2A~A22(1 - e~)Aj + (1 + vj)] 

C~ 1t~2) = CJ'2! ~) = A~A2DS* sin ~p~ cos ~ 

× [a~(a~ sin 2 ~0~ - A~ cos 2 qa~)(1 - e~)Aj 

+ cos ~ ~o~(1 + v~)] 

C j  (.1222) = CJ  2212) = a ~ a 3 D f  4 sin ~oj cos ~o: 

× [A~(A~ cos 2 ~pj - A~ sin 2 ~a:)(1 - e~)Aj 

+ sin 2 ~pj(1 + v;)] 

C)'212) = 0.5A~A~Df 4 

× [(A~ cos ~ ~o: - A~ sin 2 qoj)~(1 - e~)A~ 

+2sin2~o:cos2qo~(1 + v~)] (9) 

where 

D~ = A~ cos 2 tpj + A22 sin 2 qoj, 

Aj = [D] + A~A~(1 - e~)] -~ (10) 

and ej is the eccentricity of the elliptical cross-section of the 
fiber of t he j t h  ply. In the case of circular fibers, ej = 0. 

It is of interest to compare expressions ( 7 ) - ( 1 0 )  for the 
high-stiffness reinforced shells with the similar results that have 
been derived in the framework of the semi-empirical approach; 
see, e.g., Vasiliev (1993). In this procedure, first the averaging 
the composite material characteristics of individual layers is 
performed, and then the overall stiffnesses of the composite 
angle-ply laminate are calculated using the orthotropic effective 
stiffnesses of laminae and the stacking orientation of each lam- 
ina. The comparison shows that the formulas (7) for the moduli 
( b ~ )  and (zbX,~) coincide with the corresponding formulas for 
the effective stiffnesses of a multilayer shell working in a ten- 
sion-compression, provided that the contribution of the matrix 
is negligibly small, and that Aj = A2 = 1. However, the above 
flexural and torsional stiffnesses, (zc,~), do differ from the 
corresponding results of the semi-empirical approach, and can 
be converted to these latter by setting ej = 1, j = 1, 2 . . . . .  N 
(which means neglecting the shape of the cross sections of the 
fibers in all plies), and, in addition to that, by replacing the 
factor 16 by 12 in the denominator of the last formula (7) 
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(which means neglecting the correct calculation of the moment 
of inertia of the fiber cross-section). Apparently, the above Eqs. 
( 7 ) -  (1 0) derived using the general homogenization composite 
shell model are more rigorous than the results of the approxi- 
mate approach, in terms of better accounting the micro structure 
of the composite material. 

3.2 Numerical Example. To obtain an estimate of the 
magnitude of the correction, consider a three-layer angle-ply 
composite shell of a thickness 6 and with the fiber placement 
angles 991 = 7r/4, qo2 = 0, and 993 = -7r/4. The fibers in all 
three layers are made of the similar material with isotropic 
elastic properties E and u, and they have the similar circular 
cross section. We also assume that 01 = 02 = 03 = 00, a~ = ½, 
a2 = 0, a3 = - ½, and A1 = A2 = 1. From the last formula of 
Eq. (7), the nonzero flexural and torsional moduli of the shell 
in the conventional notation, see Eq. (5), are given by 

Dll = [0.15 + 0.031(1 + u)-l]63EOo, 

D12 = [0.06 + 0.031u(1 + u)-l]~53EOo 

D22 = [0.09 + 0.031(1 + u)-l]~53EOo, 

D66 = [0.09 "4- 0.016(1 + u)-l]63EOo. (11) 

In order to specify the magnitude of the correction, let us 
consider the graphite/polyimide angle-ply shell with the follow- 
ing properties of fibers and matrix: EF = 300 GPa, EF/EM = 
100, and UF = 0.2. We assume that a lamina thickness is 0.14 
ram, and the fiber volume content is 60 percent. The magnitudes 
of the effective stiffnesses calculated from Eq. (1 1) are the 
following: DH = 2.34 Nm, D12 = 0.93 Nm, D22 = 1.55 Nm, 
D66 = 1.37 Nm. The corresponding values resulting from the 
semi-empirical approach are D11 = 2.4 Nm, D12 = Dz2 = 066 
= 1.29 Nm. The maximum correction of 27 percent is obtained 
for the effective stiffness D12. 

4 Design of the Fiber-Reinforced Composite Shells 
In many cases, design of the composite engineering structures 

is based on some empirical approximate formulas. But it should 
be understood that a satisfactory design result can be achieved 
only if the design procedure is based on a rigorous basic theoret- 
ical model. 

The application of the general homogenization composite 
shell model to the analysis of the fiber-reinforced composite 
shell shown in Fig. 2 provides the accurate calculation of its 
effective stiffness moduli. These results are used in this section 
for the design of composite shell with the required set of effec- 
tive stiffnesses. A different approach was developed earlier by 
Kalamkarov and Kolpakov (1993) for the optimal design of 
wafer and honeycomb-like reinforced shells. 

Suppose, it is required to design the fiber-reinforced compos- 
ite shell with the prescribed set of effective stiffnesses. Equa- 
tions ( 7 ) - ( 1 0 )  express the effective moduli of the high-stiff- 
ness fiber-reinforced composite shell in terms of fiber placement 
angles ~o i, fiber volume content 0 i, where j is a number of 
the layer, and some other material properties and geometrical 
dimensions of the composite shell. Let us assume now that all 
fibers are of a circular cross section, and that they are made of 
a similar material with Young's modulus E. We also assume 
that Ai = A2 = 1, which is possible for the cylindrical shells 
or plates, in particular. The set of effective stiffnesses in the 
tangential directions to the shell surface can be then expressed 
as follows, cf. Eqs. (5), (7), and (8): 

A~i = ~5(bll) = EwYi(T ,  qo), A22 = 6 (b~)  = EwY2(y ,  99) 

a16 = 6(bl~) = EwY3(T, ~0), A26 = 6(b~Zg) = EwY4(T, 99) 

A66 = A12 = 6 (b~)  = 6(b~Zt) 

= 0.5Ew[1 - Y,(7, 99) - Y2(T, 99)] (12) 

where 
N N 

YI(T, 9 9) = ~ Yj c°$4 ~9j, Y2(T, 99) = ~ "Yj sin4 ~oj 
j=1 j=] 

N 
Y3(Y, 99) = ~ Yj sin 99j cos 3 99j, 

j = l  

N 

Ya(Y, 99) = ~ Tj sin3 ~oj cos qo i. (13) 
j=l 

N 

Hereov = E 0 i , y  = (y~,3,2 . . . . .  YN),and% = 0 j /~ i s  
j=l 

the proportion of fiber content within the j th  layer, and 99 = 
(991, ~02 . . . . .  99N). By replacing functionals Yi(Y,  99), Yz(Y, 
99), Y3(Y, 99), and Y4(Y, ~0) by the variables Yl, Y2, Y3, and Y4, 
and using the conventional notation for the effective stiffnesses, 
see Eq. (12), we obtain the following algebraic system: 

A11 = E~yl ,  A22 = Eovy2, A16 = E~y3 

A26 = Etoy4, A66 = A12 = 0.5Ew(1 - Yl - Y2). (14) 

If we prescribe values of the effective stiffnesses All, A22, 
A16, A26, and A66 = At2, then Eq. (14) will represent the system 
for determining y = (yj, y2, y3, y4). Since the number of equa- 
tions in the system (14) exceeds a number of unknowns, the 
following solvability condition should be fulfilled: 

A66 : At2 = 0.5(Err - A l l -  A22). (15) 

The system (14) can be resolved explicitly, so that 

Yl = All(ELy) - l ,  Y2 = Azz(Ew) - l ,  

Y3 = AI6(Ew)  -1, Y4 = A26(EoJ) -1. (16) 

The next and major step in the design problem is to determine 
the fiber volume fractions y = (y~, y2, • • •, TN) and the fiber 
placement angles 99 = (99j, 992 . . . . .  ~PN), such that satisfy 
equations 

Y,(Y, 99) = Yl, Y2(Y, 99) = Yz, 

Y3(Y, 99) = Y3, Y4(Y, ~0) = Y4. (17 )  

The following natural limitations are imposed on the design 
parameters: 

N 
~ y j =  1, y j > _ O , j =  1 ,2  . . . . .  N (18) 

i=1  

99i E [0, 7r],j = 1, 2 . . . . .  N. (19) 

The question of a great practical importance here is to deter- 
mine the minimum number of layers, Ninon, that is required to 
design the fiber-reinforced shell with the prescribed effective 
stiffnesses. 

4.1 Design Problem Formulation. Design problem in- 
cludes the following two questions: 

(i) Determine if the system of Eqs. (17) is solvable in the 
set of variables satisfying conditions (18) and (19). 

(ii) If the answer on the question (i) is positive, then find 
the set of solutions of the system (17) under the conditions 
(18) and (19). 

5 Design Problem Solution 
To solve the design problem, we first define a following set 

of intervals within [0, 7r] that impose the limitations on fiber 
N 

placement angles 99/ ¢pN = E [ai, bi] C [0, 7r], and consider 
i=l 

a set 
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U~= {qoE~N, yERU, ysatisfiesconditions(18)}. (20) 

Problem (17), (18) is solvable in the set of variables U~ if 
and only if the right-hand sides of Eqs. (17), (y~, Y2, Y3, Y4) 
belong to an image of the set U~ under the mapping Y, given 
by Eqs. (13), 

Y: (% ~) E U,~ ~ (Y~(y, ~), Y2(y, cp), 

Y3(Y, qo), Y4(TT, qO)) E R 4, (21) 

5.1 Statement 1. 

(i) If N -> 5, then image of the set U~, under the mapping 
Y, given by Eqs. (13 ), represents a convex hull (see Rockafel- 
lar, 1970) of the following curve F: 

F = {y E R4: y = ( c o s  4 ~0, sin 4 % 

sin ~o cos 3 ~p, sin 3 qo cos go), ~fl @ ~N} (22) 

(ii) Any point that belongs to the image of the set U~ under 
the mapping Y, can be obtained as a value of the function Y 
on a vector (% ~) ~ R 5 × ~5. 

In accordance with the Statement 1, a fiber-reinforced com- 
posite shell with any prescribed effective stiffness moduli { A~,} 
satisfying the solvability condition (15), can be designed by 
using not more than five layers of reinforcing fibers. 

5.2 Proof of Statement 1. It follows from the condition 
(18) that the right-hand sides of expressions (13) represent a 
convex combination of points of curve F, see Eq. (22). In the 
general case, if any set ~ is a subset of R", the convex hull of 
f~ can be obtained by forming all convex combinations of ele- 
ments of Q. According to Carathdodory's Theorem, see Rocka- 
fellar (1970), it is not really necessary to form combinations 
involving more than (n + 1 ) elements at a time. The convex hull 
of f~, conv ft, can be obtained by forming convex combinations 
involving not more than (n + 1) elements of fL In our case, 
f~ = F, and n = 4. Consequently, we obtain that if N >- 5 then 
the image of the set U~ under the mapping Y will coincide 
with the whole set conv F. That completes the proof. 

6 Skew-Symmetr ic  Fiber-Reinforced Shells 
Let us consider now a practically important type of the com- 

posite shells with the skew-symmetric placement of fibers about 
the mid-surface of a laminate. In this case, for any layer with 
the fiber placement angle + ~pj, there is a symmetric layer with 
the fiber placement angle - ~pj, and the fiber volume fraction 
Tj is similar in these two layers. In the case of skew-symmetric 
reinforcement, two last functionals in the Eqs. (13) are identi- 
cally equal to zero. It is also sufficient in this case to limit the 
fiber placement angles by the interval [0, 7r/2]. 

6.1 Design Problem Formulation. 

(i) Determine if the equations (cf. Eq. (17)) 

Yl(Y, qo) = y~, Y2(Y, ~) = Y2 (23) 

are solvable in the set of variables (cf. Eq. (20)) 

v ~  = ( ( y ,  ~ )  E u ~ ,  yj = y u - j ,  - ~j 

= ~PN-~ E [0, 7r/2] , j  = 1, 2 . . . . .  N/2}. (24) 

(ii) If the answer on the question (i) is positive, then find 
the set of solutions of the system (23) under the conditions 
(18). 

6.2 Statement 2. 

(i) I f N  -> 6, then image of the set V~ under the mapping 
{Yi(Y, ~o), Y2(Y, ~P)}, given by two first Eqs. (13), represents 
a convex hull of a curve 

F = {y E Rz: y = (cos 4 cp, sin 4 tp), qo E ~N} 

= {y E R2: y = (r/, (1 - ,[~)2), ~7 E COS 4 (I)N } (25) 

where cos 4 • denotes the image of the set qb under the mapping 
(cos) 4. 

(ii) Any point that belongs to image of the set V~ under 
the mapping {Yt(Y, ~P), Y2(y, ~o) }, can be obtained as a mean- 
ing of the function {Yi('Y, ~o), Y2(y, ~o)} on a vector (% tp) 

u,~. 
In accordance with the Statement 2, a skew-symmetric fiber- 

reinforced composite shell with any prescribed effective stiff- 
ness moduli {A,p} satisfying the solvability condition (15), 
can be designed by using not more than three pairs of layers 
of reinforcing fibers with fiber placement angles +~j and -~oj. 

6.3 Proof of Statement 2. The proof of Statement 2 is 
similar to the above proof of Statement 1. Now the dimensional- 
ity of space of conv F is equal to n = 2. According to Carath6or- 
dory's Theorem, see Rockafellar (1970), we need not more 
than n + 1 = 3 elements to form the convex hull, conv F. 
The total number of layers of skew-symmetric composite shell 
should be doubled, and, consequently, we get N -> 6. 

7 Minimizat ion  of  Fiber Content  
Let us consider now an optimization of the design problem 

concerning the minimization of the fiber content co. We include 
now the variable co into the set of independent variables of the 
system of Eqs. (16), and consider the problem of minimization 
of co on account the condition that the composite shell has a 
given (prescribed) set of effective stiffnesses. Suppose, we al- 
ready solved the above design problem for some fixed co value, 
co = coo, so that (cf. Eq. (17)) 

Y,(T, tp) = y0, i = 1, 2, 3, 4, (26) 

where y0 = (y~, y20, y~, y~) is determined from the expressions 
(16) with co = coo. It follows from the formulas (16) that y = 
(co0/co)y ° will represent a solution for a given co value. More- 
over, fiber volume fractions Yi satisfy conditions (18). As a 
result, we arrive to a problem of searching minimum co value, 
such that the point y(w) = (Wo/co)y ° belongs to convex set, 
conv F. Curve F has been described in Statements 1 and 2. The 
set 

L = {y(co) = (Wo/co)y °, co E (0, coo)} (27) 

represents a ray having an origin in the point y0 E cony F, and 
tending to infinity when co ~ 0. Since the set cony F is compact 
(because F is compact) the ray L will intersect the boundary 
of the convex compact set cony F when co equals some certain 
value, co = co*, and they will have no other intersections when 
co < co*. We formulate this result in form of a Statement 3. 

7.1 Statement 3. The above formulated fiber content, co, 
minimization problem is solvable if the design problem with 
the required set of effective stiffnesses and some prescribed coo 
value is solvable. The co minimum value is equal to co* that 
corresponds to an intersection of the ray L with the boundary 
of the set cony F. Design project for the composite shell with 
a minimum fiber content co* can be found by solving problem 
(17), (18) or the problem (23), (18) with a right-hand side 
equal to y = (co0/co*)y °. 

8 Design Examples  
The developed theory is illustrated by the following two ex- 

amples of the fiber-reinforced composite shell design. 
In the first example, it is required to design a glass/epoxy 

composite shell with a skew-symmetric placement of the fibers. 
The shell should have the following effective stiffness moduli: 
A~ = 25 GPa, and A22 = 10 GPa. Young's modulus of fibers 

Journal of Applied Mechanics DECEMBER 1996, Vol. 63 / 943 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



~t rl2=0,58 0,73 l 0 

Fig. 3 Curve F and the convex hull, conv F (area ABCD) 

is E = 100 GPa, and the prescribed fiber volume content is co 
= 0.5. 

Curve F in the considering case is determined as follows (cf. 
Eq. (25)):  

r = {y E R2: y = (~7, (1 - ~/~)2), 

: COS 4 ~ E [0 ,  1] }. (28) 

Curve F and its convex hull (area ABCD) are shown in 
Fig. 3. 

The prescribed values y = (0.5, 0.2) are calculated from the 
Eqs. (16). It is seen from Fig. 3 that point y = (0.5, 0.2) 
belongs to set cony F. Consequently, the composite shell with 
the above prescribed effective stiffnesses can be designed. Let 
us calculate the design parameters of such composite shell. In 
fact, the problem (23), (18) can be formulated as a problem 
of determining the convex combinations of points on curve F, 
that produce a given point y. Apparently, there is an infinite 
number of points on curve F producing given point y. For 
example, point y can be obtained as a convex combination of 
points A and D (see Fig. 3). Introducing subscripts 1 and 2 to 
coordinates of points A and D, we obtain ~7~ = 0, r/2 = 0.58. 
Fiber placement angles qo~ and ~2 are expressed in terms of ~71 
and ~h by means of the formula cpi = arccos (~) t /4 ,  cf. Eq. 
(25). Using this formula, we obtain qo~ = 90 deg and ~P2 TM 29 
deg. Fiber fractions y~ and Y2 can be also determined from Fig. 
3 as follows: y, = ]yDI/IAD[ ~ 0.14, and "Y2 = [AyI/IAD[ 

0.86. The resulting four-layer skew-symmetric composite 
shell design is following: 14 percent reinforcing glass fibers 
should be placed on angles ±90 deg, and 86 percent of fibers 
should be placed on angles ±29 deg. Note that the obtained 
design parameters represent just one of the possible design solu- 
tions. However, this is a special design project in the sense that 
it provides the maximum values of the fiber reinforcing angles. 
This will simplify significantly the fabrication of the designed 
composite shell by winding. 

8.1 Example on Fiber Volume Content Minimization. 
In the second example, it is required to design a skew-symmetric 
composite shell with the effective stiffnesses similar to the 
above first example, but, unlike of the previous example, it is 
also required now to minimize the fiber content co. As it was 
just shown, the design problem for co = 0.5 was solvable. There- 
fore, the design problem including the minimization of co is 
solvable as well. Assuming coo = 0.5, and following the above 
theory, we look for a point of intersection of a ray (cf. Eq. 
(27)) 

L =  {y(co)=~---2y ° =--0"5(0 .5 ,0 .2) ,a~E(O,O.5)}  (29) 
cO CO 

with a boundary of the area ABCD (see Fig. 3). This point of 
intersection is denoted by B in Fig. 3, and it has the coordinates 
(0.73, 0.28). Applying Statement 3 and using Eq. (29), we 

find that the minimum fiber content is equal to co* = co0(y°/y) 
= 0.5(0.5/0.73) ~ 0.34. 

To calculate the design parameters, we should solve the prob- 
lem (23), (18) with a right-hand side y(Lv*) = (0.73, 0.28). 
It is seen from Fig. 3 that point B can be represented as a 
convex combination of points of the curve F in a unique way, 
namely, as a convex combination of points A and C. Accord- 
ingly, we obtain that ~71 = 0, r/z = 1, and ~p~ = 90 deg, ~P2 = 0 
deg. The fiber fractions are y~ = I BCI/pACI = 0.27, and 
3'2 = IABI/ IACI = 0.73. The resulting design provides the 
minimum fiber content (co* = 0.34) for the above prescribed 
effective stiffnesses. The designed four-layer symmetric com- 
posite shell is formed by two layers with fiber placement angles 
90 deg and fiber volume fraction 27 percent, and by two layers 
with fiber placement angles 0 deg and fiber volume fraction 73 
percent. 

9 Conclus ions  

The explicit expressions for the effective stiffness moduli of 
the high-stiffness fiber-reinforced angle-ply composite shell are 
obtained. Derivation is based on application of the general ho- 
mogenization composite shell model. The formulas for the ef- 
fective stiffnesses provide corrections to the earlier approximate 
effective moduli results. 

The design problem for the fiber-reinforced angle-ply com- 
posite shell with the prescribed values of stiffness moduli is 
formulated and solved using the convex analysis. The set of 
prescribed effective stiffness values for which the design prob- 
lem is solvable, is described, and the effective method of the 
design parameters calculation based on convex analysis is de- 
veloped. The sufficient number of reinforcing layers required 
for the design of the fiber-reinforced angle-ply composite shell 
with the prescribed effective stiffnesses is determined. It is 
shown in general case that a fiber-reinforced composite shell 
with any prescribed effective stiffness moduli in the tangential 
directions to the shell surface that satisfy the solvability condi- 
tion, can be designed by using not more than five layers of 
reinforcing fibers. In the case of skew-symmetric fiber-rein- 
forced composite shell, the sufficient number of layers is six, 
so that a skew-symmetric composite shell with any prescribed 
effective stiffnesses in the tangential directions that satisfy the 
solvability condition, can be designed by using not more than 
three pairs of layers of reinforcing fibers with fiber placement 
angles +cpj and - ~ j ,  j = 1, 2, 3. 

The design problem is generalized on account of minimiza- 
tion of the fiber content. It is shown that this problem is solvable 
for any prescribed set of effective stiffnesses for which the 
design problem is solvable. The effective method of the opti- 
mum design parameters calculation is developed. 

The effectiveness and advantages of the developed approach 
are illustrated by the numerical examples. 
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Random Field Representation 
and Synthesis Using 
Wavelet Bases 
The paper addresses the representation and simulation of  random fields using wavelet 
bases. The probabilistic description of  the wavelet coefficients involved in the repre- 
sentation of  the random field is discussed. It is shown that a broad class of  random 
fields is amenable to a simplified representation. Further, it is shown that a judicious 
use of  the local and multiscale structure of  Daubechies wavelets leads to an efficient 
simulation algorithm. The synthesis of  random field samples is based on a wavelet 
reconstruction algorithm which can be associated with a dynamic system in the scale 
domain. Implementation aspects are considered and simulation errors are estimated. 
Examples of  simulating random fields encountered in engineering applications are 
discussed. 

1 Introduction 
Monte Carlo simulation is a quite powerful, though computa- 

tionally costly tool for analyzing systems which exhibit ran- 
domness. This method is a statistical sampling experiment (Ru- 
binstein, 1981 ) involving a series of simulations of the random 
parameters and subsequent evaluation of the system response 
using deterministic methods. Often the randomness inherent in 
the problem involves random fields. In this case the implementa- 
tion of the Monte Carlo procedure requires sequential synthesis 
of random fields, and to a great extent its appeal depends on the 
efficiency of the algorithm used for this purpose. The spectral 
(Shinozuka and Jan 1972) and auto-regressive-moving-average 
(ARMA) (Samaras et al., 1983; Mignolet and Spanos, 1992; 
Spanos and Mignolet, 1992) approaches are the commonly used 
methods in this regard. However, these methods are not well 
suited for random field simulation using nonuniform meshes. 
Also, enhancement of local resolution of random field samples 
can not be readily achieved using these simulation procedures. 

Scale-type methods (Foumier et al., 1981; Lewis, 1987; Fen- 
ton and Vanmarcke, 1990) were introduced primarily for com- 
puter graphics applications; the simulation is based on linear 
estimation principles. The values of the random field for points 
within a coarse scale are generated first. Then, the values for 
the finer scale are estimated based on the generated samples. 
These methods provide an efficient procedure for simulation of 
homogeneous and nonhomogeneous fields using nonuniform 
meshes. However, they lack a solid theoretical foundation for 
estimating the associated simulation errors. 

This paper addresses the problem of random field simulation 
by using wavelet expansion. Wavelets can be found in several 
branches of engineering and science and they appeal to scien- 
tists and engineers of various backgrounds (Daubechies, 1992). 
The paper provides a basis for evaluating the error of the scale- 
type methods and for considering the properties of the generated 
samples. The scale-type simulation procedure is viewed as a 
realization of a dynamic system in the scale domain. The pro- 
posed algorithm for random field simulation requires only O (N) 
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numerical operations for the generation of a sample of a homo- 
geneous multidimensional random field, where N denotes the 
size of the field. Numerical examples are given to elucidate the 
theoretical developments. 

2 Background on Deterministic Wavelet Analysis 

Orthogonal compactly supported wavelet bases of L 2(R) con- 
structed by Daubechies ( 1988 ) are used in this study. Generally, 
they can be written as 

{ ~bj,,,(x) = 2q/2~O(2-;x - n + 1 ) ; j ,  n E Z} ,  (1) 

where ~(x) is a wavelet function with support in the segment 
[0; 2M - 1] ; M is an integer parameter. Equation (1) shows 
that the entire wavelet basis is derived from a single function by 
stretching and shifting. This construction leads to the important 
concept of a scale. The scale is given by the parameter j and 
describes the measure of stretching of the wavelet function to 
capture local signal characteristics. 

Also important in wavelet analysis is the scale function ~b(x). 
In fact, the wavelet function ~,(x) is related to ~b(x) by the 
equation 

2M-1 

~'(x) = ~/2 Y~ g~+lq~(2x - k), (2) 
k=O 

where 

2M-I 

~(x)  =~/2 Z hk+,~(2x -- k),  (3) 
k=O 

where gk and hk are appropriate constants. Closed-form formulae 
for the functions ~b(x) and ~b(x) are not available, unless M = 
1. Several algorithms have been proposed in the literature for 
evaluating these functions numerically. One of them utilizes the 
frequency domain relationships 

c~(w) = mo(wl2)~p(w/2),  (4) 

and 

~ ( w )  = ml(OVl2)&(w/2), (5) 
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between the wavelet and scale functions. Here, the hat denotes 
a symbol of the Fourier transform 

~(~o) = - ~  qb(x)e-i~Xdx, (6) 

and the 2~--periodic functions too(w) and mi(~) are defined as 

1 2M-I 
too(tO) = ~ k=~o hk+le -i*~, (7) 

1 2M-  1 
ml(~, ) = ~ ~ gk+l e - ~  = e-i(~'-'Wmo(~ + ~-), (8) 

k=l 

respectively; the bar denotes complex conjugation. It can be 
shown that the functions too(W) of Eq. (7) and m~(w) of Eq. 
(8) represent the frequency response of a low-pass filter and a 
high-pass filter, respectively; this makes the wavelet expansion 
equivalent to a "sfibband filtering algorithm" (Daubechies, 
1992). These filters tend to the ideal low and high pass filters, 
respectively, as M ~ ~. In this case the Daubechies wavelets 
converge to the Shannon wavelets which relate directly to the 
sampling theorem (Waiter, 1994). The latter wavelets have 
been also examined by Newland (1993) who defined them as 
harmonic wavelets. 

Wavelets have a number of vanishing moments. That is, 

f= xttp(x)dx = 0, for 1 = 0, 1 . . . . .  m, (9) 

where m = M - 1 for the Daubechies wavelets; this property 
of the Daubechies wavelets is particularly useful for random 
field analysis applications since the wavelet coefficients can be 
associated with the high-frequency components from certain 
bands. Also, it can be shown, based on Eq. (9), that d~ 
f(M)(2-J(k -- 1)); that is, the wavelet transformation can be 
viewed as a quasi-differential operator (Belkin, 1993). Note 
that the scale function satisfies the property 

f~qb(x )dx  = (10) 1. 

That is, the coefficients associated with the scale function cap- 
ture the averaged characteristics of the signal. 

Any function f ( x )  can be expanded in a wavelet basis in 
O(N) operations without numerical integration. The wavelet 
decomposition algorithm can be compared with the fast Fourier 
transform which requires only O (N log N) operations to derive 
an expansion in the basis of trigonometric functions. First, the 
function f ( x )  is approximated by its projection into the j th  
scale of the function qS(x), where j must be taken sufficiently 
small to induce a small approximation error. That is, 

f ( x )  ~,f j(x) = ~ c~¢bj.~, (11) 
k 

where el = f~_= f(x)qbj.k(x)dx are the scale coefficients of the 
function f ( x )  associated with the scale j .  Then, the function 
Jj(x) can be decomposed into the components f+~(x) and 
6j+~(x), which represent the projection of the function f ( x )  
into the coarser scale, and the "details" which are "removed" 
during this procedure. Subsequently, the following expansion 
of the functionf(x) in terms of the wavelet basis is introduced: 

J ~ ( X )  = J ~ + I ( X )  q- 6 j - e l ( X  ) = f j + / ( X )  "~ 6j+l(X) + . . .  6j+l(X) 

6j+,(x) + . . .  6j+t(x), (12) 

where 

~j = Z dh0~,~, (13) 
k 

and d~ = f ~  f(x)Oj.k(X)dx denote the wavelet coefficients of 
the function f ( x ) .  Numerically, the wavelet decomposition al- 
gorithm can be represented by the recursive equations 

2 M - I  

2 J - '  = hl+lC21~+l-I, (14) 
l=0 

and 
2M-- I 

2 = gl+lC2k+l-1.  (15) 
/=0 

Note that this recursive multiscale procedure represents a mov- 
ing average scheme with the moving averages sampled only at 
even integers. 

The reconstruction algorithm can be expressed as 

C~ - 1  < f j - - l '  (~j-l,k) ( Z  j J = c,4,j,~ + Z 4'j-,,k) = d, qtj.,, 
l I 

J J = (cthk-2t+2 + dtgk-2t+2). (16) 
1 

Equation (16) defines a dynamic relationship between the coef- 
ficients on one scale and those on the next finer scale. Indeed, 
the vector c j-  1 is derived by a dynamic system from the initial 
conditions in the form of the vector e j and the "force excita- 
tion" d j. The interpretation of the wavelet reconstruction algo- 
rithm as a scale linear system is discussed in Basseville et al. 
(1992a, b); it is essential to the development of the random 
fields representation and synthesis algorithm presented in the 
ensuing sections. 

3 Random Field Expansion Using Wavelet Basis 

3.1 Random Coefficient Description. In the stochastic 
case the wavelet coefficients d~ in Eq. (13) and the scale coef- 
ficients c~ in Eq. (11 ), which are associated with a stochastic 
process f ( x ) ,  defined by its auto-correlation function Rf(x~, 
x2), are random variables. In particular, if f ( x )  is zero mean, the 
wavelet and scale coefficients are zero mean random variables. 
Further, the second-order moments of these coefficients can be 
found from the equations (Walter, 1994; Zeldin and Spanos, 
1995 ) 

r~j = E[d~d~] 

= f f  (17) 

= E[c all : f f  R,(x,,x2) jk(xl),,,(x2)dx,dx2, (18) b~j 

=If R f ( X l  x 2 ) q ~ J ' k ( X l ) d P i ' l ( x 2 ) d x l d x 2 '  (19) gk,lJ'i E[CJkCl] 

where E[ ] denotes the operator of mathematical expectation. 
Note that if f ( x )  is a stationary random process, the value 

JJ rk.~ depends on the difference in the indices k - 2J-if, only. 
Similarly, higher-order moments of coefficients d~ can be 
found. If f (x) is a Gaussian random process, d~, k = . . .  -1,. 
0, 1 . . . .  are also Gaussian random variables. In this case d~ J 
and c~ are completely characterized by their first and second- 
order moments. 

In this context the wavelet decomposition algorithm de- 
scribed in Section 2 is generalized to circumvent the numerical 
integration involved in Eqs. (17) - (19). Specifically, one can 
write 

2 M - I  
j ,j  j -  l ,j-1 

rk,i ~ (20) = gn + 1 gin+ I a 2k+n-  1,21+m-- 1 , 
n.m=O 
2M-I 

= h,,+lg,,+la2, .... 1.21+,,-1, (21) 
n,m=O 
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and 
2 M -  1 

j , j  j l , j -  1 
ak,t ~ (22) = hn + lhm+ la 2k+n- 1,21+m- 1, 

n,m=O 

where the procedt~r 9 is initiated by evaluating first the correla- 
J,J tion parameters ak.~ for the finest scale. Similar procedures, in 

a deterministic setting however, have been previously used to 
find a representation of mathematical operators in wavelet bases 
(Belkin et al., 1991). Clearly, this computationally costly 
scheme requires O(N 2) and O(N) operations for nonstationary 
and stationary processes, respectively. Alternatively, one can 
use the quadrature algorithm 

q - I  

J'/ 2 J ~ rln~7,,Rj,(2Jn + 2/(k 1), a l l  = 
n,m=0 

2Jm + 2 J ( l -  1)) + e, (23) 

where the coefficients ~7, are selected so that e is null if Rf(&, 
xz) is a polynomial in x~ and x2 of order less than q. This implies 
that e ~ O ( 2 J ( q + l ) ) .  The coefficients 7, of Eq. (23) can be 
found from the following system of equations: 

q - 1  

l m~t = Fm, m = 0, 1 . . . .  q - 1. (24) 
/=0 

Here, Fm= f ~  xmqb(x)dx are the moments of the scale func- 
tion; they can be calculated semianalytically as shown in Appen- 
dix A. Upon evaluating the parameters a~J in the neighborhood 

j +  1 , j + l  of the main diagonal of the correlation matrix, r k,~ 
and b~,~ ~'j+~ can be determined by using Eqs. ( 2 0 ) - ( 2 2 ) .  
Note that usually the auto-correlation function R(x~, x2) de- 
creases rapidly w!th the difference x2 - x~, and only a 
few coefficients a~J, r ~(/, and b~J corresponding to small values 
of l - k must be evaluated; for more details see Zeldin (1995). 
The described procedure requires only O(N) and O(log N) 
numerical operations for nonstationary and stationary processes, 
respectively. 

3.2 Correlat ion Propert ies  of Wavelet  Coefficients of 
Random Fields. The correlation of the wavelet coefficients 
for certain random processes has been previously addressed. 
Specifically, Flandrin (1989, 1992) has studied an efficient 
scheme to describe the spectrum of fractional Brownian motions 
(Keshner, 1982) which constitute a class of nonstationary pro- 
cesses often called 1/fnoises. It has been found that for a given 
scale these processes are stationary with well-defined scale in- 
variant spectra. Further, Womell (1990) has shown that com- 
pletely uncorrelated wavelet coefficients can be used to model 
1 / f  noises. A similar result has been reported by Tewfik and 
Kim (1992). Using this result Wornell and Oppenbeim (1992) 
have proposed a method of estimating parameters of 1/fnoises. 

This section establishes the correlation properties for a broad 
class of stochastic processes which are commonly used in engi- 
neering applications. As it has been mentioned previously, 
wavelets behave locally as differential operators. This property 
simplifies significantly the correlation structure of the wavelet 
coefficients for a large class of stochastic processes. Thus, the 
variance of the wavelet coefficients decreases rapidly with the 
scale of resolution j .  In particular, for a sufficiently fine scale 
one can prove that 

] ,J J,J 2JO, rk,t/aka "" (25) 

provided that the auto-correlation function is at least Q times 
differentiable; Q -< M. Equation (25) indicates that the impor- 
tance of scales decays exponentially withj.  Using this result one 
can argue that a few scales can provide a reasonably accurate 
representation of the random field. 

In context with the preceding result it is noted that the covari- 
ance matrix of the wavelet coefficients is sparse for a large 

class of random fields. For stationary processes the correlation 
of the wavelet coefficients from different scales can be evaluated 
by using the equation 

rk,, = 2rr S(co)@,k(w)~b,,,(co)dw, (26) 

where S(w) is the spectrum of the stationary process. Since the 
functions @.k(w) and ~bia(~) correspond to different frequency 
bands for i * j ,  the correlation of the wavelet coefficients from 
different scales is small. Thus, by substituting Eqs. ( 4 ) - ( 8 )  
into Eq. (26) one obtains 

j,i 
Irk,t [ - max (S(w))  XiJ_il(~)dw, (27) 

where 

xk(~) 
k - I  

= 2:+(kn)[m0(w + 7r)[[m0(2kw + zr)[ 1n ]rn0(Uw)[. (28) 
l=O 

The function Xk(W) is plotted in Fig. 2 for wavelets with M = 
1 and M = 7 vanishing moments. Note that the "decorrelafion" 
capacity of wavelets increases with the number of vanishing 
moments. Germane to this issue is the estimate of the cross- 
scale correlation of wavelet coefficients presented by Dijkerman 
and Mazumdar (1994) for Gauss-Markov processes with expo- 
nential auto-correlation functions by using a time domain ap- 
proach. 

Relying on the similarity between the auto-correlation func- 
tion and the kernel of a linear operator, the weakening of the 
correlation of the wavelet coefficients from the same scale can 
be determined for some stochastic fields. Specifically, for a 

8 2~ 

1 

O, 

M=i k=l 

0.5 1.5 2 2,5 
FREQUENCY, (a) 

$ 

0 
0 

114 7 " k=l' / / ~ 0  

0.5 1 1.5 2 2.5 
FREQUENCY, 

(b) 

Fig. 1 Funct ion Xk(eo) for  wavelets wi th (a) M = I vanishing moment,  
(b) M = 7 vanishing moments  
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Fig. 2 Correlation parameters ak t for the scalej = - 6  

stationary random process f ( x )  having the auto-correlation 
function 

R / . ( x , ,  x2) ~ Ix, - x2t-",  (29) 

and with partial derivatives of order 2Q 

02Q 
OxTOx~ O R f ( x ~ , x 2 ) ~  Ix,-x2l .-20, (30) 

where # and u are constants, one can show that for wavelets 
associated with M ~ Q 

~'~ ~'~ ( k  - l )  -~'-20.  (3 l )  a~a ~ I k - l l  -~' and re.z 

These stochastic processes form the so-called Meyer-Belkin 
class. Equation (31) indicates that the correlation of the scale 
coefficients decreases faster, especially for large values of M, 
than the correlation of the scale coefficients. Pertinent numerical 
examples can be found in Zeldin (1995). 

Finally, it has been observed that if the auto-correlation func- 
tion of a stochastic process has some irregularities along the 
diagonal x~ = x2, the covariance matrix of the wavelet coeffi- 
cients within a scale resembles a diagonally dominant matrix. 
Thus, wavelets whiten Gauss-Markov processes having auto- 
correlation functions which are nondifferentiable along the diag- 
onal. In this case wavelets act as semidifferential operators, 
and point out the diagonal singularity of the auto-correlation 
function. For the Gauss-Markov process with auto-correlation 
function 

R f ( x 2  - Xl) = exp(lx2 - x ~ l / O ) ,  0 = 0.1, , (32) 
J,J J,J the correlation parameters a~.~ and r~a are plotted for j = - 6  

in Fig. 2 and Fig. 3, respectively. The wavelets with M = 3 
vanishing moments are used. It can be seen that the correlation 
of the wavelet coefficients is quite weak. 

4 One-Dimens ional  R a n d o m  Field Simulat ion 

4.1 Mathematical Formulation. Upon developing the 
random field representation by employing the wavelet basis, 
numerical simulations can be performed by extending the wave- 
let reconstruction algorithm described by Eq. (16) to the case 
of random fields. In this case, assume that the stochastic process 

f ( x )  is defined by its auto-correlation function R f ( & ,  x~)  and 
denote by f~(x) the projection o f f ( x )  into the scale j of the 
function ~(x). This projection is specified by the random vector 
c j = {c~ . . . .  c~}, ~ = 2 -~. Note that the number of compo- 
nents of c ~ is quite small for a sufficiently coarse scale. Then, 
a realization of e j can be generated by performing the Cholesky 
factorizafion of its covariance matrix. This provides a sample 
of the projection j~(x) which is used to initiate the simulation 
o f f ( x )  for finer scales. Thus, the projection o f f ( x )  into the 
next ( j  - 1 ) t h  .scale can be found by simulating the random 
vector d J = { d{ . . . .  d~ } ; e ~ 1 can be determined by relying 

on the wavelet reconstruction algorithm, Eq. (16). Next, the 
random vector c j 2 can be simulated based on the realization 
of e J- ~ and a simulation of d J-l.  This hierarchical procedure 
generates a sample of the stochastic process f ( x ) .  

For a relatively fine scale, the problem of simulating a large 
dimension random vector with correlated components is rather 
complex. ! n this context it is noted that the random variables 
c~ and d~ are defined as an average of the stochastic process 

f ( x )  over the same domain weighted by the scale and wavelet 
functions, respectively. It can be shown using the quasi-differ 7 
ential properties of wavelets that c~ ~ f (2 - J (k  - 1)) and d~ 

f ( m ( 2  #(k - 1)). Clearly, the derivatives f(MI(x) c a n  be 
approximated reliably by a finite difference scheme. Thus, one 
can approximate the coefficient d~ by a linear combination of 
the components of the vector c J in the form 

E = a k a c t  + #~.uk, (33) 
I 

where uk, k = 1, 21 . . . ,  are uncorrelated zero mean, unit 
variance random variables which are statistically independent 
o f  e j . 

Equation (33) also reflects the assumption that the compo- 
nents of the vector d j are statistically independent, given a 
realization of c J. Note that this approximation does nor imply 
that the components of d j are unconditionally statistically inde- 
pendent, but rather that their dependence is completely reflected 
by a linear combination of the components of c J. Equation (33 ) 
can be used to simulate efficiently the random vector d J based 
on a realization of c J. Alternatively, Eq. (33) can be interpreted 
as reflecting the best linear estimate of the wavelet coefficients 
in the j th scale by using the scale coefficients in the same scale. 
This interpretation provides an analog between the proposed 
method and the scale dynamic linear systems on homogeneous 
trees (Basseville et el., 1992a, b; Clippingdale and Wilson, 
1989; Dijkerman and Mazumdar, 1994; Luettgen et el., 1994). 

Note that the summation in Eq. (33) can be confined to 
adjacent elements, since the correlation of the wavelet coeffi- 
cients decreases rapidly with the difference k - l. The parame- 

J ters ak.t in Eq. (33) can be computed in an optimal way so that 
the covariance matrices of the wavelet and scale coefficients 
m'e well approximated. In particular, the variance of the wavelet 
coefficients d~ and the cross-correlation of the wavelet and the 
scale coefficients can be equated to the target values. Thus, 
multiplying Eq. (33) by c~+~, i = - n  . . . .  n and taking mathe- 
matical expectation one finds 

i j J,] J,J 
ak.~ak+ta+i = bk+i,t:, i = - n  . . . .  n .  (34) 

I- -n 

The matrix in Eq. (34) is symmetric and positive definite; if 
the stochastic process is stationary, this is a Toeplitz matrix. 
This system can be solved without significant computational 
effort since the number of equations, 2n + 1, is small. Further, 
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the parameter # ]  can be found by squaring Eq. (33) and taking 
the mathematical expectation. That is, 

~ -  r k ,  k - -  O ~ k , l O L k , i a k + l , k +  i . 

l = - n  i = - - n  

Clearly, for the stationary case, Eqs. ( 3 4 ) a n d  (35) must be 
solved only once for every scale j .  

Note that the pyramid structure of the proposed simulation 
algorithm breaks down in some neighborhood of the boundary. 
In the present study this problem is addressed by incorporating 
boundary layers adjoined to the domain of interest. Alterna- 
tively, periodic wavelets and functions (Daubechies, 1992) can 
be used. 

Finally, note that the scale-type simulation methods which 
have been previously introduced in the literature are a rather 
special case of the proposed approach. Specifically, the Local 
Average Subdivision method (Fenton and Vanmarcke, 1990; 
Fenton, 1994) can be reproduced by utilizing the Haar basis 
(M = 1 ) in the preceding development, whereas the method of 
Lewis (1987) can be formulated based on the Shannon wavelets 
(M = ~) .  

4.2 E r ro r  Analysis. The error introduced by Eq. (33) can 
be assessed numerically in the following manner. Assume that 
the process is simulated within the j th  scale exactly. Also as- 
sume that the wavelet coefficients dJ are found by using the 
proposed method, Eqs. (33) - (35), and the scale coefficients 
on the ( j  - 1 )th scale are determined by relying on the wavelet 
reconstruction algorithm. Using these assumptions and per- 
forming some rather simple mathematical calculations, one can 
derive the estimated correlation of dJ and e J-~ which can be 
compared with the target values. Some numerical results of 
perfomaing this analysis for e J-t are shown in Fig. 4. The 
corresponding auto-correlation function is defined by the equa- 
tion 

R(XI,  x2) = 1/(1 + (xt - x:)~/O~), (36) 

where/9 = 0.1 is selected, and the Daubechies wavelets with 
M = 3 are utilized. The maximum of the absolute error of 
estimating the correlation of the scale coefficient normalized 

J , J  by a~.~ is plotted as a function o f j  and n. The error is quite 
small for fine scales and reaches, the maximum value, equal 
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Fig. 5 Auto-correlation function for target and simulated processes 

approximately to four percent, for the scale ( - 2 ) .  The mesh 
size which corresponds to this scale is approximately equal to 
the scale of fluctuation (Vanmarcke, 1983) of this stochastic 
process. 

Further, note that the wavelet reconstruction algorithm which 
is used to determine the wavelet coefficients on the ( j  - 1)th 
scale induces filtering of the wavelet coefficients by a high-pass 
filter, see Eq. (16). Then, this filter eliminates the low-fre- 
quency error and allows only the high frequency error. Further, 
the high-frequency range for the scalej  becomes low frequency 
for the scale j - 1. Thus, the error induced by Eq. (33) occurs 
in different frequency ranges for each scale. 

4.3 Algori thm of the Proposed Method. Summarizing 
the preceding discussion, the proposed algorithm for synthesiz- 
ing random fields specified by the auto-correlation function 
Re(x) can be formulated as follows: 

1 Select a wavelet basis; pertinent numerical studies suggest 
that the Daubechies wavelets with M = 3 are quite adequate 
for forms of R:(x)  encountered in most engineering applica- 
tions. Note that these wavelets are differentiable functions and 
the generated field can be readily used in applications necessitat- 
ing differentiation of the generated field samples. 

2 Find the correlation of the wavelet and scale coefficients 
as discussed in Section 3. 

Ry(xl, x2, Yl, Y2 )= expI-lO J(Xl - X2)2 + (Yl -Y2)21 

ffx, y~ 

SCALE 

Fig.  6 A synthesized realization of a two-dimensional random field 

950 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3 Synthesize a sample of the random process for a relatively 
coarse scale j by simulating a small-dimensional vector e J; the 
Cholesky factorization of the covariance matrix of e j is deemed 
appropriate for this purpose. 

4 Generate the vector d j by using Eq. (33). 
5 Based on the realizations of c j and d j, synthesize a sam- 

ple of the random process on the next ( j  - 1 ) scale by using 
the wavelet reconstruction algorithm of Eq. (16). 

6 If the ratio of the variance of the wavelet coefficients to 
the variance of the scale coefficients is not adequately small, 
proceed to a refined scale and return to Step 4. 

Each step of the proposed algorithm requires, at most, O ( N )  
numerical operations. Moreover, the decorrelation and 
multiscale properties of wavelets ensure that the requisite num- 
ber of parameters in Eq. (33) is small. 

4.4 Numerical Simulations. Samples of a Gaussian sta- 
tionary stochastic process with the auto-correlation function 

R ( x l , x 2 )  = e x p ( - I x l  - x2 l /O)cos  ( h l x j  - x~l) (37) 

were generated using the Daubechies wavelets with M = 3; the 
values 0 = 1 and k = 35 are used. The target auto-correlation 
function and its estimate involving 200 synthesized samples are 
plotted in Fig. 5. It is clear that the proposed method approxi- 
mates the auto-correlation function quite closely. 

5 Multidimensional Extension 
The proposed random field analysis and synthesis method 

can be generalized for multidimensional fields by utilizing mul- 
tidimensional wavelet bases. 

There are several methods of constructing multidimensional 
wavelets (Daubechies, 1992). One of them is based on the 
tensor product of pertinent one-dimensional multiresolution 
analyses. In the two-dimensional case it leads to three wavelet 
functions defined as 

• <'~(x, y )  = ck(x)~O(y), 

<2)(x, y) = ~(x)qb(y) ,  

and 

t~(3)(x, y) = ~b(x)~b(y). 

Note that the set of functions 

• ~ = 2-J~x(2-Jx - n~ + 1, 2-Jy - n2 + 1); J;nt,n2 

j , n ~ , n 2 E Z ,  h =  1 ,2 ,3  (38) 
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Fig. 7 Auto-correlation function for target and simulated processes 

Table 1 The number of floating operations to generate a 
single random field sample using the proposed algorithms 

Size of Number of kflops 
Type of random random 

fields fields M = 1 M = 2 M = 3 

Two-dimensional 32 × 32 76 150 246 
64 × 64 222 403 607 

128 × 128 741 1,269 1,796 
256 x 256 2,696 4,451 6,077 
512 × 512 1 0 , 2 7 2  16 ,643  22,293 

is an orthonormal basis for L2(R2). This procedure for con- 
structing two-dimensional wavelets can be generalized, readily, 
to the n-dimensional case leading to 2 n - 1 wavelets. 

Then, the developments of Sections 3 and 4 can be properly 
adapted for multidimensional field simulation. This procedure 
yields a set of equations, similar to Eqs. ( 1 7 ) - ( 2 3 ) ,  ( 3 3 ) -  
(35), involving multiple integrals and sums. These equations 

lead to an efficient algorithm for simulating multidimensional 
random fields. A sample of a two-dimensional field generated 
by implementing the proposed method in conjunction with the 
Daubechies wavelets with M = 3 is shown in Fig. 6; the auto- 
correlation function 

R ( x l ,  x2, Yl, Y2) = exp(-~(xl -- x2) 2 + (Yl - Y2)2/0) (39) 

with 0 = 0.1 was used. The average of several estimates of the 
auto-correlation function in different directions from the center 
of the domain of the random field is shown in Fig. 7; the 
ensemble size in each direction is 200 field samples. 

6 Concluding  R e m a r k s  

The proposed method is computationally efficient due to the 
reduction of the requisite data storage capacity and the small 
number of numerical calculations which are necessary for syn- 
thesizing a single random field sample. 

To perform the synthesis for a given scale, one has to store 
the scale and wavelet coefficients from the coarser scale. Thus, 
it is required to store 2N elements. Also it is required to store 
the coefficients of the equations which approximate the wavelet 
coefficients using the scale coefficients. For the homogeneous 
case it is further required to store O(log N) numbers, while for 
general random fields O ( N )  additional storage locations are 
needed. 

The number of calculations for a single simulation is deter- 
mined by the selected implementation scheme of the wavelet 
reconstruction algorithm, and by the transformation of the scale 
coefficients into the wavelet coefficients. Efficient procedures 
for the wavelet reconstruction algorithm are discussed in Herley 
and Vetterli (1993) which can prove particularly advantageous 
for large values of M. In any case, the proposed simulation 
method requires at most O ( N )  operations for synthesizing a 
random field sample. Table 1 compares the number of numerical 
operations needed for the generation of a single sample versus 
the required resolution level, that is the field size, and the num- 
ber M. Clearly, the presented method compares quite favorably 
with alternative methods of random field simulation and merits 
further investigation. 
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A P P E N D I X  

Determinat ion  of  M o m e n t s  o f  the Scale Funct ion 

In this Appendix an efficient method for evaluating the inte- 
grals Fm = fxmqb(x)dx appearing in Eq. (24) is presented. 

Using the Fourier transform one can obtain 

r'.,=fxmc~(x)dx=fx"c~(x)e-'X~dxl,o=o 

- 6(")(o). (A.1) 
( - i )  m 

Also, Eq. (10) yields 

1 
6 ( 0 )  - 2 ~ '  and Fo = mo(0) = 1. (A.2) 

Further, differentiating Eq. (4) m times yields 

6( ' ) (0 )  : m0 ~ ~ ~ , ,~o=o 

= '=~o~m(mk)m~k)(O)6(m-k)(o) 

2 m -  1 k=l 
(A.3) 

where the last equality holds because of Eq. (A2). The value 
rn(0k)(0) can be determined from Eq. (7) as 

m(ok)(0) = (--i)kKk, (A.4) 

where 

1 2M-I 
Kk = ~  ~ lkhH. 

l=0 
(A.5) 

Finally, substituting Eqs. (A3) and (A4) into Eq. (A. 1 ) yields 

Fm __ 12m_______~ k = l ~ ( : )  I~kFm-k" (A .6 )  

That is, Eq. (A.6) defines a recursive algorithm for evaluating 
the moments of the scale function. 
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Vibration and Coupling . 
Phenomena =n Asymmetric 
Disk-Spindle Systems 
This paper analytically treats the free vibration of coupled, asymmetric disk-spindle 
systems in which both the disk and spindle are continuous and flexible. The disk and 
spindle are coupled by a rigid clamping collar. The asymmetries derive from geomet- 
ric shape imperfections and nonuniform clamping stiffness at the disk boundaries. 
They appear as small perturbations in the disk boundary conditions. The coupled 
system eigenvalue problem is cast in terms of "extended" eigenfunctions that are 
vectors of the disk, spindle, and clamp displacements. With this formulation, the 
eigenvalue problem is self-adjoint and the eigenfunctions are orthogonal. The con- 
ciseness and clarity of this formulation are exploited in an eigensolution perturbation 
analysis. The amplitude of the disk boundary condition asymmetry is the perturbation 
parameter. Exact eigensolution perturbations are derived through second order. For 
general boundary asymmetry distributions, simple rules emerge showing how asym- 
metry couples the eigenfunctions of the axisymmetric system and how the degenerate 
pairs of axisymmetric system eigenvalues split into distinct eigenvalues. Additionally, 
properties of the formulation are ideal for use in modal analyses, Ritz-Galerkin 
discretizations, and extensions to gyroscopic or nonlinear analyses. 

Introduction 
In circular disk vibration research, the support structure 

is normally modeled as rigid. In spindle (rotor)analyses,  
components attached to the flexible spindle are commonly 
assumed rigid. As mechanical components become lighter 
and more flexible, however, a growing number of systems 
are not adequately modeled by either of these idealizations. 
For instance, a model in which both the disk and spindle 
deform elastically is required to capture the coupled vibra- 
tory response exhibited by computer disk drives and turbo- 
machinery. Disk-spindle coupling allows bearing excitation 
to drive disk vibration or disk excitation to drive spindle 
vibration. Uncoupled disk and spindle systems are com- 
monly idealized further as being axisymmetric, though 
asymmetries may be present in the design and are unavoid- 
ably generated by manufacturing imperfection. Two experi- 
mental observations expose the asymmetry in computer disk 
drives (and likely other disk-spindle systems as well): 

1 Coupled disk-spindle vibration occurs in disk vibration 
modes having any number of nodal diameters while the coupled, 
axisymmetric disk-spindle model predicts coupling in only the 
one nodal diameter disk vibration modes (Chivens and Nelson, 
1975). 

2 The degenerate pairs of natural frequencies in the axisym- 
metric system split into pairs of distinct frequencies. In rotating 
disk applications, natural frequency splitting can significantly 
alter disk response near the critical speeds (Tobias and Arnold, 
1957). The modes in which the natural frequencies split are 
also subject to a subcritical speed instability that does not exist 
in axisymmetric disks (Yu and Mote, 1987). 
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In this work we develop an analytical formulation for cou- 
pled, asymmetric disk-spindle vibration analysis, determine the 
eigensolutions, identify the asymmetries causing coupled re- 
sponse, and derive simple, general rules predicting coupling of 
disk-spindle vibration and splitting of degenerate natural fre- 
quencies in these nominally axisymmetric systems. 

Coupled, axisymmetric disk-spindle systems were treated 
analytically by Chivens and Nelson (1975). They concluded 
that disk flexibility significantly affects natural frequencies 
but not critical speeds. In a discussion of this work, Klompas 
(1975) addresses the importance of modeling support struc- 
ture asymmetry because, in the presence of asymmetry, rota- 
tion induces traveling waves in the disk that may be of more 
concern than critical speeds. Wilgen and Schlack (1979) 
show that for ratios of disk mass to shaft mass greater than 
those considered by Chivens and Nelson (1975), disk flexi- 
bility can dramatically increase or decrease the critical speeds 
depending on disk placement. Flowers and Ryan (1993) note 

t h a t  disk flexibility can play a significant role in superhar- 
monic vibration that may be excited by rotating system non- 
linearities. The above works focus solely on axisymmetric 
systems where only the one nodal diameter disk vibration 
modes couple with the spindle modes. Consequently, they 
cannot explain the aforementioned expanded coupling and 
natural frequency splitting phenomena. Inclusion of asymme- 
try in the present coupled model explains these phenomena 
with simple formulae. The simple forms of the derived eigen- 
solutions are convenient for use in applications. The structure 
of the presented formulation can be extended to include gyro- 
scopic effects that are not included herein. 

Coupled Disk-Spindle Model 

The coupled disk-spindle system is shown in Fig. 1. The disk 
is modeled as a uniform Kirchhoff plate, the spindle as a uni- 
form Euler-Bernoulli beam, and the clamp as rigid. The spindle 
can deform in two orthogonal planes. The coupled equations of 
motion for disk displacement W(R, 0, T) and spindle displace- 
ments U(Z, T), V(Z, T) are 
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Fig. 1 Coupled flexible spindle-rigid clamp-flexible disk system 

D V 4 W  -k- pd[w.lT, - R c o s  0 - -  
d T  2 

d~(Vzlz,) ] 
- R s i n 0  ~ S  j = 0  /~ (la) 

EIUzzzz  + p, Urr = 0 ~EIVzzzz  + psVrr = 0 g ( l b ,  c) 

d2 U ,n 
- E I U ~ l ~  - m - ~ -  = 0 

d2V  m 
-~ElV~l~  ~, - m- -d~  = o (ld, e) 

d2(Uzlz') f f, Jy dT-----y-- + par cos OWrrdA  = 0 ( l  f )  

~ E1[ V~z l z~ - ,~ Vz~ l ~ - d, Vz~z l ~, ] 

d2(Vzlz') f 
,~ dT----Z-- + pdr sin OWTTdA 0 ( l g )  

u " =  vlZl + ~Uz[~,  = u [ ~  - ff~u~l~ 

V m = VIz ,  + cT~Vzlz, = VIz2 - ff2Vz[z~ ( l h ,  i) 

U~lz, = Uzlz~ Vzlz, = v~[~ ( l j ,  k) 

where P = a < R < b, 0 -~ 0 < 27r is the disk domain, S = 
(0, Zl) U (Zz, L) is the spindle domain, D is the disk flexural 
rigidity, pa and p., are the disk areal density and spindle density 
per unit length, E1 and ~E1 are the spindle bending stiffnesses 
for the U(Z, T) and V(Z, T) deformations, m is the mass of 
the clamp plus the mass of the disk, U m and V m are the displace- 
ments of the clamp center of mass, and Y~.y are the diametral 
moments of inertia of the combined clamp/disk about the x and 
y-axes with respect to point C. We define the dimensionless 
variables 

w R Z t T 
r b z L k p d b 4 J  b 

U V 
- -  m _ ~  = 

a K E I I L  p , L  3 m L  2 

Y b D P pdb 4 pdb 4 

Jx., = ~ 'y Z la  dl 2 = c~ 2 (3 )  
pdb4 Zl,2 = L ' L 

4, and 4' represent the spindle slopes at the spindle/clamp inter- 
face and are equivalent to the rotations of the rigid clamp about 
the y and -x-axes ,  respectively. Assuming the exponential time 
dependencies 

u3(r, O, t)  = w ( r ,  0)#  ×2' a(z,  t) = u ( z ) e  i~h 

O(z, t)  = v ( z ) e  i×~' 

the dimensionless eigenvalue problem is 

V4w - k4[w - r cos 04, - r sin 04'] = 0 

Bi[w]  + eCi[w]  + e2Di[w]  = 0 

P (4a) 

r = y , l  

(4b) 

K u  .... - K 4pu = 0 ~Kvzzzz -- X 4 p v  = 0 S (4c, d) 

u = u s = v  =Vz  = 0 Z = 0 ,  1 (4e) 

Ku=z[~ - K4au  m = 0 ~gVzzz[~21 - ~40LU m : 0 (4f ,  g) 

- X "[ 4 ~  - f f r cos Owda ] = O (4h) 

- X 4[ Jx4' - f f r sin OwdA ] = O (4i) 

u m = ulz,  + d,u~l~, = ul~2 - d~.~lz2 

v m = vlz, + d~vzl~ = vlz~ - d2v~l~ ( 4 j ,  k) 

u~lz, = Uzl~2 = 4, v~lz, : v~t..2 = 4'. (41,  m )  

P is the disk domain 3' < r < 1, 0 -< 0 < 27r; S is the spindle 
domain (0, z~) U (z2, 1). 

The disk boundary conditions (4b) include small, asymmetric 
boundary operators eCi, eeDi superposed on classical, axisym- 
metric boundary operators B;. We consider three types of inner 
boundary asymmetry. 

1 Clamped Boundary With Shape Imperfection (Fig. 
2 ) .  

1 2 ~ 2  , w + c g w ~ +  ~e g w ~ =  0 

1 agwo] + ~r2g 
Wr "1'' gWrr 7 2 dO e L '~  dd@ wo 

r = y  

1 ( d g ~  2 _ g d g w r  0 -Jr- 1 2 ] 
2Y z k-fiT ] Wr y2 dO 2 g w~] = O. (5) 

The asymptotic approximations used to reduce the clamped 
boundary conditions w = w, = 0 on the irregular boundary to 
(5) are discussed by Parker and Mote (1996b). 
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Fig, 2 Inner clamped, outer free annular plate with a geometric shape 
asymmetry at the inner boundary 

2 Circumerentially Varying Linear Spring. The inner 
boundary displacement is restrained by a spring of stiffness k 
= ko + ek(O) 

w r = O  

(~72W)r "~- - - 7 -  WrO 0 + + kow + ~k(O)w = 0 (6) 

3 Circumerentiaily Varying Rotational Spring. The in- 
ner boundary rotation is restrained by a spring of stiffness K = 
Ko + e~:(O) 

w = 0  

r = y  
11 l/  

Wrr - -  --r w~ + ~ Woo - Kow~ - eK(O)w,. = 0. (7) 

w(r,  O) 

u(z) 
v(z) 

a = u m 

v m 

Extended Operator Formulation 
We cast the coupled system eigenvalue problem in a struc- 

tured form by defining the extended eigenfunction a and the 
extended stiffness (L) and inertia (M) operators 

V4w ] 

Kuzzzz ] 

~Kvzzzz I 
La = Ku~z~ I~ 

~K~ I~ ~, | 
-K[uz~l~ ~, - d2uz¢¢lz~ - dluz~zl~,l I 

(Sa, b) 

' w -  r c o s 0 t  h -  rsin0~0 ~ 

pu 

pv 

Olbl m 

Ma = c~v" (8c) 

Jy~ - f f f cos OwdA 

J~q,-ffprsinOwdA 

In the sequel, we use ( = 1 and J~ = Jy = J. The eigenvalue 
problem (4) becomes 

La - k4Ma = 0 (9a) 

Bi[w] + eCi[w] + e2Di[w] = 0 r = % 1 (9b) 

u = u ~ = v = v ~ = 0  z = 0 ,  1. (9c) 

Equation (9a) is a compact statement of (4a, c, d, f - i ) .  With 
( 4 j - m ) ,  (8a) is completely defined by w, u, and v. The ex- 
tended eigenfunctions a are elements in the Hilbert space H, 

H =  L 2 ( P ) ~ / - ~ ( S ) ~ / L 2 ( S ) ~  R @  R @ ~ @ ~ .  (10) 

Operators L and M are mappings from H --~ H. The form (10) 
suggests the inner product for p, q E H, 

(P, q) = f prq = f fpPlqldA + SsP2qzdz 

+ fsP3q3dz + P4q4 + Psq5 + P6q6 + PTq7. (11) 

The extended operators L, M are self-adjoint provided the 
uncoupled, annular disk eigenvalue problem, (4a, b) with ~b 
= q/ = 0, is self-adjoint. With this specification and proper 
normalization 

(a i, Ma j) = 6~ (a i, La j) = ( ~ i ) 4 6 i j  (12) 

M is positive definite. The definiteness of L is the same as the 
definiteness of the plate benditig operator V 4 with boundary 
conditions (9b). 

The structure of the coupled disk-spindle eigenvalue problem 
(9) is identical to that considered by Parker and Mote (1996a), 
and the perturbation method developed therein applies. This 
similarity of structure is not evident from (4). The eigensolu- 
tions of (9) are represented in asymptotic expansions in the 
small parameter e 

a = ao + eal + e2a2 + O(e3). (13) 

Components of a~, i = 0, 1, 2 are denoted w~, u~, v~, u~, v~, 
~b~, and tp~. Substitution of ( 13a, b) into (9) leads to a sequence 
of perturbation problems governing a0, a,, and a2 

Lao - k4Mao = 0 (14a) 

Bi[wo] = 0 r = % 1 (14b) 

uo = Uoz=Vo =Vo~= 0 Z = 0, 1 (14c) 

La, - k4Mal = IzMao (15a) 

B~[wl] = -Ci[wo] r = % l (15b) 

Ul = ul~= vl = v l ~ =  0 z = 0, 1 (15c) 

La2 - haMa2 = #Ma~ + rlMa0 (16a) 

Bi[w2] = -Ci[wl] -- Di[wo] r = y, 1 (16b) 

u2 = u2~=v2=v2z=  0 z = 0 ,  1. (16c) 

Problem (14) can be solved exactly for the infinite set of unper- 
turbed eigensolutions (h 4, a0) of the axisymmetric disk-spindle 
system. Self-adjointness of (14) ensures orthogonality of the 
a0. The normalization (a, Ma) = 1 and (13b) give 

(ao, Ma0) = 1 (ao, Mat) = 0. (17) 

Unperturbed Eigensolutions 
The unperturbed eigenvalue problem (14) is that of an axi- 

symmetric, coupled disk-spindle system. The component equa- 
tions for Wo, u0, and vo are obtained from (4) with e = 0 and 

4 ~ X4. The coupled system eigenfunctions are characterized 
by their numbers of nodal circles m and nodal diameters n in the 
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Fig. 3(a) Two nodal diameter disk eigenfunction. Solid and dashed lines 
denote the nodal diameters of the sin 20 and cos 20 dependent eigen- 
functions, respectively. 

Fig. 3(b) One nodal diameter coupled eigenfunction. Solid and dashed 
lines denote the nodal diameters of the sin 0 and cos # dependent eigen- 
functions, respectively. 

Fig. 3 Axisymmetric system (unperturbed) eigenfunctions 

disk deformation. Two classes of unperturbed, coupled system 
eigensolutions exist depending o n  n. 

1 Disk Eigensolutions (n  ~ 1) .  Disk eigensolutions have 
eigenvalues X and disk deformation wo determined from the 
uncoupled, axisymmetric  disk eigenvalue problem; the spindle 
does not deform, u0 = vo = 0 (Fig. 3 ( a ) ) .  The one nodal  
diameter  (n = 1 ) disk eigensolutions couple with the spindle 
and are excluded from this class. For n = 0, the eigenvalues 
are distinct, and the eigenfunction a0 is defined by 

wo = AtJo(Xr)  + Af lo(Xr)  + A3Yo(Xr) 

+A4Ko(hr )  = Ro(r)  Uo = Vo = 0. (18)  

For n --> 2, the eigenvalues are degenerate. The two unperturbed 
eigenfunctions a0, and a02 are defined by 

w0~ = [AlJ~(kr )  + A21,(Xr) + A3Y , (kr )  

+ A4K,,(Xr)] cos nO = R,,(r) cos nO n -> 2 

u01 = vo I = 0 (19a )  

Wo2 = [A1J,,(kr) + A21n(hr) + A3Y,,(hr) 

+ A4K~,(hr)] sin nO = R,,(r) cos nO n ~- 2 

Uo2 = vo2 = 0 (19b)  

where J , ( h r ) ,  L ( X r ) ,  Y,(Xr),  and K,,(Xr) are Bessel  functions. 
These solutions satisfy ( 4 a ) .  The A~ are fixed by the disk bound- 
ary conditions (4b)  with e = 0. The integrals in (4h ,  i) repre- 
senting the moments  that the disk transmits to the clamp vanish 
for the solutions (18) ,  (19) .  

2 Coupled Eigensolutions (n  = 1) .  In the coupled eigen- 
solutions, one nodal  diameter  disk deformation transmits a mo- 
ment  to the clamp and causes spindle deformation (Fig. 3 (b ) ) .  
For an axisymmetric  spindle, all eigenvalues are degenerate. 
The two corresponding eigenfunctions are 

Wo~ = [A~J,,(kr) + Az l~(kr )  + A3Y,,(kr) 

+ A4K,,(kr) + r~bo] cos 0 = R l ( r )  cos 0 

{ E~ sin f lz  + E2 sinh f lz  + E3 cos flZ 

q- Ea cosh f lz  0 < z < z, 

u0, = Fi sin flz + F2 sinh flz + /'3 cos flz 

+ F 4 c o s h f l z  zz < z < 1 

v0, = 0 (20a )  

w02 = [A,J, ,(Xr) + A21,,(Xr) + A3Y,,(Kr) 

+ A4K,,(Kr) + r~bo] sin 0 = R, ( r )  sin 0 

u% = 0 

I Et sin f lz  + E2 sinh f lz  + E3 cos f lz  

J + E4 cosh flz 0 < z < Zl 
1) 02 

1 

I F1 sin flz + F2 sinh flz + F3 cos j~z 

( + F 4 cosh flZ Z2 < Z < 1 

f14 = £ h4. (20b)  
K 

These satisfy (4a ,  c, d) .  The characteristic determinant  and 
eigenfunction coefficients Ai, Ei, Fi are readily calculated from 
(4b,  e - m )  using computer  algebra software. Two types of  cou- 
pled eigenfunctions exist. The first are dominated by spindle 
deformation with only small  disk deformation. The associated 
eigenvalues are close to those of  a spindle with attached rigid 
mass and inertia. The first and third coupled eigenvalues in 
Table 1 are of this type; compare  these eigenvalues, hi = 2.909 
and X2 = 8.575, to the flexible spindle~rigid disk eigenvalues 
of Xt = 2.915 and h2 = 8.204. The second type of  coupled 
eigenfunction is dominated by disk deformation with small spin- 
dle deformation. The associated eigenvalues are close to those 
of  the uncoupled n = 1 disk eigenvalues. The second coupled 
eigenvalue in Table 1, M = 3.654, is of  this type ( the n = 1 
uncoupled disk eigenvalue is Xo~ = 3.644).  

The coefficients Ai in (18) ,  (19) ,  and (20)  are numerical ly 
different. Because of axisymmetry,  however,  the A~ in (19a )  
and (19b)  are identical as are the A~, Ei,  and Fi in (20a )  and 
(20b) .  Because ~b0 = ~00, Rj ( r )  is the same in (20a )  and (20b) .  

For the axisymmetric,  unperturbed system, coupling occurs 
in only the one nodal diameter  disk eigenfunctions and all but 
the n = 0 eigenvalues are degenerate. This results from axisym- 
metry of  the disk; it is unchanged by ( 1 ) the type of axisymme- 
tric, unperturbed disk boundary conditions, (2 )  spindle asym- 
metry (~ ~ 1), (3)  different spindle stiffnesses in the left and 
right-hand sections, (4 )  specified spindle support conditions, 

Table 1 Dimensionless (M and dimensional unperturbed eigenvalues 
of an axisymmetrio (z~ = 1, Jx = Jy = J), cantilevered (no right-hand 
spindle section), coupled disk-spindle system. Disk subscripts refer to 
the number of nodal circles m and nodal diameters n in the eigenfunction. 
The coupled subscript m denotes the numerical order of the eigenvalues. 

Dimensional Parameters Dimensionless Parameters 

a=0.1016m EI=21110. N-m 2 

b = 0.2032 m Ps = 9.155 kg,6n 
D = 18.45 N-m m = 7.656 kg 

Pd = 8.030 kg/m 2 J = 0.02822 kg-m 2 

L = Z 1 = 0.4064 m dl = 0.01320 m 

?=0.5 
K=2815. 
p = 44.89 
c~ = 92.36 
J = 2.061 

d l=  0.0325 

Z0o = 3.603 
K02 = 3.842 

Disk, X,,,, ~3 = 4.325 
= 5.082 

L05 = 6:003 

%1 = 2.909 
Coupled, X m %2 = 3.654 

~3 = 8.575 

(0 (rad/s) f(Hz) 

476.7 75.87 
541.9 86.25 
686.9 109.3 
948.2 150.9 
1323. 210.6 

310.7 49.44 
490.3 78.03 
2700. 429.7 
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(5) clamp inertia asymmetry (J~ ~e Jr), and (6) different clamp 
thicknesses dl and d2. 

Solut ion  of  Per turbat ion  Equat ions  

Consider the inner boundary condition perturbations ( 5 - 7 ) .  
The outer boundary conditions are axisymmetric and unper- 
turbed. For each unperturbed eigensolution ()t 4, ao), (15 )  and 
(16) determine the first and second-order eigensolution pertur- 
bations. 

The boundary conjuncts of the operators L and M (Roach, 
1982) are 

JL(P, q) = (Lp,  q) - (p,  Lq) 

JM(P, q) = (Mp,  q) - (p,  Mq) = 0 (21) 

for p,  q ~ H. For elements of H satisfying homogeneous spindle 
conditions at z = 0, 1 (such as ao, a~, and a2 of (13b)),  the 
boundary conjunct JL reduces to the boundary conjunct Jv ~ 
associated with the plate bending operator V 4. For example, 

JL(a0, a,)  = Jr,(w0, wl) = (V4wo, wl) - (w,,, V4WI) 

= fop [V2w~w°" - (V2w~)"w° + Wi (~7 2Wo)n 

- wl,y2wo]dg (22) 

where OP denotes the circular plate boundaries and 

V2(o) = (.),,, + ( l / r ) ( . ) , ,  + ( . )  .... 

At the outer boundary r = 1, (o),, = ( . ) ,  and (°), = 1/r(.)o; 
at the inner boundary r = % (.),, = --(°)r and (°), = - 1 / r ( . ) o .  
Integration is counterclockwise on the outer boundary and 
clockwise on the inner boundary. 

Consider a distinct unperturbed eigenvalue X4 with eigen- 
function a0. The inner product of each side of (15a) and (16a) 
with a0 and use of (21), (17), and (22) give the solvability 
conditions 

p, = - .&(ao ,  a,)  = -Jv~(Wo, w,) (23) 

= --JL(ao, a2) = -Jv4(w0, w2). (24) 

Consider a degenerate unperturbed eigenvalue h 4 of multi- 
plicity two having associated orthonormal, unperturbed eigen- 
functions ao, and a0~. As a result of the degeneracy, the unper- 
turbed eigenfunction a0 is initially indeterminate 

ao = bta< + b2a% (25) 

with bt and be determined subsequently. In the degenerate case, 
two solvability conditions for the problem (15) must be satis- 
fied: 

b j z  = --JL(aO,,  a,) = - J v 4 ( w 0 , ,  wl )  

b2/z = --JL(ao~, al)  = -Jv'(Wo~, wl). (26) 

Equations (26) lead to a 2 X 2, symmetric, algebraic eigenvalue 
problem (Parker and Mote, 1995a) 

Db = #b. (27) 

The eigenvalues #~.2 are the first-order perturbations of the de- 
generate unperturbed eigenvalue. If/u~ = #2, the eigenvalue k 4 
remains degenerate in a first-order perturbation; the two eigen- 
vectors b = (b~ b2) T are arbitrary unit vectors. If #~ * /-~2, k4 

splits into distinct eigenvalues and the eigenvectors b = (b~ 
b2)c fix the two unperturbed eigenfunctions (25). 

1 Disk Eigensolutions (n ~ I ) .  Consider the degenerate 
disk eigenvalues and associated eigenfunctions ao,~ defined by 
(19). We represent an arbitrary geometric asymmetry g(O) in 
(5) by its Fourier series 

g(O) = ~ g} 'cosjO + ]~ g~'a sin j0  = ~ g;e ij° 
j=l j= l  j . . . .  

1(  c g¢ ~ gj - ig}). (28) 

Evaluation of (26) yields 

2 \ dr 2 ,.=~ g;,, -gg, ,J  

+ { d2R,, )2 
# = - ~ Y ~ . r  2 ,-=~ Ig2,,I. (29) 

Eigenvalue splitting in a first-order perturbation is identified 
immediately from (29b): An n nodal diameter degenerate ei- 
genvalue splits from geometric asymmetry if and only if g2,, :# 0, 
The rate of splitting is proportional to ] 42,, I. The corresponding 
results for an arbitrary linear stiffness variation k(O) in (6) are 

k(O) = ~ k~cos jO + Z k ] s i n j 0  = ~ kje ~j° (30) 
i=1 j= l  j = - ~  

D = - T r - - z  2 2,, k~. 
2 [R,,(y)] k~,, -k~,, 

~z = +Tr-y[R,,(3,)]2Lk2,,[. ( 3 1 )  

The eigenvalue splitting rule is as follows: An n nodal diame- 
ter degenerate eigenvalue splits fi'om linear stiffness asymmetry 
if and only if k2,, ~ 0. The rate of splitting is proportional to 
I k2,, L. For a general rotational stiffness variation K(0) in (7),  

K(0) = ~ K}' cos j0  + ~ ~)' sin j0  = Kje °° (32) 
j~ l  j= l  j - ~  

] 
2 \ dr I,-=~,7 LK~,, -Kg,, 

+7r7( dR,, )~ IK2,,I. (33) 
tz = _ \ d--TU,.=~/ 

The eigenvalue splitting rule is as follows: An n nodal diame- 
ter degenerate eigenvalue splits from rotational stiffness asym- 
metry if and only if t¢2,, ~ 0. The rate of splitting is proportional 
to 1~2°1. 

Eigenvalue splitting is independent of the disk outer boundary 
conditions, provided they are axisymmetric. Outer edge bound- 
ary conditions change the eigenvalue perturbations only through 
their influence on R,(r )  in (29b), (31b), (33b). For geometric 
or stiffness asymmetries in the disk outer boundary conditions 
with axisymmetric inner boundary conditions, the splitting rules 
are identical to the preceding. Rules for simultaneous perturba- 
tion of the inner and outer disk boundary conditions are readily 
derived. For a coupled system with geometric asymmetry at the 
inner boundary (5) and linear stiffness asymmetry (as in 6) at 
the outer boundary, 

D = Dgeom + Dstif f 

_+ 7r[R,,(Y)]2k2,, [ d2R,, )2 # = + 7rT~-~-r2 g2,, n >- 1 (34) 
r = y !  I 

where Dg ..... is the matrix from (29a) and Dsti~.f is from (31a) 
with y = 1. kz,, = g2,, = 0 implies no first-order splitting. 
However, k2,, ~ 0 and g2, ~e 0 does not necessarily cause split- 
ting; two asymmetries, either of which would split an n nodal 
diameter eigenvalue if acting individually, may not split the 
eigenvalue when present together. Fourier representation of the 
asymmetry allows the above rules to be applied to arbitrary 

Journal of Applied Mechanics DECEMBER 1996, Vol. 63 / 957 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



continuous or discontinuous asymmetries. Discontinuous asym- 
metries include radial edge slots or discontinuous boundary 
supports. All of the above splitting rules are also valid for 
uncoupled disks and generalize the rules given by Parker and 
Mote (1996a, b). 

Orthogonality and completeness of the unperturbed eigen- 
functions at allow expansion of the eigenfunction perturbation 
al in the infinite series 

a~ = ~ e,a~ + ~ e, - &(a~,  a____________) (35) 

where a~ denotes the first-order perturbation of the kth unper- 
turbed eigenfunction a~, i is an index of all eigensolutions, and 

is defined by an arbitrary function ~ satisfying the inhomoge- 
neous boundary conditions (15b), g(z) = 0, and v(z) = 0. The 
extended eigenvalue problem formulation and resulting orthog- 
onality make the series solution (35) possible. Though the series 
(35) converges in the natural metric of ( 1 l ), its use in calculat- 
ing the second-order eigenvalue perturbation ~7 may lead to a 
divergent series (Parker and Mote, 1996b). Additionally, a~ in 
(35) is approximate, is difficult to use in modal response analy- 
ses, may converge slowly, and requires calculation of many 
unperturbed eigensolutions. 

These difficulties do not arise with the exact solution for a~, 
which is determinable from the decomposition 

al = c~a0t + c~a0~ + a~ + a]' 

W 1 --~ C|W01 --~ C2W02 + W~ / -~- W~; 

P 
~1 "~ ClgO I 27 C2go 2 + U2 "J~ U 1 

P 
U 1 = ClU0t + C2l)0z + U~ + U t .  

(36) 

P The components w~, u~, and v~ defining a~ are particular solu- 
tions of the inhomogeneous component differential equations 
of ( 15a); the components w~, u~, and v) defining a h are general 
solutions of the homogeneous component differential equations 
of (15a); the first two terms are indeterminacies required be- 
cause a0t.2 satisfy the homogeneous form of (15); c~ and c~ are 
constants. For a0 given by (25) and (19), the critical element 
a~l of (36) is defined by 

v #r  [A~J,+i(Xr) - A2/~+l(kr) wl = 4~3 

+ A3Y,,+~(hr) + A4K,+~(kr)](bl cos nO + b2 sin nO) 

+ rcos0q~  + rsin0~pt (37a) 

P P = 0 (37b) U 1 = U I 

where qS, = u h [zt and ~bl = Vl~ ]Z|' Components of the homoge- 
neous solution a~ h are 

w) = ~ [P,J~(kr) + O,/~(Xr) + P y / X r )  
j=o 

+ 0jK~(kr)] cos j0  + ~ [RjJ](kr) + Sfly(kr) 
j=l 

+ /~Y~(kr) + S~KK~(kr)] sin j0  (38a) 

I Ei sin 3z  + E2 sinh flz + E3 cos ~z 

J + E ~ c o s h 3 z  0 < z < z ~  
(38b) 

/ F~ sin/~z + F2 sinh/Sz + F3 cos flz 

L + F4 cosh Bz z2 < z < 1 

I d l  sin 3z  + G2 sinh/~z + G3 cos 3z 

J + C 4 c o s h ~ z  0 < z < z ~  
(38c) 

/ H~ sin 3z  +/72 sinh 3z  +/~3 cos ~z 

L + / 7 4 c o s h ~ z  z 2 < z <  1. 

With the particular solution (37), the coefficients in (38) are 
computed from the boundary conditions ( 15b, c) and the clamp 
momentum balances of (15a). Exact expressions for the coef- 
ficients can be obtained using computer algebra software. Rules 
to predict when the disk eigenfunctions couple with the spindle 
emerge from these expressions. 

Consider again the examples ( 5 ) - ( 7 ) .  For the geometric 
asymmetry and the general g(O) from (28), coefficients Ei and 
Ft of (38b) are nonzero if and only if 

bl(g,~+l + g,~-l) + b2(g~+~ + g~-l) * O. (39a) 

Gi and/4t of (38c) are nonzero if and only if 

bl(g~i+~ - g ~ - l )  -- b2(g~+l - g ; - l )  ~ 0. (39b) 

Thus, the disk-spindle eigenfunction coupling rule for geometric 
asymmetry is as follows: If either or both of (39) are satisfied 
for an n nodal diameter disk eigenfunction, then the perturbed 
eigenfunction couples the disk and spindle deformations; other- 
wise the perturbed eigenfunction involves only disk deforma- 
tion. For linear stiffness asymmetry and k(O) from (30), u~ and 
v~ are nonzero if and only if 

c s s b~(k~+~ + k~_~) + b2(k,,+l + k,,-1) -~ 0 (40a) 

bl(k~+l - k;~-i) - bz(k~+l - k,~-l) ~ 0. (40b) 

The coupling rule for linear stiffness asymmetry is as follows: 
If either or both of (40) are satisfied for an n nodal diameter 
disk eigenfunction, then the perturbed eigenfunction couples 
disk and spindle deformations; otherwise the perturbed eigen- 
function involves only disk deformation. For rotational stiffness 
asymmetry and K(0) from (32), u~ and vj are nonzero if and 
only if 

bl(K~i+l + ~¢~-1) + b2(x~;+l + K~-l) ~ 0 (41a) 

bl(K~+l -- K~-I) -- b2(K,~+l -- K~i-~) * 0. (41b) 

The coupling rule for rotational stiffness asymmetry is as fol- 
lows: If either or both of (41) are satisfied for an n nodal 
diameter disk eigenfunction, then the perturbed eigenfunction 
couples disk and spindle deformations; otherwise the perturbed 
eigenfunction involves only disk deformation. Satisfaction of 
the coupling conditions ( 3 9 ) - ( 4 1 )  implies only that a~ in- 
volves spindle deformation (u~ * 0 and/or v~ * 0). Absence 
of coupling does not imply a~ = 0 because wt * 0. 

With a~ known, the normalization condition (17b) and two 
solvability conditions for (16) generate the matrix equation 
(Parker and Mote, 1996a) 

D=z D~2 - /z -b~ c2 
-b~ -b2 0 '/7 

#(a0,, M[a]' + a~]) + JL(a0,, a2) ) 
= ~z(a02, M[a~ + a~]) + ]L(a02, a2) ~ (42) 

h P h bl(a0~, M[ai  + at])  + bz(a02, M[al  + a~]) 

where D o are components of D and JL(a0~, a2) = JL(a0,, 
a2)[c~=c2=o. The operator in (42) is invertible if and only if D 
has distinct eigenvalues #. In this case, cl, c2, and z 1 are found 
from (42). Computer algebra software Simplifies evaluation of 
the right-hand side of (42). cl and c2 complete the solution (36) 
and r 1 gives the exact, second-order eigenvalue perturbation. If 

958 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



the # are degenerate, the b = (b~ b2) r are indeterminate, b~, 
bz, and ~7 are calculable, however, from the first two equations 0 t ~  
of (42) and b~ + b~ = 1. The exact solution for a~ utilizes a I 
decomposition analogous to (36) and requires the particular I 
solutions w 2, p u 2,P and v~. Though not pursued here, determina- _ 
tion of w~, u~, and v~ is achievable (Parker and Mote, 1997). 

For the zero nodal diameter unperturbed eigenfunctions (18), 
(23) yields # = 0 for the three examples. The solution for a~ -4 
is obtained by reduction of the results presented for the degener- 
ate n -> 2 eigensolutions. The perturbed eigenfunction a~ does 
not couple with the spindle; this and the result # = 0 arise %e 
because the asymmetries (28), (30), and (32) have zero mean. 
The exact, second-order eigenvalue perturbation ~7 is calculated ~ -8  
from (24) and is nonzero, in general. ~ 

2 Coupled Eigensolutions (n = 1). For the coupled 
eigensolutions (20), the matrices D and eigenvalue perturba- 
tions # for geometric, linear stiffness, and rotational stiffness 
asymmetry are given by (29), (31), and (33) with n = 1. -I2 
Eigenvalue splitting is predicted by use of n = 1 in the appro- 
priate splitting rule. The eigenfunction perturbation a~ is decom- 

P is defined by posed as in (36). The particular solution a~ 

p #r  [alJ~(hr) - A212(kr) + a~Y2(hr) + A~K2(hr)] 
W l  - -  4 h  3 -16 

X (bl cos 0 + b2 sin 0) + r cos 0~b~ + r sin 0~b~ (43a) 

El cos ]~z + E2 cosh/3z 

].zpz - -  E 3  sin/3z + E~ sinh/3z 0 < z < z~ 

U~ = 4 ~  b l  f I COS ~3Z -I- F 2  c o s h  f l z  

- F3 sin/3z + F4 sinh/3z 

I Gi cos ~z + Gz cosh pz 

#pz b2 ~ - G3 sin ~z + G4sinh~z 

v~ = 4K~3 / H, COS /~Z + H2 cosh ~Z 

L - Ha sin ~z + H4 sinh ~z 

z 2 < z <  1 

(43b) 

0 < z < z =  

z 2 < z <  1. 

(43c) 

a~ is defined by (38), and again its coefficients are calculable 
exactly. Exact solution for fi is given by (42) as for the disk 
eigenvalues, 

Example: Geometric Shape Asymmetry 
To illustrate the eigenvalue splitting and eigenfunction cou- 

pling phenomena, we consider the cantilevered system of Fig. 
2 with the parameters of Table 1. The specific shape asymmetry 
corresponding to (28) is 

l 1 l g(O) = ~cos0  + 3 s i n 0  + ~ c o s 2 0  

l l 1 - ~ s i n 2 0 - ~ c o s 4 0 - ~ c o s 6 0 .  (44) 

The splitting and coupling rules (29) and (39) give the follow- 
ing results. 

1 Disk Eigensolutions. 

n = 2: The eigenvalues split at first-order perturbation (g4 
0). The eigenvectors of (29a) are bl = (1 0) r and b2 = 

(0 1) r. Conditions (39) are satisfied for bl and b2, so the 
perturbed eigenfunctions associated with both eigenfunctions 
(25) couple with the spindle. 

n = 3: The eigenvalues split at first-order perturbation (g6 
0). For the eigenvector bl = (1 0) r, neither of (39) is 

satisfied and the eigenfunction does not couple with the spindle. 

0.01 
E 

0.02 0.03 
', I I I 

;;;::: . . . . . . . . . . . . . . . . .  (~,),2 

~\ ~ 1,2 
" "'" 

\ \  
\ 
\ \ 

x\ 

Fig. 4 Percent changes in the disk eigenvalues for the geometric shape 
asymmetry of (44). Subscripts m n  denote the number of nodal circles 
(m) and nodal diameters (n) in the unperturbed eigenfunction. Subscripts 
1, 2 indicate the split eigenvalue loci. The inset is an exploded view for 
small ~. 

For the eigenvector b2 = (0 1) r, (39b) is satisfied and the 
asymmetry introduces disk-spindle coupling (with v (z)) for this 
perturbed eigenfunction. 

n = 4: The eigenvalues do not split at first-order perturba- 
tion (g8 = 0). Because g3 = g 5  = 0 ,  neither of (39) is satisfied 
and the n = 4 eigenfunctions do not couple with the spindle. 

n = 5: The eigenvalues do not split at first-order perturba- 
tion (gl0 = 0). b~,2 of (29a) are indeterminate. They are deter- 
mined with ~/from the equations of (42). They are such that 
(39) are satisfied and both eigenfunctions couple with the spin- 
dle. 

The above results illustrate independent eigenvalue splitting 
a n d  disk-spindle vibration coupling. The n = 2 eigensolution 
splits and couples. In contrast, the n = 3 eigenvalue splits but 
one eigenfunction does not couple. Conversely, the n = 5 eigen- 
function couples but the eigenvalue does not split. The n = 4 
eigensolution neither splits nor couples, showing that eigensolu- 
tions can be remarkably insensitive to certain asymmetry distri- 
butions, 

Eigenvalue changes as a function of asymmetry amplitude 
are shown in Fig. 4. The n = 2, 3 eigenvalues, which split at 
first order perturbation, are most dramatically affected, with 
changes around 16 percent occurring for e = 0.03. For e = 
0.03, the peak-to-peak amplitude of the shape deviation cg(O) 
is 8.6 percent of the inner radius y = 0.5. Splitting of the n = 
2, 3 eigenvalues is evident in the inset of Fig. 4, That splitting 
of the n = 4, 5 eigenvalues is a higher order effect is also 
apparent from the inset. For small e, the loci associated with 
one of the split eigenvalues increases while the other decreases. 
For larger • all eigenvalues decrease, a result of the additional 
flexibility from spindle coupling. 

2 Coupled Eigensolutions. The eigenvalues split at first- 
order perturbation because g2 m 0. Changes in the first three 
coupled disk-spindle eigenvalues are shown in Fig. 5. Coupled 
eigensolutions whose unperturbed eigenfunctions are dominated 
by disk deformation are more strongly affected by disk clamp 
asymmetry than coupled eigensolutions dominated by spindle 
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Fig. 5 Percent changes in the coupled eigenvalues for the geometric 
shape asymmetry of (44). The first subscripts (1,2, 3) denote the numerical 
order of the unperturbed eigenvalues. The second subscripts (1,2) indicate 
the split eigenvalue loci, The inset is an exploded view for small 4. 

deformation. The unperturbed ~2 eigenfunction involves primar- 
ily disk deformation with small spindle deformation, and X2 is 
significantly affected by disk asymmetry. The eigenvahies X1 
and ~3 are associated with unperturbed eigenfunctions domi- 
nated by spindle deformation; they change only slightly with 
increasing asymmetry. 

Eigenvalue Splitting and Eigenfunction Coupling 
Rules 

From the identical form of the eigenvalue splitting and eigen- 
function coupling rules for the boundary asymmetries consid- 
ered, it is evident that splitting and coupling are dictated by the 
distribution and not the source of the asymmetry. Though only 
geometric and stiffness asymmetries were considered, inertia 
asymmetry will lead to identical forms for the splitting and 
coupling rules. Furthermore, disk eigenvalue splitting and disk- 
spindle coupling in other than the one nodal diameter eigenfunc- 
tions occur only in the presence of disk asymmetry (including 
disk nonuniformities such as circumferentially varying thick- 
ness). These effects are independent of spindle characteristics. 
For a uniform disk, boundary asymmetry is the only asymmetry 
that splits the degenerate disk eigenvalues and leads to expanded 
disk-spindle coupling. Other possible asymmetries include dif- 
ferent spindle stiffnesses in the u(z), v(z) bending planes (~ 

1), different clamp rotational inertia in the two bending 
planes (Jx ~: Jy), different spindle stiffnesses in the left and 
right-hand spindle sections, nonuniform spindle stiffness EI(z), 
different left and right clamp thicknesses (di e dz), and differ- 
ent spindle boundary conditions. Though these asymmetries al- 
ter the eigenvalues and some of them remove the degeneracy 
in the coupled eigenvalues, they neither split the disk eigenval- 
ues nor induce additional coupling beyond the n = 1 eigenftmc- 
tion. 

The utility of the perturbation solution, splitting rules, and 
coupling rules is enhanced by their simplicity and generality. 

Because the perturbations are derived for arbitrarily distributed 
asymmetries, they can be used in design to distribute unavoidable 
boundary asymmetries so as to minimize vibrational effects. For 
example, if the bearing excitation spectrum is known (even if 
only approximately), asymmetries can be chosen to avoid cou- 
pling in eigenfunctions with natural frequencies near the excita- 
tion frequencies. A similar process could be used to isolate spin- 
dle vibration from disk excitation. Additionally, asymmetry can 
be deliberately introduced so as to tune natural frequencies away 
from forcing frequencies of disk, spindle, or clamp excitation. 
The simplicity of the rules allows them to be utilized with mini- 
mal calculation for initial design or for troubleshooting existing 
vibration problems. The explicit parameter dependence further 
simplifies the process by showing which parameters have maxi- 
mal influence on the eigensolutions. 

Conclusions 
1 The eigenvalue problem for coupled disk-spindle-clamp 

vibration is cast in a self-adjoint form (9) by incorporating 
the disk, spindle, and clamp displacements into an extended 
eigenfunction (8a). This formulation preserves the orthogonal- 
ity of the coupled system eigenfunctions and provides a concise 
framework for coupled disk-spindle vibration analysis. 

2 Exact eigenvalue and eigenfunction perturbations are de- 
rived for coupled disk-spindle systems with geometric shape, 
stiffness, and combined geometric/stiffness asymmetries in the 
disk boundary conditions. Eigensolution approximation results 
only from truncation of the asymptotic series (13). Fourier 
representation of the asymmetries allows treatment of general 
continuous or discontinuous asymmetry distributions. 

3 The unperturbed, axisymmetric system eigenfunctions are 
exactly calculable and are of two types: disk eigenfunctions 
with no spindle deformation and coupled disk-spindle eigen- 
functions. Only the one nodal diameter disk eigenfunctions cou- 
ple with the spindle. 

4 Splitting of the degenerate, unperturbed eigenvalues and 
coupling of the uncoupled, unperturbed disk eigenfunctions 
from disk boundary condition asymmetry are predicted by sim- 
ple, general rules based on the Fourier distribution of the asym- 
metry. Both splitting and coupling depend on the distribution of 
the asymmetry and are independent of the source of asymmetry. 
Coupling is caused solely by disk asymmetry; spindle asymme- 
try does not induce coupling. 

5 Asymmetry-induced coupling of the unperturbed, disk 
eigenfunctions with the spindle provides a mechanism for en- 
ergy transfer from bearing/spindle excitation to disk vibration 
and vice versa. Coupling also introduces additional flexibility 
that can significantly reduce the system natural frequencies. 

6 The self-adjoint formulation of the coupled system eigen- 
value problem and the complete, orthonormalized set of ex- 
tended eigensolutions are well suited for modal response analy- 
ses. Generalized coordinates Pi (t) of the modal representation 

a(r ,  0, z, t) = ~p i ( t )a i ( r ,  O, z) 
i=1 

decouple as a result of orthogonality. Disk, spindle, clamp, and 
bearing excitations can be incorporated in an extended forcing 
vector analogous to (8a). The coupled system eigenfunctions 
a i are also well suited for use as expansion functions in Ritz- 
Galerkin discretizations or as basis functions for nonlinear per- 
turbation analyses. 
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Exact Time-Dependent Plane 
Stress Solutions for Elastic 
Beams: A Novel Approach 
We consider an elastically isotropic beam of  narrow rectangular cross section gov- 
erned by the dynamic equations of  linearized plane stress theory and subject to typical 
boundary and initial conditions associated with flexure. We use one o f  the three 
stress-displacement relations to express the axial stress crx in terms of  the axial 
displacement U and the normal stress or. Assuming this latter stress and the shear 
stress T to be given functions o f  position (x, z) and time t, we write the remaining 
two stress-displacement equations as a nonhomogeneous hyperbolic system .for U 
and the normal displacement W. This system has a simple, explicit solution in terms 
of  or, T, and V, the value of  W on the centerline of  the beam. Introducing certain 
body forces fx and fi, we obtain explicit formulas for  o, r, U, and W valid in the 
interior of  the beam and satisfying any imposed tractions on the faces of  the beam. 
We satisfy initial conditions by adding certain explicitly computable increments to 
the initial displacements and velocities. Satisfaction o f  end conditions of  displacement 
or traction yields a certain consistency condition along the centerline in edge zones 
( "boundary layers") o f  width ~uH, where u is Poisson's ratio and 2H is the depth 
o f  the beam. In particular, i f  V is taken as a solution of the equations of  elementary 
beam theory, then outside these end zones the body forces f~ and fz and the incremental 
initial conditions are "small." I f  V within the edge zones is also identified with the 
solution of  elementary beam theory, then a certain increment o f  the order o f  the 
dominant longitudinal stress cr x must be added within the edge zones to the prescribed 
value of  T on the face of  the beam. (This is consistent with the neglect of  two- 
dimensional end effects in elementary beam theory.) These results should be o f  use 
as analytical benchmarks for  checking numerical codes. 

Introduction 
Our motivation for this paper is the question of how to evalu- 

ate the errors in approximate solutions to initial/boundary value 
problems in the linearized theory of (two or three-dimensional) 
elasticity, such approximations arising either from numerical 
solutions or from exact solutions of simplified structural models 
such as beam, plate, or shell theories. In attempting to assess 
the accuracy of the stress fields inferred from such models, 
especially from so-called "higher-order" theories, many au- 
thors use as their standard of comparison very special bench- 
marks. Not only are such exact solutions usually static, they 
nearly always satisfy periodic boundary conditions (i.e., condi- 
tions of simple support) and thus fail to exhibit edge zones 
(boundary layers) where the accuracy of various structural mod- 
els is apt to be the worst. 

As a first (and perhaps novel) step towards obtaining exact, 
time-dependent, realistic benchmarks, we construct exact plane 
stress solutions for elastically isotropic rectangular beams, as 
described in the abstract, in terms of a normal and shear stress, 
~r(x, z, t) and T(X, Z, t),  and a function V ( x ,  t), where x and 
z are axial and normal distance, respectively, and t is time. 

To obtain these exact solutions we must impose certain ex- 
plicitly computable incremental external loads and initial condi- 
tions. In particular, incremental shears must be imposed on the 
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upper and lower faces of the beam, but only within a distance 
from the ends of  the order of  the depth o f  the beam. 

It is very natural to identify V with a solution of elementary 
(Euler-Bernoulli) beam theory and cr and T with the associated 
two-dimensional stresses inferred from the exact equations of 
motion. In doing so, we find that the incremental loads and 
initial conditions are "small" away from the end zones, as 
expected. Within the end zones, the incremental loads are of 
the order of magnitude of the (dominant) axial stress, again 
consistent with known asymptotic solutions of plane stress the- 
ory (e.g., Duva and Simmonds, 1992). Thus, our method of 
constructing exact solutions not only gives us a way to measure 
the accuracy of beam theory, it also provides standards against 
which to compare two-dimensional numerical solutions. 

The Equations of  Plane Stress Theory 

To avoid distracting details, we confine attention to an elas- 
tically homogeneous isotropic beam, subject to certain body 
forces and boundary/initial conditions specified below. Thus, 
in a region 0 < x < L, - H < z < H of the xz-plane, we have 
the three displacement-stress relations 

EU,x = ~rx - u~, G( U, z + W,x) -- ~-, EW,z = ~ - u~rx (1) 

plus the two equations of motion 

ox,x + 7,~ + fx = pU .... Y,x + cr,~ + f~ = pW .... (2) 

Here, U and W are displacements in the x and z-directions, 
respectively, crx is the axial stress, 7- is the shear stress, and a 
is the normal stress. Further, E is Young's modulus, G = E~ 
2(1 + u) is the shear modulus, p is the constant mass density, 

f.,. andfi are body forces--destined to be taken as error loads--  
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and a comma followed by a subscript denotes differentiation 
with respect to that subscript. 

The boundary conditions on the face of the beam are 

~r(x, -L-_H, t) 1 1 -~q ( x, = + ~ p ( x , t ) ,  r ( x , + - H , t )  = t), (3) 

where p is prescribed and q is to be chosen later as a certain 
error load. The initial conditions are 

U(x, z, O) = U*(x, z) ,  U,,(x, z, O) = U~*(x, z) (4) 

W ( x ,  z, O) = W*(x ,  z),  W,,(x, z, O) = W,*(x,  z), (5) 

where U*, etc., are prescribed. 
Using the notation 

. f = f l E ,  ~ = E / G  (6) 

and following Duva and Simmonds (1992), we rewrite ( 1 )~ as 

ex = U,x + uv (7) 

and henceforth use this relation to eliminate the axial stress in 
favor of U and ~. The two remaining displacement-stress rela- 
tions may now be given the form 

U .  + W,x= ~Y, W .  + vU,x= ( 1 -  v2)e,  (8) 

If we assume that e and y are known, then (8) represents a 
simple first-order system of partial differential equations for U 
and W, hyperbolic in the spatial variables x and z. As the time 
t enters the system (8) only as a parameter, we shall often 
suppress t when writing down the arguments of a function. 

To integrate (8) we introduce the characteristic coordinates 

~ = x + ~uz, ~ =  x -  ~uz (9) 

so that 

o o+o o). 
0--~ = O~ 04 ' Oz O~ D~ (10) 

If we add to or subtract from (8)2 Eq. (8)1 multiplied by x/~ 
and introduce the notation ~ 

A ± = (1 - u2)~ +_ ~uK~, (11) 

our hyperbolic system takes the form 

2f~( , f~U + W)< = A+(~, 4) (12) 

2f~( ' f~V - W),~ = A-(~ ,  4) (13) 

which may be integrated to yield 

2 ~ ( ~ U  + W) = A÷(~, ~)d~ + ~/~F(~) (14) 

Y2 2x/~('f~U - W) = A- (~ ,  ~)d~ + ~/~G(~), (15) 
(~) 

where F and G are unknown functions of integration and 

a(~)  = ~ -  2 ~ H ,  ~ ~ [ ~ H ,  Vr~H+L]  
~ 16 ~ 

(See Fig. 1.) 

In (11) and what follows, we take the spatial arguments of A ± to be (~, ~), 
but those of ~r and ~" to be x and z. If we wish to write A ~ as a function of x and 
z (with t suppressed), we shall use (9) to write A ± ( x  + ~uz ,  x - ~uz), etc. 

Z = - H  - -  

(L- ~]v H,L+ ~/v H) • (L+~v H,L-~v H) 

IV / Z=H 

/ -  

Fig. 1 Geometry and integration paths for a rectangular beam in charac- 
teristic coordinates 

To proceed further, we henceforth confine attention to the 
flexure problem in which 

{ W , : }  ~ even~ 
are in z. (17) 

U, ( odd J 

(The parity is reversed in the complementary extension prob- 
lem.) From (9) we see that replacing z by - z  is equivalent to 
interchanging ~ and 4. Thus, by (11) and (17), 

A+(~, 4) = - A - ( k ,  ~). (18) 

Substituting (18) into (14) and again using (17), we further 
conclude that 

G(~) = - F ( ~ ) ,  - ~ u n  ~- ~. (19) 

Finally, by adding and subtracting (14) and (15) and changing 
the dummy variable of integration from ~ to 4, we obtain the 
following explicit formulas for the horizontal and vertical dis- 
placements in terms of v, ~ (via A - ) ,  and the unknown func- 
tion F: 

4uU = fl; A-(', E)dE - f]~(;)A-(E, E)dE 

+ ~ v [ F ( ; )  - V(~)] (20) 

+ f~u[F(~) + F(~) ] .  (21) 

If u = 0, (20) and (21) no longer hold (because our hyper- 
bolic system degenerates to a parabolic one). However, re- 
turning to (8),  we readily obtain by direct integration 

Io W = ~(x,  ~-)dE + F(x)  (22) 

f2 U = [ ( E -  z)~,x(x, r)  + KY(x, ~ ) ] d E -  z F ' ( x ) ,  (23) 

where F(x)  is an arbitrary function of integration and where 
the argument t has been suppressed. Henceforth, we shall as- 
sume that u * 0. 

Motion  of  a Canti levered B e a m  
Our aim is to construct, a posteriori, error loads and incremen- 

tal initial conditions such that (20) and (21) represent exact 
solutions of the dynamic equations of linearized plane stress 
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theory. This requires that we specify ~(x, z, t) and ~(x, z, t) 
(so that we may compute A - ) ,  and that we insure that the 
displacement and/or traction conditions on the ends of the beam 
are satisfied exactly. As a first step in this direction we set 

1_ = ¢(x,  z, t) + 5q(x, t) (24) 

L W = W(x, z, t) + ½~ q(Z, t)dZ, (25) 

where, from (3)2, ½~is the value of y on the faces of the beam. 
Under this change of variables, (8) continues to hold with W 
and y replaced by IV and ~, respectively. This, in turn, implies 
that (20) and (21) continue to hold with W replaced by I~ and 
A -  replaced by 

A ~ (1 - u2)~ _ ~/7g¢. (26) 

That is, 

4uU = fi¢¢A(~, ~)d~ - f~¢oA(~, ~)d~ 

+ ~u[F(~ )  - F (~) ]  

=- u'U(x, z, t) (27) 

4~u W = - £ ~  a ( ¢ , g ) d ~ -  ff¢(~)A(~,~)d~ 

+ ~u [F (~ )  + F(~)]  

--= 4']u')4Z(x, z, t), (28) 

where, for later use in the initial conditions, we have restored 
the independent variable t. 

For simplicity, we now consider a cantilevered beam attached 
to a rigid wall at x = 0 and traction free at x = L. If we note 
(7),  (24), and (25) and assume that 

q(L, t) = 0, (29) 

we have the boundary conditions 

U(0, z , t ) = 0 ,  l~(0, z , t ) = 0  (30) 

-7-(L,z,t) = O, U ,x (L , z , t )  + v e ( L , z , t )  = 0. (31) 

On the left end of the beam, - ~  = ~ ~ [ - f fu H ,  ~uH].  
Thus, by (16), (27), and (28), the zero displacement condition 
(30) will be satisfied providing we Set 

F(~)  = 0, ( ~ [ - ~ u H ,  ~uH].  (32) 

On the right end of the beam, 2L - ~ = ~ ~ [L - ~uH, L 
+ ffuuH] and (31 )2 leads to a formula for F ' ( ~ )  on the interval 
[L, L + ,/-~uH] in terms of F ' ( ~ )  on the interval [L - "/-~uH, 
L] and values and integrals of ~ and ?. The details are as 
follows. 

From ( 10)1 and (27), we have, using Leibniz' Rule for differ- 
entiating integrals with variable limits, 

4uU,x = 4u(U,~ + U, 0 

= - A ( ( ,  oe(~))a'(~) + (~, ~)d~ 

- A ( ( ,  ~ )  + A ( ( ,  ~) 

+ a ( ~ ,  cff~))cd(~) - (~, ~)d~ 

+ f ~ [ F ' ( ~ ) -  F ' ( ~ ) ] ,  (33) 

where A~ means the partial derivative of A with respect to its 
first argument. If ((,  ( )  are the characteristic coordinates of a 
point on the right end of the beam, then from (16), 

a ' ( ~ )  = ce'(~) = 1, (34) 

and from (3),  (26), (31)~, and Fig. 1 (and with the argument 
t suppressed), 

A(~, o4~)) = ½(! - uz)ff(~ - ~ H )  (35) 

A({, ~) - A(~,  {) = 2(1 - u2)g(L,  {/x/7~ - L/~u),  (36) 

where the last relation follows because ~ is odd and ~ is even 
in z. Thus, rewriting (31)2 in the form 

4uU,x = -4u2~  (37) 

and setting ~ = 2L - ~, we obtain 

~uuF' (~) = ~ u F ' ( 2 L  - ~) - ½(1 - u 2) 

x [ff(2L - ~ - ~ H )  + p(~ - ,J75H)] 

+ 2(1 + u2)~(L, ~/-,,/~ - L/~/75) 
p2L ~ ~ 

+ Je_~ffHA,({, ; ) d ;  - 2L-=g~n-e 

A i ( 2 L -  { ,~)d~,  ~ C [L ,L  + ~uH]. (38) 

An integration now determined F ({ )  within a constant on the 
interval [L, L + ~uH] ,  in terms of F ' ( { )  on the interval [L 
- x/TH, L], the prescribed value of if, and the yet-to-be-deter- 
mined values of ~ and ~. 

To obtain a useful formula for F(~)  on the interval [~uH, 
L],  let 

V = W(x ,  0, t) (39) 

denote the vertical displacement of the centerline of the beam. 
If we set z = 0, i.e., if we set ~ = ~ = x, then, in view of (25) 
and (39), we obtain from (28), upon setting ~ = ~uu~? and 
suppressing the argument t, 

e t .v~ 
F(~) = 2V(~) - ,, J0 q(z)dx- + Jo~,, a(~.  ~'7)d~7. 

E [V~uH, L].  (40) 

This relation, of course, also must hold on the interval [0, 
~uuH] in which case it must agree with (32). This yields the 
consistency condition 

£ 
" J 0  O-(z)dz = 2v(~)  + j _ v  A(~. ~ , ) d ~ .  

where we have used (16) to set a (~)  = - ( .  Differentiating 
this relation with respect to ~ and noting that A(G ~) = 
-~uut¢~(~, 0) (because ~ is odd in z), we have the alternative 
consistency condition 

,,~(~) = 2v.d~) - 2,,~(~. o) + j_~,izal(~. ~,)d~. 

G [0, ~vH] .  (42) 

Given any (sufficiently smooth) choice of ~(x, z, t), ~(x,  
z, t), and V(x ,  t), we may compute F(~)  from (32), (38), 
and (40), and thence U(x, z, t) and W(x ,  z, t) from (25), 
(27), and (28). We may then choose ~ according to ( 4 2 ) -  
the value of ~ in the interval [~uH, L] being arbi trary--and 
choose the body forcesfi andfi  so that the equations of motion 
(2) are satisfied identically. 
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To meet the initial conditions (4) and (5),  we must add to 
the given initial data for U, U,,, W, and W,,, the respective 
incremental displacements and velocit ies--see (27) and 
(28) - -  

A U ( x ,  Z) ~ q.l(x, z, O) - U*(x,  z) (43) 

AU,(x ,  z) =- U, , (x ,  z, O) - Up(x ,  z) (44) 

A W  ( x, z) -= "$V(x, z, O) 

+ ½K g(Z, O ) d Z -  W*(x ,  z) (45) 

AW,(x,  z) ~ ~ , , ( x ,  z, o) 

+ ½~ ¢,,(x, O)dx--  W,*(x,  z) .  (46) 

All of the machinery that we have developed permits us 
to evaluate a posteriori, but explicitly, the errors we make in 
approximating ~, 3, and V, such errors being reflected in the 
error loads f~ ,  f~ ,  and g, and in the incremental initial dis- 
placements and velocities AU,  AW, AU~, and AW,. We now 
consider the simplest possible choice of ~, 3, and V. 

Elementary (Euler-Bernoulli) Beam Theory 
Here, the vertical centerline displacement satisfies the well- 

known equation of motion 

(.~)H3V, x~  + 2pHV, ,  = lY(X, t),  (47) 

l • where, from (3)~, ~/T IS the prescribed value of the normal stress 
on the faces of the beam, divided by Young's modulus E. 
Further, we choose ~ and ¢ to be the associated dimensionless 
normal and shear stresses--see Duva and Simmonds (1992) - -  
which satisfy 

- z V , ~  + 3,~ = 0, 3,, + ~,z = ~V,,, (48) 

together with the face traction conditions ~(x, ±H,  t) = 
± ½/7(x, t) and 3(x,  ± H ,  t) = 0. That is, 

3 = ½H2(~ 2 - 1)V,~x~(x, t) (49) 

= (~ /4) [2pH(~ 2 - 1)V,.(x, t) + (3 - ~2)/y(x, t)] ,  (50) 

where 

= z /H.  (51) 

At the built-in end of the beam we impose the classical condi- 
tions 

V(0, t) = V, A0, t) = 0. (52) 

The first condition is a necessary consequence of the fact that 
V(0, t) = W(0, 0, t). The second condition could be conceiv- 
ably modified, say 

V,~(0, t) = K3(0, 0, t) = 1 z -~KH V,.~x(0, t),  (53) 

which, by (42), would yield q(0, t) = 0. However, we shall 
use (52) for simplicity. 

By (24), (29), and (49), the absence of shear stress at the 
right end of the beam leads to the classical condition 

V , ~ ( L ,  t) = 0. (54) 

To satisfy the condition of vanishing normal stress at the free 
end, we differentiate (31)2 with respect to z and then use (8)~ 
to write the resulting condition in the form 

W,~x(L, z, t) = K~,x(L, z, t) + u~,z(L, z, t). (55) 

Setting z = 0 and recalling (24), (39), (48)2, and (50), we 
obtain 

V,x~(L, t) = ½(3K - u)~V, , (L ,  t) 

1 - -  

- (¼)H-~(K - u)t~(L, t) + ~Kq,x(L, t). (56) 

In the classical theory of beams, the right side of (56) is zero. 
Note that choosing F ' ( ~ )  according to (38) insures that (55) 
is satisfied for z E [ - H ,  H] and is automatically consistent 
with (56). 

The initial conditions (5) on W and W,, imposed, in particu- 
lar, at z = 0, require that 

V(x ,  O) = W*(x ,  0), V,,(x, O) = W~(x ,  0). (57) 
It only remains to satisfy the equations of motion. Dividing 

(2) by E and substituting (7),  (24), and (48), we obtain the 
error body forces 

= ~ u , , , -  (zV,~ + u ) , ~  - ~'~,x (58) 

f~ : -½q,~ + p ( W -  V) .... (59) 

All error loads and incremental initial conditions have now 
been expressed in terms of the solution of the governing differ- 
ential equation of elementary beam theory, (47). This solution 
satisfies the boundary conditions ( 52 ), (54), and (56), together 

l with the initial conditions (57). Since the applied face shear 
q remains arbitrary outside an edge zone at the left end of the 
beam, we set, for simplicity, 

O-(x, t) = 0, x E [~uH, L] (60) 

1 _ so that, in particular, the term ~Kq,~(L, t) disappears from the 
boundary condition (56), 

Example 
To run through the mechanics of computing the error loads, 

let us consider the simple static solution for a beam under a 
constant face traction p(x ,  t) = Po. 

Equation (47) of elementary beam theory--with  the slightly 
modified classical boundary conditions (52), (54), and ( 5 6 ) -  
has the solution 

V =  (I~oL4/16H3)22{6[1 - ( K -  u)e 2 ] - 4 2 + 2 2 } ,  (61) 

where 

2 = x / L  and e = H / L .  (62) 

From (49) and (50), the dimensionless (modified) shear and 
normal stresses follow as 

3 = (31YoL/4H)(1 - ,f)(1 - ~2) (63) 

= (/Y0/4)~(3 - ~2). (64) 

To compute the error load ~, we first need A, which follows 
from (26), (63), and (64) as 

A = -(3Vr~KlYoL/4H)[(1 - 2)(1 - ~2) + O(e)] .  (65) 

Thus, from (9),  

= (± ~ u H ) ( ~ c A , ~  + a,e) A~ = A< 2 

= (3KiYoL/4H2)[(1 - 2)~ + O(e)] .  (66) 

Inserting (66) into (42) and setting 

~=~+~ e=~-~ 2L ' 2 ~ u n '  (67) 
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we obtain from (61), (63), and (66) 

K~ = (1YoL3/2H3)[3.f - 3.f 2 + ~3 + 0(62)]  

× .7-[(~/~e - 2) = O(lYoL2/H2), (68) 

where ..7-/'is the Heavyside step function. Thus, in the edge zone 
where 2 E [0, ~uE], the shear error load on the faces of the 
beam is of the same order of magnitude as the dominant axial 
stress in the interior of the beam, consistent with the well- 
known edge effect at a built-in end. (See, for example, Duva 
and Simmonds, 1992.) 

The error body force ~ follows immediately from (59) and 
(68) as 

= - (3f foL2/4xH 3) 

x [H(~-~e - 2 ) -  ~ue6(2  - x/~ue) + O(e) ] ,  (69) 

where 6 is the Dirac delta. Thus, L times the vertical body force 
is of the order of magnitude of the dominant axial stress within 
a boundary layer of width ]-~H, with a concentrated force at x 
= ~f~H, but is zero elsewhere. The appearance of the delta 
function in (69) is easily avoided by taking ~7 on the interval 
[,Fu~H, 2~uH] to be not zero but 

= q ( ~ u H ,  t)ck(x/~/~H - 1), (70) 

where qS(a) is a function such that $ (0)  = 1, ~b'(0) = ~b(1) 
= ~b' ( 1 ) = 0, and which smoothly and monotonically decreases 
as a decreases. With this choice, 

{ O(iToL2/H3), x E [0, 2~uH) 

f z =  0, x E  [2~uH, L] (71) 

In Computing the remaining error load ~ from (58), we note, 
according to (27) and Fig. 1, that the horizontal displacement 
U has a different representation in each of the regions labeled 
I to VII. As the major errors in elementary beam theory can be 
expected to occur at a built-in end, we compute ff for region I 
only. Thus, by (16) and (32), (27) reduces to 

f 
~ 

4 v U  = [A(~, ~7) - A(~,  -~7)1d~7, 

~, ~ E [ - ~ H ,  ~/~H]. (72) 

But in region I, ~ =  O(~fue) and ~ = O(1) .  Hence, from 
(65)~ A = O ( ] u p o L / H ) .  Moreover, because ~ + ~ = 
O ( V u H ) ,  (72) yields the estimate 

U = O(IYoL), ~, ~ E [ -~ /~H,  f ~ H ] .  (73) 

On the other hand, (61) shows that in region I 

zV = O(lYoL 2). (74) 

Thus, in region I, (58) takes the form 

f = O(lYo/L) (75) 

so, in this region, the horizontal error body force is smaller by 
a factor of H3/L 3 than the vertical error body force. 

Conclusions 
We have presented a scheme whereby, given (dimensionless) 

fields of normal and shear stress ~(x, z, t) and ~(x, z, t),  and 
the vertical centerline displacement V ( x ,  t),  we may compute 
exact two-dimensional displacement fields in an elastic beam, 
provided that certain explicitly computable error loads and in- 
cremental initial conditions are imposed. The simple example 
of a cantilevered beam under a constant normal pressure on its 
face shows that, if elementary beam theory is used to relate 
and ~ to V, then, as expected, the largest error loads occur 
within an edge zone of O ( H )  near the built-in end. 
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Three-Dimensional Finite 
Element Analysis of Subsurface 
Stresses and Shakedown 
Due to Repeated Sliding 
on a Layered Medium 
Results of three-dimensional finite element simulations are presented for the subsur- 
face stress and strain fields in a layered elastic-plastic haW-space subjected to re- 
peated sliding contact by a rigid sphere. A single perfectly adhering layer with an 
elastic modulus and yield strength both two and Jbur times that of the substrate 
material is modeled. Applied sliding loads are equivalent to 100 and 200 times the 
initial yield load of the substrate material and sliding is performed to distances of 
approximately two times the contact radius. The effects of layer material properties 
and normal load on the loaded and residual stresses occurring from repeated load 
cycles are examined and compared with stresses produced during the first load cycle. 
Results for the maximum tensile stresses at the layer/substrate intelface and the 
maximum principal stress in the substrate are presented and their significance for 
layer decohesion and crack initiation is discussed. Further yielding of substrate 
material during unloading is discussed, and the possibility of shakedown to an elastic 
or plastic loading cycle is analyzed .for the different material properties and contact 
loads investigated. 

1 Introduction 
Sliding contact is an important technical issue since the life- 

time of various machine elements is often controlled by the 
wear resistance of repeatedly contacting solid surfaces. Hard or 
wear-resistant layers are often used in parts subjected to contact 
stresses to improve the functional lifetime without necessitating 
major design or load changes, or in parts where the function of 
the element requires an unobtrusive means of wear protection, 
such as in magnetic storage devices. Hence, analysis of the 
stresses and deformation in layered media resulting from sliding 
contact is of great practical importance in addition to being of 
theoretical interest. 

Among the earliest studies of elastic-plastic contact is that 
of Merwin and Johnson (1963), who examined the problem 
under the assumptions of Hertzian contact pressure and equiva- 
lence between the total strain cycle and the elastic strain cycle 
due to rolling contact loading. In spite of these simplifications, 
this analysis has provided valuable insight into the plastic flow 
behavior occurring in rolling contact, particularly the accumula- 
tion of residual stresses just below the contact interface and the 
threshold load for elastic shakedown of the plastically de- 
forming medium. Jiang and Sehitoglu (1994) performed a simi- 
lar analysis for homogeneous media in which the stress cycle 
during elastic-plastic rolling contact was assumed to be equiva- 
lent to the elastic cycle. Kral et al. (1993) used the finite element 
method to analyze repeated elastic-plastic indentation of a he- 
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mogeneous half-space by a rigid sphere. Both isotropic harden- 
ing and elastic-perfectly plastic material properties were used, 
without other simplifying material assumptions. The contacting 
sphere was modeled with contact elements, thus removing the 
need for assuming a particular contact pressure distribution. 
For all the cases investigated, an elastic steady-state cycle was 
achieved, to within numerical accuracy, after four loading cy- 
cles. 

Several finite element analyses of elastic-plastic deformation 
of layered media have been presented in recent years. Komvo- 
poulos (1989) investigated the plane-strain problem of a rigid 
cylinder indenting an elastic-plastic layered medium with a 
layer harder and stiffer than the substrate. Significant flattening 
of the contact pressure profile was found, especially with in- 
creasing plastic deformation, and the maximum pressure moved 
outward toward the contact edge. Tian and Saka (1991a) con- 
sidered the plane-strain indentation of a multilayered half-space 
exhibiting linear isotropic strain hardening. Elastic-plastic in- 
dentations produced relatively uniform pressure distributions 
with a slightly higher pressure near the contact edge for suffi- 
ciently deep indentations or a sufficiently thin interlayer. Kral 
et al. (1995a, 1995b) have analyzed repeated elastic-plastic 
indentation of a half-space with a single harder and stiffer layer. 
Expressions for an effective modulus and representative flow 
stress were derived based on layer thickness, material proper- 
ties, and contact dimensions. A nondimensional strain parameter 
was formulated which allows comparison with indentation re- 
sults for a homogeneous half-space. Kral et al. (1996) have 
also used finite element simulations of three-dimensional elas- 
tic-plastic sliding contact to verify scratch hardness models used 
to interpret the results of scratch tests performed on layered 
media. 

Of particular interest in elastic-plastic contact are the condi- 
tions under which the permanent deformation, residual stresses, 
and conforming contact geometry may result in purely elastic 
response under repeated loading, known as elastic shakedown. 
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Applied loads above the shakedown limit will result in either 
a continuous increase of plastic strain with each load cycle 
(ratchetting) or a closed cycle of alternating plastic strain (plas- 
tic shakedown). Merwin and Johnson (1963) and Johnson 
(1985) have reported shakedown limits for repeated sliding of 
line and point contacts, respectively, on homogeneous media. 
Johnson (1986) and Bower and Johnson (1989) have investi- 
gated the shakedown limits of elastic-perfectly plastic and kine- 
matically hardening materials under both line and point rolling 
contact. The shakedown limit and deformation characteristics 
were found to depend primarily on the applied load and contact 
friction. Above the shakedown limit, repeatedly deforming ma- 
terial remained confined to a subsurface region under low fric- 
tion conditions (/~ < 0.25), while a thin surface layer was 
repeatedly deformed when higher tractive loads were applied 
(/z > 0.25). Conversely to the condition with line contact, 
Ponter et al. (1985) have shown that a protective system of 
residual shear stresses may arise in point contact that will pre- 
vent ratchetting. Bhargava et al. (1985) analyzed repeated 
plane-strain frictionless rolling contact at and above the shake- 
down limit by the finite element method. In this analysis, a 
significantly larger peak of incremental shear strain per cycle 
was found in the steady state than that predicted by Merwin 
and Johnson (1963). Kulkarni et al. (1990, 1991) have also 
performed finite element analysis of repeated rolling contact on 
a homogeneous half-space both at and above the shakedown 
limit for elastic-perfectly plastic and kinematic hardening mate- 
rials. Hertzian pressure loads were applied for several passes. 
At the shakedown limit, the steady state was attained quickly, 
within one cycle for the perfectly plastic material. For loads 
above the shakedown limit, plastic strain accumulated in a sub- 
surface region of the hardening material, and up to the surface 
for the perfectly plastic material. In addition, the hardening 
material achieved a steady cycle of plastic deformation immedi- 
ately, while the perfectly plastic material exhibited incremental 
plastic strain growth. 

In the above analyses, only loading on homogeneous materi- 
als has been considered; however, the situation for layered me- 
dia is significantly more complicated due to the stress and strain 
discontinuities induced by the material interface. Nevertheless, 
some analyses of elastic-plastic contact on layered media have 
been amenable to a shakedown analysis. For instance, in the 
finite element study of Kral et al. (1995b) it was shown that, 
based on the pattern of reyielding during unloading, certain 
cases could not reach elastic shakedown under repeated indenta- 
tion loading and would continue to deform plastically with sub- 
sequent load cycles. 

The objective of this study, therefore, is to utilize finite ele- 
ment simulation techniques to analyze the effects of the layer 
material properties and normal load on the subsurface stress 
and deformatiOn behavior due to repeated sliding contact on an 
elastic-plastic layered half-space without requiring simplifying 
assumptions on either the contact pressure or the stress and 
strain cycles. In the present analysis, the sphere was modeled 
by contact elements, thus eliminating the simplification of an 
assumed pressure profile. A single layer thickness was consid- 
ered, and the effect of layer material properties was assessed 
by modeling layers two and four times stiffer and stronger than 
the substrate. In addition, the significance of subsurface stresses 
on cracking and reyielding upon unloading and the likelihood 
of shakedown to an elastic or plastic loading cycle will be 
examined. Finite element results for loaded and residual stresses 
and deformation at the surface of a layered medium have been 
reported previously (Kral  and Komvopoulos, 1996). 

2 Modeling Procedures 

2.1 Finite Element Mesh. A detailed description of the 
finite element mesh and contact and friction formulation has 
been presented elsewhere (Kral and Komvopoulos, 1996). A 

brief synopsis will be given here for completeness. The three- 
dimensional finite element mesh used in the present study is 
shown in Fig. 1. The figure shows half of the mesh correspond- 
ing to the region x > 0. The mesh consists of 8146 eight-node 
linear interpolation reduced integration elements comprising a 
total of 10,347 nodes. The reduced-integration elements use a 
Gaussian integration scheme one order less than the usual 2 × 
2 linear integration, resulting in one integration point per ele- 
ment. The mesh extends from -1120 to 1120 nm in the x 
direction, from zero to 960 nm in the y direction, and from zero 
to 1070 nm in the z direction. A rigid spherical indenter with 
a radius, R, of 1500 nm was modeled, giving normalized mesh 
dimensions of -0.747 -< x / R  <-- 0.747, 0 --< y / R  <-- 0.640, and 
0 <- z / R  <- 0.713. The plane y = 0 is a plane of symmetry, 
and sliding proceeds in the positive x direction. The plane of 
symmetry and the bounding plane y / R  = 0.640 are constrained 
against displacement in the y direction, the bounding planes 
x / R  = -0.747 and 0.747 are constrained against displacement 
in the x direction, and the plane z / R  = 0.713 is constrained 
against displacement in the z direction. 

The finite element mesh models a single layer with thickness, 
t, equal to 30 nm, thus yielding a normalized thickness t / R  = 
0.02. The inset of Fig. 1 shows the layer and the finer mesh 
region at the sliding interface. The dimensions of the smallest 
cubic elements are 5 nm, which is roughly equivalent to the 
contact radius at initial yielding of the substrate material. The 
mesh was refined by using linear constraints for the corner 
nodes of two elements lying on the edge of a larger element, 
or bilinear constraints for comer nodes lying on the face center 
of a larger element. Results for elastic indentation of a homoge- 
neous half-space represented by the mesh shown in Fig. 1 com- 
pared favorably with analytical results (Kral and Komvopoulos, 
1996), and elastic-plastic indentation results were in good 
agreement with results from the axisymmetric indentation simu- 
lations (Kral et al., 1995a, 1995b). 

~73 

z 

Fig. 1 Three-dimensional finite element discretization of the layered 
half-space 
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The indenting and sliding sphere was modeled by 429 two- 
node rigid surface contact elements. One node of each contact 
element corresponded to a common master node through which 
loads and displacements were applied to the sphere. Hard con- 
tact was modeled, in which normal traction is applied only when 
the clearance between a surface node of the deformable layered 
medium and the rigid sphere surface reaches zero. 

2.2 Material Properties and Plasticity Models. Ac- 
cording to the von Mises yield criterion, the yield condition is 
given by 

~7 ° , O" M = t 2 ~ij~ijJ = 

where aM is the yon Mises equivalent stress, S o. are components 
of the deviatoric stress tensor, and ~o is the uniaxial tensile 
yield stress. The material model for plastic deformation is based 
on the usual associated flow rule, and the assumption of negligi- 
ble plastic volume change is maintained. To account for bound- 
ary nonlinearities due to the contact elements, an updated La- 
grangian formulation is used in the analysis. Elastic-perfectly 
plastic material behavior is adopted throughout. The equivalent 
plastic strain, c~q, is defined as 

f S  ~ EP p 1/2 gPeq = [3 d ud~u] , 

where S is the strain path. The plastic flow rule applies only to 
yielding material for which aM = Cr °. When aM < a °, the usual 
elastic constitutive equations apply. 

Stresses were normalized by the yield stress of the substrate, 
ay, and loads and distances by the load, Py, and contact radius, 
ay, respectively, corresponding to the initial yield condition of 
a homogeneous substrate with an elastic modulus equal to 684.6 
times a r. Results are presented in terms of the parameter r ,  
which is the ratio of both the layer-to-substrate elastic moduli 
and the layer-to-suhstrate yield stresses. 

2.3 Simulation of Indentation and Sliding. The analysis 
was performed with the multipurpose finite element code ABA- 
QUS. Simulations were performed for layers both two and four 
times stiffer and stronger than the substrate (i.e.,/3 = 2 and 4, 
respectively). The layer and substrate were modeled as elastic- 
perfectly plastic. The simulations consisted of an incremental 
indentation to the specified normal load, P, followed by sliding 
at a constant normal load and friction coefficient equal to 0.1. 
Sliding was performed in 2-nm increments to a total distance, 
Ax, of 60 nm (i.e., AX/ay = 12), which is equivalent to approx- 
imately two to three times the initial contact radius. The simula- 
tion was completed by incrementally unloading the sphere in 
the same steps as for the loading. The layered media were then 
subjected to a second load cycle identical to the first. Table 1 
summarizes the material properties and normal loads used in 
the simulations. Typical CPU times for a 2-nm sliding increment 
were approximately 36 to 44 hours on an IBM RS/6000 Model 
540 workstation and 16 to 18 hours on an IBM RS/6000 Model 

Table 1 Summary of three-dimensional simulations 

1~=2 

g=0.1 

P/Py 100 

Ax% 12 

(X/ay)i -8 

(X/ay) f 4 

# load cycles 2 

(x/ay)i = initial x coordinate o f  s 

~=4 
g=0.1 

100 200 
12 12 
-8 -8 
4 4 
2 2 

~here center 
(X/ay)f = final x coordinate of s ~here center 

! 
~x~ 

1 ... -1 .00 2 ... -0 .67 3 ....-0.33 4 ... 0.00 
5 ... 0.33 6 ... 0.67 7 ... 1.00 

Fig. 2 Contours of  Cx= shear stress for/3 = 2 and P I P y  = 100 in the 
region - 1 2  -< x / a  v _< 12, 0 ~ y / a y  ~ 12,1 ~ z/ay _< 12, at sliding distances 
AXlay equal to (a) 2, (b) 4, (c) 8, and (d) 12 

580 workstation. The convergence tolerance for most runs was 
set to 10-SCry, although a smaller tolerance was used for some 
THUS. 

3 Results and Discussion 

In the subsequent discussion, it will be understood that either 
"stiffer" or "harder" refers to the layer with the larger elastic 
modulus and yield strength (or hardness) ratio (i.e.,/3 = 4), 
while "softer" or "more compliant" refers to the layer with 
the smaller elastic modulus and yield strength ratio (i.e., fl = 
2). The effect of increasing the stiffness and hardness of the 
layer will he shown by comparing results for/3 = 2 and 4 with 
otherwise identical loading conditions (i.e., P/Py = 100 and # 
= 0.1 ), while the effect of normal load will be demonstrated 
by comparing results for the material cases with fl = 4. 

Contours of the ~rxz shear stress as a function of sliding dis- 
tance for the first load cycle are presented in Fig. 2 for the 
material case with/3 = 2 and P/Py = 100. Results are shown 
in the subsurface region given by -12  _< x/ay -< 12, 0 ~- y/ay, 
and 1 -< z/a), -< 12 in order to show the distribution of the crx z 
stress near the surface as well as on the plane of symmetry. 
The dotted lines in the figure indicate the contact surface plane 
(Jay  = 0). The location of the layer interface is shown by a 
solid line and the sphere center is denoted by an arrow. The 
shear stress results for this material case and the first load cycle 
are qualitatively representative of all the material cases and load 
cycles. The extreme values of the ~rxz shear stress occur in 
elements on the plane of symmetry within the layer at approxi- 
mately half the layer thickness and exhibit no sensitivity to the 
sliding distance. A maximum negative shear stress occurs in 
front of the sphere center, followed by a maximum positive 
shear stress in the wake. This pattern is commonly seen in 
plane-strain elastic-plastic analyses of sliding cylinders (Tian 
and Saka, 1991b; Bhargava et al., 1985), and also occurs in 
the sliding of a sphere on a layered elastic half-space (O'Sulli- 
van and King, 1988). The reversal of subsurface shear stress 
coupled with the plastic deformation produces an offset in the 
stress-strain cycle so that the strain is not completely reversed 
upon passage of the load (Johnson, 1985). This produces a net 
forward surface displacement with each load cycle during which 
the layer is plastically deformed (Kral and Komvopoulos, 
1996). In all the present cases, the maximum a~z shear stress 
on the plane of symmetry corresponds to the shear yield stress 
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~. . ' I  /.I_ 1 

;'/ /~ / P/Py = 100 I 
a ; /  , . , -  - -  I]=2 / 

lo / / /  . . . . . . .  ~=4 -i 
t Y _, / r /~ P/Py = 200 | 

. . . .  1~=4 | 
! 

// Thin = 1 st Cycle / 
~I Thick = 2 nd Cycle I 

15 ~1 t t r t / 

0.0 1.0 2.0 3.0 4.0 5.0 

Residual Plastic Strain (~ePq, %) 

Fig. 3 Residual equivalent plastic strain at x l a  v = 0 and y/ay = 0 as a 
function of depth and load cycle 

of the layer, given by k = ~Cry/~, and is also the only nonzero 
shear stress. The maximum positive shear stress is slightly 
closer to the center of contact than is the maximum negative 
shear stress due to the effect of friction. For frictionless sliding, 
the locations of the two maxima are approximately evenly 
spaced about the center of the spherical slider, depending on 
the amount of residual pile-up material in front of the sphere. 
A similar shift in the maximum shear stress points due to friction 
may be seen in the plane-strain finite element simulation of 
sliding contact on a two-layer half-space by Tian and Saka 
(1991b). 

Results for subsurface plastic strain fields (Kral and Komvo- 
poulos, 1997) indicate that substrate yielding occurs in a region 
from the interface to some distance into the substrate. Since 
substrate yielding occurs at the interface, the maximum possible 
shear stresses at the substrate interface are bounded by the shear 
yield stress of the substrate. The ~xz interfacial shear stress 
reaches the substrate shear yield stress on the plane of symmetry 
since it is the only nonzero shear stress. The aye stress never 
reaches the shear yield stress at the interface, with maximum 
magnitudes of typically 0.43Cry to 0.45Cry for ~ = 4 and 0.49Cry 
for fl = 2. Therefore the maximum interfacial shear stress in 
the substrate is the Crx~ stress component, which reaches the 
shear yield stress of the substrate. The largest interfacial shear 
stress in the layer is the Oxy stress (Kral and Komvopoulos, 
1997). These maximum axz and Cr~y shear stresses would be 
expected to most greatly influence the adhesion of the layer to 
the substrate and the likelihood of a shear rupture at the interface 
during sliding. 

A second load cycle was simulated in order to assess the 
effect of repeated loading on the stresses and plastic strains and 
the likelihood of shakedown to an elastic loading cycle for the 
various material combinations and sphere loads investigated. In 
each case the first load cycle was simply repeated, i.e., the 
sphere was replaced at the initial indentation location, reloaded 
to the same normal load with the same load history, translated 
a distance Z~xX/ay = 12 at a constant normal load as before, and 
then unloaded by reversing the load steps. In the following 
graphs, the line types correspond to the material and load case, 
and the line thickness indicates the load cycle for which the 
results are given, with the thin and thick lines indicating results 
from the first and second load cycles, respectively. In addition, 
all the comparisons with results from the first load cycle are 
done at a sliding distance 2xX/ay = 8 to avoid any influence of 
the residual pile-up material in front of the contact groove on 

the results for the second load cycle. Thus, the figures compare 
the stress and strain fields for approximately steady-state sliding 
with prow formation (first load cycle) with those for sliding in 
the residual groove in which the frontal material has been re- 
moved (second load cycle). 

Contours of the equivalent plastic strain, e~q, at a sliding 
distance ~xX/ay = 12 during the second load cycle for the three 
repeated cases exhibited identical qualitative features to those 
occurring during the first load cycle (Kral and Komvopoulos, 
1996), though quantitative features differ. Figure 3 shows re- 
suits for the residual equivalent plastic strain as a function of 
depth after each load cycle at X/ay = 0 and y/ay = 0. For all 
cases, the plastic strain in the layer increases significantly during 
the second load cycle. This incremental increase is related to 
the phenomenon of forward surface flow that was discussed 
with reference to the surface displacements in a previous publi- 
cation (Kral and Komvopoulos, 1996). Forward flow, or a 
steady increment of permanent forward surface displacement, 
occurs because the increment of forward shearing due to the 
subsurface positive shear stress is slightly greater than the incre- 
ment in backward shearing due to the subsurface negative shear 
stress, as mentioned previously with reference to Fig. 2. The 
largest increase of plastic strain in the layer occurs in the region 
1 -< Z/ay ~ 2, with a much less significant increase below 
Z/ay ~ 3 for p = 4 at P/Py = 100 or Jay ~ 5 for the other 
two cases. The localized accumulation of plastic strain in the 
layer and the pattern of localized shear stress maxima shown in 
Fig. 2 indicate that continued plastic deformation under repeated 
loading may occur in only a portion of the plastically deformed 
layer. A similar phenomenon was reported by Merwin and John- 
son (1963) for repeated line contact on a homogeneous half- 
space. It was shown that a repeatedly deformed layer exists 
slightly under the surface extending to a depth of approximately 
1.6 times the contact radius, while the depth of the plastic zone 
produced during the first load cycle is approximately 2.6 times 
the contact radius. In the present analysis, all the material cases 
show a decrease in the accumulation of plastic strain in the 
layer below Jay ~ 4; this is most pronounced for the case with 
fl = 4 and P/Py = 100. In the substrate, only the higher load 
case exhibits a significant accumulation of plastic strain during 
the second load cycle. The two lower load cases exhibit only 
very small increases in substrate plastic strain both during and 
after the second load cycle, indicating that the substrate may 
be approaching elastic shakedown in these cases. The maximum 
equivalent plastic strain in the layer and substrate at the end of 
each loading cycle is given in Table 2 as a function of the layer 
material properties and normal load. The increase of plastic 
strain in the layer is significant in all cases, while the growth 
of the maximum plastic strain in the substrate is very small for 
the lower load cases but still quite large for the higher load 
case. 

The pattern of accumulation of plastic strain in the layer and 
substrate raises the question of whether the layer and/or the 
substrate will shakedown to an elastic deformation cycle under 
repeated sliding. The ratio of the peak contact pressure to a 
representative shear yield stress (po/keff) assumes values greater 
than 6 for all the repetitive loading cases (Kral and Komvo- 
poulos, 1996), which is well above the shakedown limit for 
point contact on a half-space, given by po/k = 4.7 (Johnson, 
1985). However, since the layer and substrate consist of differ- 

Table 2 Maximum equivalent plastic strain versus load cycle 

P/Py 

100 
100 
200 

First Load Cycle (%) Second Load Cycle (%) 

layer substrate layer substrate 

2.26 1.34 3.39 1.38 
1.29 0.77 2.01 0.78 
1.92 3.02 2.83 4.28 

9 7 0  / Vol .  63 ,  D E C E M B E R  1 9 9 6  T r a n s a c t i o n s  o f  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ent materials, it is reasonable to consider that there may be two 
shakedown loads. Indeed, the patterns of increasing plastic 
strain shown in Fig. 3 indicate that the layers show no proclivity 
toward purely elastic deformation, while the substrates under 
the lower load show a definite tendency toward mitigation of 
plastic deformation with subsequent load cycles. Since the di- 
mensions of the contact groove do not change significantly after 
the first load cycle (Kral and Komvopoulos, 1996), the contact 
pressure distribution during the second load cycle may be as- 
sumed to have reached a steady state. According to Melan's 
theorem (Merwin and Johnson, 1963), if any residual stress 
state may be found which, when coupled with the stresses due 
to the repeated load, produces an elastic cycle, the material will 
shake down to an elastic state. Conversely, if it can be shown 
that no such system of residual stresses exists, then the material 
will not shake down to an elastic cycle but will continue to 
plastically deform during each subsequent load cycle. In such 
cases, the material may shakedown to a steady cycle of plastic 
deformation (plastic shakedown) or may continue to accumu- 
late plastic strain on each successive load cycle (ratchetting). 

Although the stress state in three-dimensional contact is very 
complicated, insight into the shakedown state can be obtained 
by restricting attention to the stress state on the plane of symme- 
try. As discussed previously, the ~r~ stress is the only shear 
stress present on the plane of symmetry, and thus its maximum 
values can be expected to control the ability of the material to 
reach elastic shakedown. The features of the ~r~ stress during 
the second load cycle remain identical to those during the first 
cycle shown in Fig. 2, i.e., a maximum negative shear stress 
occurs in front of the sphere center and a maximum positive 
shear stress arises in the wake. In all the repeated load cases, 
the maximum and minimum shear stresses in the layer are the 
positive and negative shear yield stresses. Therefore, since cer- 
tain layer material points yield at both the negative and positive 
shear yield stresses as the contact load passes, the load path 
encompasses the diameter of the yield locus, and hence there 
is no residual stress state that can be added to these stresses to 
inhibit further yielding. Thus, the layer will continue to plasti- 
cally deform on each passage of the load and will not shake 
down to an elastic stress cycle. If the region of continuing 
plastic deformation is contained within the subsurface, the even- 
tual steady state must be one of reversed plastic flow, or plastic 
shakedown, due to the constraint of surrounding elastic material. 
As discussed by Johnson and Jefferis (1963), a residual ~r~ 
shear stress arises on the surface due to the restraint of the 
undeformed elastic material on the sides of the contact groove. 
Equilibrium under residual conditions requires a nonzero sub- 
surface cr~ shear stress component, which resists forward flow. 
After sufficient load passes to build up these residual ~r~ shear 
stresses, the increment of forward flow would be expected to 
gradually decrease to zero, resulting in a closed cycle of plastic 
deformation (plastic shakedown) in the layer subsurface region 
undergoing repeated plastic deformation. However, if the re- 
peatedly deforming region reaches the free surface, then the 
mechanism of incremental collapse, or ratchetting, is enabled 
(Ponter et al., 1985). In the present analysis, the softer layer 
(p  = 2) exhibits a pronounced increase in plastic strain up to 
the surface (Fig. 3), indicating that ratchetting is a possibility 
in this case. The two cases with the harder layer (/3 = 4) also 
show an increase in plastic strain on the surface after the second 
load cycle, but with a profoundly smaller increase in magnitude 
(Fig. 3). It is therefore considered likely that these two cases 
will exhibit plastic shakedown in the layer with further load 
cycles. 

A similar stress state exists in the substrate, with a maximum 
negative shear stress occurring on the plane of symmetry in 
front of the sphere center and a positive maximum occurring 
behind the sphere center, as shown in Fig. 2. For the high load 
case, the maximum shear stresses attained in the substrate dur- 
ing the second load cycle are equal to the shear yield stress, 

and hence by the same reasoning as before, the substrate will 
not exhibit shakedown for this case. However, for both the 
lower load cases, the maximum ~r~ z shear stresses on the plane 
of symmetry in the substrate, although still the only nonzero 
shear stresses, are well below the shear yield stress. Thus, a 
residual shear stress which will inhibit yielding in the substrate 
could be devised, and it is therefore expected that the substrate 
will attain an elastic steady-state cycle for these cases. 

A comparison of the ~r~ and ~ryy stresses in the layer at the 
layer/substrate interface for the two load cycles is shown in 
Fig. 4. For both normal load cases, the cr.~ stresses (Fig. 4 ( a ) )  
at the layer interface are qualitatively similar, but the peak 
tensile stress (for the/3 = 4 cases) decreases during the second 
load cycle. The ~= stress for/3 = 2 is compressive throughout. 
The ~ryy stresses are also qualitatively similar between the two 
load cycles (Fig. 4 (b ) ) .  For this stress component, the magni- 
tude of the local maximum tensile stress in the wake (X/e ly  = 
- 1 2  to - 1 6 )  does not change significantly with the load cycle, 
while in front of the sphere it exhibits a decrease during the 
second load cycle. Since these tensile stresses are associated 
with the hoop stress constraining the plastic zone (Kral and 
Komvopoulos, 1997), the decrease in magnitude may be associ- 
ated with the smaller increment of accumulated plastic strain 
in the layer during the second load cycle. 

The effect of load cycle and sliding distance on the maximum 
value of the maximum principal stress in the substrate, a~, is 
shown in Fig. 5. In all cases, the maximum remains relatively 
constant with sliding distance during the second cycle, main- 
taining approximately the magnitude attained after unloading 
from the first load pass. The maximum principal stress in the 
second load cycle exhibits a slight decrease in maximum magni- 
tude with distance for /3 = 4, and all cases exhibit a final 
maximum stress slightly below the value reached after the first 
load cycle. Thus, the propensity for crack initiation in the sub- 
strate does not change significantly, at least over the first two 
load cycles. Stress results (not shown here for brevity) indicate 
that in all cases, the maximum Crxy interfacial shear stress during 
the second load cycle is slightly less than or comparable to the 
maximum attained during the first cycle (Kral and Komvo- 
poulos, 1997). For the lower load cases, the maximum a~ 
interfacial shear stress decreases during the second load cycle, 
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Fig. 4 Stressesatthelayerinterface(zlay=6-)ontheplaneofsymme- 
try (ylay = 0) at a sliding distance Axlay = 8 as a function of load cycle: 
(a) ¢xx stress and (b)  o,~ stress 
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Fig. 5 Maximum value of the maximum principal stress ¢~ in the sub- 
strate as a function of sliding distance and load cycle 

as evidenced by the general lack of continued substrate yielding. 
The maximum interfacial ~yz shear stress actually increases by 
about five to ten percent for these cases, but is still below the 
shear yield stress of the substrate. For the higher load case, the 
magnitude of the ax~ interfacial shear stress in the second load 
cycle is equal to the substrate shear yield stress due to the 
continued yielding of the substrate, while there is virtually no 
change in the maximum O-y z interfacial shear stress. 

Figure 6 compares the residual ax~ and Cryy stresses at the 
layer interface as a function of load cycle. The results for the 
~r~ stress, shown in Fig. 6(a) ,  are very similar for all the load 
cases, with the residual stress remaining compressive along the 
entire layer interface. The ~yy component, shown in Fig. 6(b),  
also exhibits similar characteristics between load cycles, but 
with a slight increase in the tensile residual stress in front of 
the contact groove at the end of the second load cycle. However, 
the maximum tensile residual Cryy stresses are still less than or 
comparable to those arising during sliding in the same region 
(Fig. 4(b)) .  Thus, the tendency for crack initiation at the inter- 
face remains greatest during sliding for repeated load cycles. 
Finally, the tensile residual azz stresses at the interface after 
the second load cycle assume magnitudes comparable to those 
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Fig. 6 Residual stresses in the layer at the interface (z/ay = 6--) on the 
plane of symmetry (y/ay = 0) as a function of load cycle after unloading 
at a sliding distance AX/ay = 12: (a)  ¢rx, stress and (b)  ¢ ~  stress 

occurring after the first load cycle (Kral and Komvopoulos, 
1997) for all the load cases. 

Figure 7 shows contours of the residual yon Mises equivalent 
stress, revealing the actively yielding region in the substrate as 
a function of load cycle for the higher load case. It is shown that 
unloading after the second load cycle again produces significant 
reyielding of the substrate material. In addition, the reyielding 
occurs over a larger region than in the first cycle. However, the 
layer exhibits no yielding points in the residual state. The case 
with/3 = 4 at P/Py = 100 exhibited no reyielding in either the 
layer or the substrate after the second load cycle, while the/3 
= 2 case exhibited reyielding in the substrate at only three 
integration points after the second cycle, which is not considered 
significant. It may be inferred that the reyielding of substrate 
material during unloading from P/Py = 200 will make the 
achievement of an elastic steady-state cycle less likely for the 
higher load case. 

4 C o n c l u s i o n s  

The subsurface stress and strain fields resulting from repeated 
sliding contact on a layered half-space were examined with the 
finite element technique. A 30-nm-thick layer was modeled, 
with stiffness and yield strength both two and four times that 
of the substrate. Elastic-perfectly plastic material was assumed 
throughout the simulations. Sliding was simulated for loads 100 
and 200 times the yield load of the substrate material in order 
to determine the effect of normal load on the subsurface stresses 
and strains. 

The c~x~ stress in the layer on the plane of symmetry exhibited 
a region of high negative shear stress in front of the sphere 
center, followed by a reversal to a high positive shear stress in 
the wake of the sphere. The crx, interracial shear stress reached 
the maximum possible value, i.e., the shear yield stress of the 
substrate, for all cases during the first load cycle, but fell below 
that during the second load cycle for the low load cases. The 
ayz stress at the interface was below the shear yield stress of 
the substrate for all cases. The maximum principal stress in the 
substrate arising under repetitive loading was similar for all 
cases considered, indicating that the propensity for crack initia- 
tion in the substrate is not greatly affected by the layer material 
properties or normal load. 

All cases exhibited a substantial accumulation of plastic strain 
in the layer during the second load cycle, but only the higher 
load case exhibited significant accumulation of plastic strain in 
the substrate. It was shown based on the shear stresses on the 
plane of symmetry that the higher load case will not shake down 
to an elastic cycle, whereas the shear stresses indicate that the 
lower load cases will shake down only in the substrate. The 
tensile a,x and ~>.y stresses along the layer interface during the 
second load cycle were less than those during the first cycle, 
while the residual a,~ and cry>. stresses were very similar to those 
occurring after completion of the first load cycle. The trey and 
crxz interfacial shear stresses were generally less than or compa- 

9 7 2  / Vol .  63,  D E C E M B E R  1 9 9 6  T r a n s a c t i o n s  o f  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



rable to those occurring during the first cycle, while the ayz 
interfacial shear stress increased slightly in the second cycle. 
Reyielding in the substrate after the second load cycle occurred 
only for the highest contact load, and resulted in a larger plastic 
zone than that produced in the first load cycle. 
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Velocity and Acceleration 
Analysis of Contact Between 
Three-Dimensional Rigid Bodies 
During manipulation and locomotion tasks encountered in robotics, it is often neces- 
sary to control the relative motion between two contacting rigid bodies. In this paper 
we obtain the equations relating the motion of the contact points on the pair of 
contacting bodies to the rigid-body motions of the two bodies. The equations are 
developed up to the second order. The velocity and acceleration constraints for 
contact, for rolling, and for  pure rolling are derived. These equations depend on the 
local surface properties of  each contacting body. Several examples are presented to 
illustrate the nature of the equations. 

1 Introduction 

In robot manipulation tasks, when the robot arm interacts 
with an object or the environment, it is beneficial to be able to 
control the contact motion. For example, when exploring the 
environment by feeling or touching, it is necessary to be able 
to move the robot arm while in contact with the environment 
and estimate the geometric properties of the environment (Ma- 
son and Salisbury, 1985; Montana, 1988). When grasping an 
object it may be desirable (Brock, 1988) to roll or to slide the 
object over one or more fingers in a specified manner. A similar 
situation also arises in an actively coordinated vehicle traversing 
uneven terrain where it is efficient to maintain rolling contact 
with the ground at all contacts (Kumar and Waldron, 1989). 
In all these examples, it is necessary to control the motion of 
an actively coordinated system relative to the contacting object 
or environment in order to achieve a desired motion of the 
contact point on the surface of the object and on the surface of 
the robot effector. 

While extensive work has been done on contact between 
planar rigid bodies (see, for example, Beggs, 1966; Paul, 1979; 
Hall, 1966; Rosenauer and Willis, 1953; Whittaker, 1988), the 
work on the kinematics of three-dimensional contact is much 
more recent and much less is known in this area. Pars (1968) 
describes the configuration space associated with the relative 
motion between two rigid bodies in point contact. He shows 
that it is five-dimensional. For the special case of a sphere 
rolling over a plane he shows that the configuration space is 
completely accessible. In other words, from any point in the 
configuration space it is possible to reach any other specified 
point. 

Cai and Ruth (1986; 1987) study the relative motion of two 
contacting bodies in point contact. In Cai and Ruth (1987) they 
derive expressions for the motion of the contact point on each 
contacting surface in terms of the relative motion and the local 
geometric properties of each surface. However, their focus is 
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limited to the motion of the contact points and hence their study 
is restricted to a subspace of the configuration space. In Cai and 
Ruth (1988) they extend their work to line contacts. Montana 
(1988), like Pars (1968), considers the five-dimensional space 
but his parameterization is somewhat different than Pars' (see 
Section 2). He derives the equations relating the velocity of 
the contact points on the rigid bodies to the relative velocities 
of the rigid bodies. It is also worth mentioning the work of 
Kirson and Yang (1978) who developed equations for moving 
and fixed axodes with a relative rolling and sliding motion. 

This paper derives the velocity and acceleration equations 
relating the rigid-body motions of the contacting bodies and the 
motions of the contact points on the surfaces of the rigid bodies. 
The papers by Montana (1988) and Cai and Ruth (1987) are 
most closely related to this work. We use Montana's definition 
of the configuration space but our approach is quite different. 
Although Montana does derive the velocity equations, as seen 
later in the paper, they do not lend themselves to straightforward 
differentiation. Our approach and results differ from those of 
Cai and Ruth because we do consider the entire five-dimensional 
configuration space. 

2 Preliminaries 

2.1 Notation. In Fig. 1, we consider two rigid objects 
(obj 1 and obj 2) contacting at a point. The contact point is the 
coincidence of two points, Pl fixed to obj 1, and P2 fixed to obj 
2 at time t. cl and c2 are a pair of points, which do not belong 
to either body but move along the surface of obj 1 and obj 2 
respectively so that they are instantaneously at the point of 
contact. We choose reference frames on obj 1 and obj 2 at point 
ol and o2, respectively. These reference frames are attached to 
the objects. We attach coordinate systems at points cl and c2 
which move with the contact points. Finally, we define object- 
fixed coordinate frames at points pl and P2 in such a way that 
they coincide with cl and c2 frames, respectively, at time t. 
Note that the same symbol is used to denote either a point or 
a reference frame attached to this point. So far our notation is 
identical to that in Montana (1988). 

r is used for position vectors, V is used for linear velocities 
and w, for angular velocities, a and a denotes linear and angular 
accelerations, respectively, f~ is used to represent the skew sym- 
metric matrix form of w. R denotes rotation matrices. 

A leading superscript is used to denote the reference frame 
in which the quantity is observed. A vector q with two trailing 
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obj 2 

Fig. 1 Two rigid bodies with point contact 

subscripts, a and b denotes the difference between q at point a 
and q at point b. For example, r~o, is the position vector from 
o~ to c~. °,Vqo, represents the difference between the velocity 
of point c~ and that of point o~ as observed in reference frame 
o~. On the other hand, when there is only one trailing subscript 
then it denotes the reference frame attached to that point. Thus, 
o, ~,L or o, f~, denotes the angular velocity of reference frame 
c, when it is observed in the reference frame Ol. Note that, 
unless otherwise specified, we refer to the vectors themselves 
and not to their components in a particular coordinate system. 
When we do refer to components, we denote these with sub- 
scripts x, y, and z and explicitly specify the coordinate system. 
When components are considered, aR b is a rotation matrix which 
transforms components of a vector in frame b to components 
in frame a. 

In the case of position vectors, a leading superscript is not 
used because a position vector does not depend upon the frame 
in which it is Observed. However, any derivative, and therefore 
any velocity or acceleration, does depend on the reference frame 
in which the differentiation operation is performed. We follow 
a notation that is similar to that used in Kane and Levinson 
(1985). For example, consider the derivative of r~o,. Since the 
point oj is fixed to the reference frame o~, 

°t d 
OI])clOl : " ~ -  r¢lo I 

is the velocity of point c~ in frame o~. Similarly, 

°t d 
_ _  (p ip  o 
dt L. qo,) = ,a~,,,~ 

is the acceleration of point c~ in frame o~. 
Thus, the derivative of rqv ~ in frame P2 is not P, vqp,. Instead, 

P~d Pld 
d---7" r~,,,, = ~ rqv ' + v~w,,, × rc,pt 

= Pll)ctPl "q- I'2COpi X rClpl 

The development here is identical to that presented by Kane 
and Levinson (1985, p. 23). 

2,2 Local Properties of Surfaces in ~-R ~. Here we briefly 
discuss a few definitions and concepts that will be used later in 
the paper to derive the contact kinematic equations. Detailed 
discussion can be found in any standard differential geometry 
text (e.g., Millman and Parker, 1977; Stoker, 1969; Lipschutz, 
1969). 

DEFINITION 1. Coordinate System: Let S v be an open and 
connected subset o f  the smface  S containing the point p. Then 
the pair ( f  U) is called a coordinate system of  S v i f  there exists 
an open subset U o f  g] 2 and an invertible map f ' U  ~ S e @ ~ 
such that the partial derivatives ( Of( { ) /O{ ~ ) and ( Of( { )/O~ ~ ) 
are linearly independent for  all ~ = ( ~ ~, ~ 2 ) ~ U. The open 
connected subset Sp is called a coordinate patch. 

It may so happen that not all points of S can be represented 
by a single coordinate patch. In such a case, we can construct 
a set of coordinate patches which cover all the points of S, that 

is, S = tJ~'__~ &, where &'s are coordinate patches for S. The 
set {& }7=~ is called an atlas for S. 

In what follows we will need to compute derivatives of f in 
order to characterize the local properties of S. We will assume 
t h a t f ( ~ ,  ~2) is at least of class C 3. 

DEFINITION 2. Natural Basis and Unit Normal: xi = (Of/  
0~') ( i = 1, 2) are linearly independent at a given point and 
are called the natural basis o f  the smface, xl and x2 minimally 
span the tangent plane at that particular point. A unit normal 
n is a unit vector which is perpendicular to the tangent plane 
at a given point and is defined by (xl × x~)/(llx, x x~ll). 

If (&,  xz) = 0 where (,) is the symbol for inner product, 
then (f, U) is called an orrthogonal coordinate system. It should 
be noted that x~ is not necessarily a unit vector. 

DEFINITION 3. Contact Frame: This is a local reJerence 
frame at the contact point consisting o f  the unit vector triad 
(x#llx~ll), (x#llx211), and n. 

We choose the coordinate system (f, U) in such a way that 
n is an outward pointing normal. 

DEFINITION 4. Metric Tensor: A metric tensor G is a 2 X 
2 symmetric, positive definite matrix whos e coefficients go are 
defined as 

g~j= (&,xj) i , j =  1,2. 

The g~i are coefficients of the first fundamental form. G is 
diagonal for an orthogonal coordinate system. 

DEFIN]TION 5. Christoffel Symbols: There are two types 
o f  Christoffel symbols. Christoffel symbols o f  the first kind, 
denoted by [ ij, k ], are defined as 

=fox, ) [ij, k] \ O ~ j  , xk i , j ,  k = 1, 2. 

Christoffel symbols of  the second kind, F~, are defined as 

i F5 = O x , , &  g ,k= ~, [ij, l]g,k i , j , k =  1 ,2  
,=, \ O U  l= l  

where glk are the components o f  the inverse of  the metric tensor 
G. 

It is clear from the definition that both kinds of Christoffel 
symbols are symmetric in the paired indices ij, that is, [ij, k] 
= [j i ,  k] and F~ = Fj~.. Note that all the Christoffel symbols 
vanish when the coordinate system is Cartesian. 

It is useful to note that the derivative of the components of 
the metric tensor can be expressed in terms of the Christoffel 
symbols. 

Ogu 
0--- 7 = [jk ,  i] + [ i k , j ]  = g~tF~k + gjf~,g (1) 

DEFINmON 6. Gauss's Equations: The derivatives o f  the 
basis vectors are given by 

Oxi 
c9~----7 = Li? + ~ F~x~. 

k 

The L 0 are related to the coefficients of the second fundamen- 
tal form only through the metric tensor. They measure the nor- 
mal component of (0&/O~ J) while the F~ measure the tangen- 
tial components. 

Higher Order Derivatives: If f is at least of class C 3, we 
can differentiate Lgj and F~. By straighforward differentiation, 
it can be shown (Lipschutz, 1969, p. 224) that 

2 

02x~ 5", F ~ ~ ~ [ ik,j + Fi jFm - LoL~.]x~ + [FuL,~ + Lij.k]n 

where F~.j = ( OF~IO~ j) and Lij.~ = ( OLu/O~k). 
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~2= constant 

"01 
i 

O o 

i 
x x I 

x l  

X 

~1 = constant 

Fig. 2 Coordinate curves for a sphere 

y 

2.3 Examples. 

2.3.1 Geometric Properties o f  a Sphere. For a sphere with 
radius p, let us define a coordinate system (Fig. 2),  

f :  U ~  ~tt 3 : (~l ,  ~2) 

(p sin ~ cos ~2, p s i n ~ l s i n ~ Z ,  p c o s ~ l ) .  

The natural basis for this coordinate system and the correspond- 
ing unit normal are [ cos lco   

xl = p cos ~l. sinl~2 xz = p sin ~ cos (2 
- -  p s ln  

[" sin ~1 cos ~z] 
n =  l s i n ~ ' s i n ~ Z  . 

k cos ~ 

So the contact frame is defined by [(xl]l[xll[) (x2[[lx2[[) n]. 
The components of the metric tensor G are given by 

g l l  = p2  g12 = 0 

g21 = 0 g22 = p 2 s i n ( ~ l ) 2 .  

G is diagonal because the coordinate system is orthogonal ((x~, 
x2) = 0). 

The Christoffel symbols and the coefficients L U are 

F i t  = 0 F121 = 0 

F]2 = 0 Fl2z = co t ~ l  

F ~ l  = 0 F~i = cot (~ 

F~2 = - s i n ~ t c o s ~  F ~ 2 = 0  

LH = - p L~z = 0 

L2~ = 0 /-a~ = - p  sin (~l)Z. 

The derivatives of F~ and Lo that are not zero are 

F~2,1 = --CSC 2 ~1 F221,1 : __CSC 2 ~1 

Fz~2.t = - c o s  (2~ 1) La2.~ = - 2 p  sin (~ c o s  ~1 

Note that although the Gaussian curvature and the mean curva- 
ture of a sphere are constant, the coefficients, go, F~ and L 0 are 
not. 

• y 

2 = const 

/ 
/ 

1= constant 

Fig. 3 Coordinate curves for a plane 

2.3.2 Geometric Properties of  a Planar Surface. Consider 
the plane (Fig. 3) with the coordinate system: 

f :  U C 9l 2 ~ 913 : (~, ,  ~2) ~ (~, ,  ~2, 0). 

The following results are obtained from the definitions in the 
previous subsection. 

X l  ~ X 2 = n 

gll = 1 gt2 = 0 

g21 = 0 g22 = 1 

Since the natural basis vectors and the components of the 
metric tensor are constant for a plane, all other higher order 
derivatives are zero. 

2.4 Contact Coordinates. We now define five contact 
coordinates that characterize the motion of the point of contact. 
First for obj i, we let ~t = ul and ~z = v~ as shown in Fig. 4. 
The point of contact is uniquely defined by the four coordinates 
Ul, Vl, u2, and v2. The fifth parameter is qJ, the angle of contact 
which is the angle between the u~ and u2 curves (Montana, 
1988). In Fig. 5, it is the angle between (x~)1 (tangent to the 
v~ = constant curve) and (x~)2 (tangent to the vz = constant 
curve). The sign of ~0 is defined in such a way that a rotation 
of (X~)l about the outward pointing unit normal (n)~ to the 
surface at point p~ through -~O aligns the axes (xl)~ and (Xl)2. 

We use a trailing subscript i to denote obj i. For example, 
the contact frame for obj i is denoted by [(xl/llxl[])i (xz/llxzll)i 
(n)i]. 

t 

3 Closure Equations 

In Fig. 1, using the triangle law of vector addition (Paul, 
1979), we can write 

/ •  obj 2 

V 1 = constant/ ~ Q ~  

U 1 = c o n s t a n t  

Fig. 4 Coordinate curves and contact frames on two contacting bodies 
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Fig. 5 The definition of angle 0 

r,,o, = rca,, + rp,o,. ( 2 )  

Note that, in this notation, we implicitly assume that Eq. (2) 
can be written in component form in any convenient coordinate 
system. (At this point we are only concerned with vector equa- 
tions and not their components in a particular coordinate sys- 
tem.) Differentiating each term of Eq. (2) with respect to time 
t in the reference frame o~, we get 

°,V,,,o ' = v,V~,p, + % %  x G,p, + °'Vine,. (3) 

Differentiating Eq. (3) in the reference frame o~, we get 

°iacioi : Piacipi q-- °iO3pi X PiVcipi ..{-. ° i@i × rcipi 

+ %% x (P, Vc,,,, + o,%,, X re.a,,) + °,a,,,o,. (4) 

Applying the addition theorem for angular velocities (Kane and 
Levinson, 1985, p. 24), we get 

o, we, = o, co,,, + ", c%. (5 )  

Differentiating each term in Eq. (5) in the o~ frame, we get 

°'d.',., = °'dh,, + P'G., + °'wp, x P,w~, (6) 

where %G denotes the time derivative of "COb in frame a. 
Since Pi and o~ are fixed in body i, 

% % = 0 ,  o , @ , = 0 ,  °,G,o , = 0 .  

Substituting these in Eqs. ( 3 ) -  (6) we get 

°,g~,o, = /"V~a, , (7) 

°'a ..... = P, ac,v , (8) 

°'w~, = "we, (9) 

o,~, = P'~c,. (10) 

Consider the closed loop: P2 + cl ~ Pl ~ P2. The triangle 
law of vector addition applied to position vectors yields 

rqv ~ = rqF I + rt,~p 2 . ( 11 ) 

Differentiating each term of Eq. ( 11 ) in the reference frame P2 
two times, we get 

P2Vclp2 : PlVclpi + P2(.tdpl X rclpl -t- P2Wplp2 (12) 

P2aclp2 = /qaclpl + P2~pl X rclpl + P2~!o I X (P2wpL X rcllh ) 

+ 2~2Wp~ × P'Vc,p, + "2ap,p2. (13) 

Note that rc,p~ = 0 in the above equations. Similarly for angular 
velocities, we obtain the velocity and acceleration equations: 

P2WcL = I'lWc~ + v2tOpl (14) 

P2~Cl = Pt(.J)Cl + P20,Jpl × PtO.)Cl "1- P2{,~.Jpl. ( 1 5 )  

Now consider the closed loop: P2 -~ cl + c2 -+P2. The transla- 
tion closure equations are 

r,,~, 2 = rc~c2 + r~j, 2 (16) 

v2Vqv 2 = qVqc 2 + P2w~ 2 X rc~.2 + ~'=Vca, 2 (17) 

P2ac=p2 = C2aclc2 -}- P2~.~)c2 × rqc 2 + P2Odc2 X (P20)c2 X rqc2) 

+ 2P2wc~ × qVc,c~ + P2acw2. (18) 

By definition, the vectors rq~, qV~,c~ and qa,,~ vanish in the 
above equations. The loop equations for the angular velocities 
are 

P~wq = ~2w~. + P2co,, 2 (19) 

P2{.~.)Ci = C2~)Cl "~ P2~A,}C2 × C2{.4aICl + P2~JC2. (20) 

We now manipulate the loop equations to obtain what we 
call the contact  closure equations. Equating the right-hand sides 
of Eqs. (12) and (17) we get after setting r~lp ,, rq~ and Vqc2 
to zero 

~'2V~, 2 = P'Vc,l,, + I'~Vl,~p~. (21) 

From Eq. (3),  because °,Vp,o, = 0 and 0,%,, = 0, Eq. (21) can 
be written as 

02Vc202 = OIVcloi -'~- P2VpiP2. (22) 

Equating the right-hand sides of Eqs. (14) and (19) and then 
substituting from Eq. (9),  we get 

°lW~l + V2OOpt = c20& 1 + °2W~ 2. (23) 

Next, we equate the right-hand sides of Eqs. ( 13 ) and (18) and 
simplify using Eqs. ( 7 ) -  (8) to get 

°2a,.~o= = °tat,o, + 2P2wpl X °lVqo I + P2aplp2. (24) 

Finally, equating the right-hand sides of Eqs. (15) and (20) 
and simplifying using Eqs. ( 9 ) -  (10), we write 

°td3ct + P2O,)pl × °IOJCl .-~ P2~,t.Jpl 

= qd.'c, + °~wc 2 X  qwq + °~dJ~ 2. (25) 

In summary, the velocity contact closure equations are (22) 
and (23) and the acceleration contact closure equations are (24) 
and (25). 

4 Contact Equations: Velocity Analysis 
Let the components of the relative linear and angular veloci- 

ties of the contacting rigid bodies in the frame P2 (also in the 
frame c2) be given in vector form by 

P2gplp2 = gy P2~a,)pl = ~y  . 
Vz Wz 

In this section we find expressions for the remaining terms in 
Eqs. (22) and (23) in terms of the contact coordinates and their 
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derivatives and thus relate changes in contact coordinates to the 
relative linear and angular velocities defined above. 

The position vector of the contact point c~ of obj i in or is 

r~o~ = r,,o,(~ ~, ~2) i = 1, 2. (26)  

Next we consider the transformations between or and cr, and 
between c~ and c2. The rotation matrix °~R~ is quite simply 

°'R~ = (n)r 
i i 

= [(Xl)i (X2)i (n)r]  [ (~7)-101×2 02xl]  . 1  (27)  

Note that since the coordinate system is orthogonal, all the 
elements of the metric tensor, Gr, are positive and the square 
root operation is a valid one. From the definition of ~b, ~Rq 
can be seen to be 

sin  0] 1 
C~Rq = - s i n  ~O - c o s  0 0 

0 0 - 1  Otxz 

We now proceed to obtain expressions for the velocity terms. 
Differentiating Eq. (26)  in the or frame, we get the velocity of 
the contact point cr in that frame. The resulting equation is 

2 
d o. 1 °'V .... = ~. [,rc, o,({ , ~2)] = ~ (xj)i~i i = 1, 2. (28)  

j= l  

Therefore, 

2 ~ ,  = 2R~, 2Rq = 0 . 
0 

(31) 

Here "2ftc, is the angular  veloci ty  expressed  in the contact  
f rame c2 in matr ix  form. Simi lar ly ,  °,f~c~ , in the contact  
f rame cr, can be simplif ied to (see  Append ix  for in termedi-  
ate s teps)  : 

o,~,  = O,R~O,l~ ' = 0,×2 27 ( x2 )T |  
(n)~' j 

2 
_.~.Ij=~ll/OXl\ ' j  OX2 *j On . j  

j=l j=l 

X [ ( ~ / ) - I  

We introduce Christoffel symbols, [ij, k[ and F}k and the coef- 
ficients of the second fundamental form, Lu, and after some 
algebraic manipulation we get 

= _ [  ]77 ([11, 1],ti, + [12, 11113,) 

1 
0 

(g22)1 

0 

+ 

1 

(gl t ) l  
- - ( [ 1 1 ,  1]lt~l + [12, 111131) 

0 

- - ( [ 2 1 ,  l [ d ~  + [22,  111131) 

0 

1 1 
([11,211& + [12, 2]Oh) 

(gH)l (g=) l  

1 1 1 
- -  ( [11 ,211t~  + [12, 2111)1) 

(gl l ) l  (g22)1 (g22)1 

1 1 
- -  [(LiI) i / i l  + (Li2)i0l } 
( g " ) '  (g22), 

- - ( [ 2 1 ,  1]lal + [22,  111131) 

- -  {(Lzl)lal + (L22)101} 

1 
(gl l ) l  

1 

(g22)1 

-- - -  {(Lll)lUl + (L12)t131 } 

-- - -  [(Z21)lal -.}.- (L22)1131 } 

0 

Expressing the velocities of the contact points in contact frame 
c2 (using Eq. (28)) :  

~¢2RclCIRoi[ (XI ) I~I~- (X2) lOI]~IRI~GIU'1  ( 2 9 )  Ol V 
L u 1 

. . . .  

where Uj = [ul 1)1] T and U2 = [b/2 1)2] T. 
The skew symmetric matrix representation of the angular 

velocity is directly obtained from the rotation matrix (McCar-  
thy, 1990). For any rotation matrix eR.,, its derivative in frame 
f is given by 

f~m = RRT. 

which can be simplified to 

0 ( - c r l F l O l )  

o ,~ ,  = (c~FlO~) 0 

{ ( ~ ) - ' C l O ,  })f×2 0 

(32) 
where cr i = { (g=)i / (gH)i  } I/2 for i = 1, 2 are the ratios of the 
norms of the natural base vectors. For an olrthonormal system, 
or1 = 1. F1 and Lr are 1 × 2 and 2 × 2 matrices consisting of 
the Christoffel symbols of the second kind and the coefficients 
of the second fundamental form, respectively, for obj i. F and 
L are defined as follows: 

F = [F~i F~d 

[ L , ,  L,2] 

L = [L21 L22J" 
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Similarly, 

f~ = 02 C2 

0 ( -  ~:r:0:) 

(c~:r:0:) 0 

( ( ~ ) - ' L ~ 0 :  ] ),~×~ 0 

(33) 

Substituting for °~Vc~o~ and °lVc,ol from Eqs. ( 2 9 ) - ( 3 0 )  in 
Eq. (22), expressing each vector in the c~ frame, we get 

Vz=O.  

In Eq. (23), after substituting for °,w~, from Eq. (32), °~co~ 
from Eq. (33), and ~w~, from Eq. (31), we get 

R¢(~,)- 'L,  Oi + I wYwx] = -(qrGa)-'I-aOz 

Simplifying the above equations we obtain the first-order con- 
tact kinematics relating the rate of change of contact coordinates 
to the rigid-body velocities: 

+/-It (35) 0 2 = ('~2)--1(/-11 '-[- H~)-' - -Wx V, 

½ = o  

= 

L = [Lu 2L12 L2~] 

Or~, (r~, 1 - F11)r. + - -  

2 2 
(rz21 1 2 1 2 0rt2 Or11 

- + - + -b -U  + T 

or~2 
( r ~ -  ~ F ~ ) F ~  + - -  

0( ~ 

= 

l OLii OLIl~" FllLu 0~ 1 

oqL12 
FI,Ltz + rl2Ll, O( '  0 (2~  

r I O L I 2  / 
12L12 0~ 2 

F221L21 0~1 

0La2 0/12 
~,L~ + F~:L~, o~' ~ l  

F~2L22- 0~'-'-- 5- 

We first consider the linear accelerations of the contact points. 
In the oi frame, 

°'a ..... =--ftt[°,V~,o,] : (x,)/~' + ~ - ~ )  
j=l j,k=l 

Expressing this in the contact frame c2, 

(36) [ (Oxl~ )2 
(37) °,ac,o, = "2Rc]qRo, (Xl)lal + (X2)11)1 + ~OUl/] (/~1 

1 

where Hi = (,fG/)-'Li (~ /~) - '  and .H, = R~H,R¢,. 
These equations are the velocity contact equations which 

were first presented by Montana (1988). However, our notation 
and derivation are slightly different. First, we use standard dif- 
ferential geometric notation (gig, r~,  and L u) to describe the 
surface properties. Second, we resolve all vectors in the frame 
c2 and not in c~ like Montana. 

5 Contact Equations: Acceleration Analysis 
Let the components of the relative linear and angular acceler- 

ations of the contacting rigid bodies in the frame c2 be 

P2 aplp2 = ar P2 @, = % . 
az az 

In this section we find expressions for the remaining terms in 
Eqs. (24) and (25) in terms of the contact coordinates and their 
derivatives in order to relate changes in contact coordinates to 
the relative linear and angular accelerations defined above. 

It is convenient to define other matrix functions of the surface 
properties (analogous to F and L). 

r =  Lr , 

+ L ~ 1  ) 1"1'1)1 -~- 1(01) 2 

o [ + r , W , ) ]  

,a .... = L - E I W I  J 
(38) 

where Wi = [ (g~) 2 ( u~0~ ) (0~) z ] r represent the nonlinear veloc- 
ity terms. 

Similarly, 

°2ac~°2 = ~ W2 " 

We next find an expression for °,~c,, the skew symmetric 
matrix for the angular acceleration of the frame ci relative to 
the frame oi which is attached to obj i, in the contact frame ci. 

o • = ,Re, ,R~,- (,R~, ,Rc,)( Re, ,R~,) l~~c i o To. "" o To ° o~ To. ° 

o To. "" o o. = ,R,., ,Rc~- , f~ '~c~ 

We substitute from (32) for °,[]c, and from (27) for °~Rc,, and 
after considerable simplification (see Appendix) we obtain 
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o.. [ o (-a,(r,O, + P,w,)) 
,fie, = (cri(FiOi + Y'iWi)) 0 L ((~/)-l(~im -- riui))lTx2 

((~ffb -' (L W,o - L,O,)m, ] 

Note that the 1 × 3 matrix ~ and the 2 × 3 matrix ~ representing 
third-order surface properties enter into the equations. 

Other terms in Eqs. (24) and (25) in the c2 frame are as 
follows: 

P2COpl X °lVc~ol = 

P2COpl X °lcocl = 

I O~E, R S ~ O ,  

__CO T ( y) 
-R@(~-I)-ILIUlcoz"]-GrlFIUI(;~Y)] 

- ( ; ~ Y )  TRIpEI(~.~I)-ILI~-yl J 

c 2COCl 

where 

Substituting the relevant expressions in Eq. (24) we get  

~ 2 ( ~ J 2  + F2W2) = R , ~ i ( U  1 "b F,Wl) 

+ 2weEIR,J~U~ + (39) 
ay 

( ) T  
~W2 = -T, iW1 + 2 --COY Rt//~IU 1 + a~. 

COx 
(40) 

And from Eq. (25), we get 

R~oE1 ( ' ~ 1 ) - 1  (K1W 1 _ LiO, ) -- R 0 ( ~ i )  -'LIUlcoz 

+ chF, O, + = _ _ _ _  __(~/~)-tL20<~b 
COx Oly 

+ E i ( ~ G 2 ) - i ( L w 2  - -  L 2 G )  

- o ' i ( F i U  ' + ~ l W l )  - R o E i ( ~ i ) - I L i O I  + ol z 

(41) 

= -~b + cr2(F2G + r2W2). (42) 

Solving Eqs. (39), (41), and (42), we obtain the five second- 
order contact kinematic equations relating double derivatives 
of the contact coordinates to the rigid-body velocities and accel- 
erations: 

L R,E,H,.~I~ - E~H2"~ J 

x [ ]w,+[  r21 
R~Ei ( ~ / ~ )  - 1 ~1 El ( ~ 2 )  I ~2 J W2 

+ [-2cozEiRo~.~ 0 

o2x r02x lax/l} 
\ - cox / ~ Ozx l J 

CO T 

(43) 

(44) 

Equation (40) is an acceleration constraint equation which can 
be rearranged in the following manner: 

a z = ~1 w' .--I- ~L2W 2 -Jr- 2 Rq;f~lO,. 
- -  x 

( 4 5 )  

6 Examples 

6.1 Two Spheres in Contact. Here we derive the first 
and second-order contact kinematic equations for two spheres 
in contact (obj 1 and obj 2). The choice of coordinates and 
notation is according to Section 2.3. Using Eqs. ( 3 4 ) - ( 3 6 )  we 
obtain the following first-order contact kinematic equations: 

t~l = t92 [CO x sin t/, + coy cos ~p] 
Pt + P2 

(Pl + 102) sin uj 
1) 1 = 

+ [Vy sin tp - Vx cos q,] 

Pl + Pz 

[p2(0.) x COS ~/ -- 0)y sin 0 )  

(46) 

+ (Vxsin~0 + Vycos~p)] (47) 

f12 -- Plcoy + Vx (48) 
Pl + P2 

- Plcox + Vy 
~2 = (49) 

(P~ + P2) sin u2 

~ b = - c o ~ + ~ l [ t a n  vi Pp'+p2 (cox c°s ~ - coy sin qt) 

+ Vx sin ~p + Vy cos 0 ]  
(50) 

J Pl + P2 

At the acceleration level, Eq. (43) can be written in the form 
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I -(()) 
iil I pz sin @ sin u, sin u~ p2 cos O sin ul sin u2 c o s O s i n u ,  sinu2 s i n O s i n u l s i n u z  a~ 
ih 1 p2 cos tp sin u2 p2 sin ~b sin u2 sin ~ sin u2 cos q, sin u2 % + h  (51) 
u'a = A 0 pt sin ul sin u2 sin Ul sin u2 0 ax 
~2 Pl sin ul 0 0 sin ul ay 

where h is a nonlinear function of  the rigid-body velocities and the rates of change of contact coordinates given by 

~//~2 + tOz/~l COS if/ --  tOyO 1 COS b/1 --  /~101 COS []/ COS U 1 + 0202 COS U 2 --  tOz01 sin ~ sin u~, 
h = tO~0t cos u~ - tO~a~ sin ~ + a101 cos ul sin ~ - tO~0~ cos ~ sin Ul + ~b02 sin u2, 

2w,plal  sin ~ - 2pla101 cos u~ sin ~b + 2tOePlO1 COS ~b sin ul - p10~ cos ~b cos ul sin ul + p20~ cos u2 sin u2, 
2to~ptal cos ~ - 2plat01 cos ~ cos ut - 2p2a202 cos uz - 2to,p1% sin ~ sin ul + p~0~ 2 cos u~ sin ~ sin ul 

and 

A = (Pl + P2) sin ul sin u2. 

From Eq. (44),  we get 

~ ~- --OLz + ~1 COS U 1 + U2 COS ~2 

- tOy(a1 sin ~ + Ol. sin ul cos ~ )  - /~lOl sin //~1 

- u2~2 sin u2 + tO~(01 sin Ul sin q, - a~ cos ¢,) (52) 

and the acceleration constraint from Eq. (40) is 

az = - ( p l a ~  2 + /91(01 sin ul)  2 + p21i22 

+ p2(02 sin u2) ~ - 2p~to~al + 2pltO~% sin Ul). (53) 

The development in Cai and Roth (1987) deals with the 
special case in which the coordinate curves on the two surfaces 
are aligned so that the angle ~b is zero. For this special case, 
we get the same results by substituting 

71" 71" 
I[ / = 0 , Ul : ~ ,  1)1 = O, U2 = ~ ,  1 ) 2 = 0  

in our equations above. 

/ ~ 1  - -  - -  

01 

P2tOy- V~ 

Pl + P2 

P2tO~ + Vy 

Pl + P2 

//-/2 = PltOy + V. 

Pt + P2 

- PltOx + Vy 
02 = 

Pl + P2 

-a~  + o~;,p2 - tO,tO,P2 - 2wzvy 
Ul = 

Pl + P2 

iJl = ay  + Olxp 2 + toytozP2 - -  2tozVx 

Pl + P2 

a~ + O~ypl + tO~tOzpl 
a 2 =  

pl + p2 

i~2 = ay - axpl + WytOzpl 

Pl + P2 

The paper (Cai and Roth, 1987) does not deal with the rate of 
change of ~b which evolves (at ~b = 0) according to the equations 

I ~ =  --tOz 

-- tOX(tOyPl + I)X) 

Pl  + P2 

6.2 A Sphere Contacting a Plane. We consider the ex- 
ample of a plane (obj 1) contacting a sphere (obj 2). The 
velocity equations are 

al = p(wy cos 0 + tax sin ~O - Vx cos ~p + Vy sin ~p) 

% = p ( - W y  sin ~ + cox cos ~b + Vx sin 0 + Vy cos 0 )  

/~2 = tOy 

02 = --tOx CSC /'/2 

= - ( tO~ cot  u2 + tOt). 

The acceleration equations are 

a'l = p~b(a2 sin tp + 02 sin u2 cos ~O) 

- pa2% cos u2 sin ~b - p(02) 2 sin u2 cos u2 cos ~b - 2tOz01 

+ p(ax sin ~b + ay cos ~b) - (a~ cos ~b - ay sin ~b) 

ih = p~b(a2 cos ~b - % sin uz sin 0 )  

- pa202 cos u2 cos ~b + p(O2) 2 sin u2 cos u2 sin ~ + 2Wza~ 

+ p(a~ cos O - ay sin ~b) + (a~ sin ~b + ay cos ~b) 

a2 = 02~b sin u2 + O/y 

1)2 = a 2 ~  CSC U 2 --  a202 cot u2 - ax csc u2 

= 1)2 sin u2 -- a2~2 COS u2 -- %. 

7 K i n e m a t i c s  o f  Ro l l ing  Contact  

Two bodies are said to be in a condition of roiling contact if  
the velocity of the point of contact on one body is equal to the 
velocity of  the point of contact on the other body. In other 
words, the sliding velocity (Cai and Roth, 1986; Cai and Roth, 
1987) or the relative velocity between the points of contact is 
zero. This definition is well known and can be found in standard 
kinematics texts (see, for example, Paul, 1979). Because this 
definition imposes a condition on velocities (and not on higher 
order derivatives), it defines rolling contact up to the first order 
(Cai and Roth, 1987). We will refer to this as the f irst-order 
condition f o r  rolling. 

However,  if the relative velocity between the points of con- 
tact, in addition to being zero, stays constant through a small 
time interval, the two bodies are in a condition of rolling contact 
up to the second order. In other words, the derivative of the 
sliding velocity is zero. We will refer to this as the second- 
order condition f o r  rolling. 

In Fig. 6, Pi and/~i are points attached to obj i. p~ is the point 
of contact at time t while/5~ is the contact point at time L t and 

are considered to be time instants that are separated by a small 
interval At .  

For the f irst-order condition f o r  rolling we have 
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oh j,1 PlyJ 

at t ime [ 

, obj 1 

at time t 

Fig. 6 Roiling motion of two rigid bodies 

P2Vp,p2(t ) = O. 

In the contact frame c2 this is 

Vy =0 .  
v~ 

For the second-order condition for  rolling we have 

(54) 

(55) 

It can be shown (Sarkar, 1993) that the third scalar equation 
is actually the same equation as (45), provided the first-order 
condition for rolling is satisfied. 

In addition to the rolling conditions defined previously, if we 
impose another condition known as the no-spin condition, we 
achieve what is called pure rolling (Johnson, 1985, p. 242). 
The pivoting component of the angular velocity is zero for pure 
rolling (Neimark and Fufaev, 1972, p. 18). In other words, in 
the frame c2, 

~ = 0. (61) 

For pure rolling up to the second order, the derivative of the 
pivoting velocity or the z component of the derivative of the 
relative angular velocity must vanish (Sarkar, 1993). 

a~ = 0 (62) 

7.1 Example: Two Spheres  in Contact .  In the previous 
section we considered the example of a sphere contacting an- 
other sphere. The conditions for rolling up to the first order are 

V x = O  G = 0  v ~ = 0  

For rolling up to the second order, from Eq. (60), 

-(p~a~ sin qJ + P21)l COS @ ) W  z ] 
--(pla! COS ~ -- p21)l)~z J (63) 

(p~U~ sin ~ + P21)1 cos ~b)~x + (pd~l cos ~t -- /921) 1 sin $)~y 

"W, , ,pd  t ) - ~V,~,~(~) 
lim = 0. (56) 

<,-~)~o t - 

We rewrite Equation (56) to get 

" ~ G , ~ (  t )  - P~V~,,p~(~) 
lim 

( t -~)~o t - -  

~V,,,p~(~) - ~V,~,,5~(~) 
+ lim = 0. (57) 

( t -~)~o t - -  

The first term of the above equation is nothing but P~ap~p2(t). 
Recognizing that P2Vj~,~ 2 = P2V~,p~, the second term can be writ- 
ten as lim (-P2wp, x Ptr&pJt -- t). AS &t ~ 0 

( t - D ~ 0  

Pl rlsIpl 
lim = -PlVclpl. 

( t -~)~o t - -  

Thus, we get 

Because 

P2aptp2(t ) + P2~pl X (P lVc lp l )  --  O, (58) 

PtVclm = °~Vqoj, 

Eq. (58) simplifies to 

P2aplp2 ( t ) : --PzO.)pl X °l Vclol . (59) 

This is the second-order condition for rolling. In the contact 
frame c2, it becomes 

- ( -  E , R , ~ / ~ G ) ~ z "  

taxi ay = ( Wy ) r R , X O  t (60) 
az \ -- o) x / 

where we have substituted the expression for °,Vqo~ from Eq. 
(29) and P~o:p~ = [wx O~y wz] r. 

where di and 1)~ are given by Eqs. (46) - (49). Further, for pure 
rolling, we have 

~z = 0 (64) 

az = 0. (65) 

This yields, upon substitution for ai and 0i from Eqs. ( 4 6 ) -  
(49), 

ax = 0 (66) 

ay = 0 (67) 

(w~ + Wy2)p,p2 
a~ (68) 

Pl + P2 

8 D i s c u s s i o n  

We have derived and presented in this paper the velocity 
equations (Eqs. ( 3 4 ) - ( 3 7 ) )  and the acceleration equations 
(Eqs. ( 4 3 ) - ( 4 4 ) )  for contact between two three-dimensional 
bodies. This is the first time that the equations have been pre- 
sented in this general form. The work by Cai and Roth (1986; 
1987) comes closest to the work presented here. They derived 
similar equations that are valid for a Cartesian coordinate system 
whose origin is coincident with the contact frame. However, 
because of this assumption, their coordinate covering of the 
contacting surfaces changes as the contact point moves and as 
the relative orientation between the two rigid bodies changes. In 
our approach the surface coordinates are independent of where 
contact occurs and the relative orientation between the two 
bodies. Also, our coordinate systems are, in general, curvilinear, 
and include the special case of a Cartesian coordinate system. 
Finally, the equations derived by Cai and Roth predict the mo- 
tion of the contact point over each surface. However, they do 
not consider the evolution of the fifth contact coordinate ~/,. 

The special case of pure rolling is particularly interesting 
in robotic applications. Rolling contact is generally preferred 
because it is more efficient and also because rolling motion is 
easier to control. In order to maintain a condition of rolling the 
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relative motion between the two contacting bodies must be such 
that the relative acceleration at the contact point is given by 
Eq. (60). In general, this acceleration includes tangential (a~ 
and ay) components as well as a normal component (a~). This 
is unlike the planar case in which the tangential acceleration 
must be zero for rolling. In three dimensions, only in the special 
case of pure rolling do the tangential components have to be 
zero. The application of the rolling constraint equations to the 
derivation of the equations of motion and the controller for a 
two-arm manipulation system is presented in Sarkar et al. 
(1993) and Sarkar (1993). 

The acceleration level equations depend on first, second, and 
third-order properties of the contacting surfaces. In other words, 
we encounter upto the third derivative of the coordinate map, 
f ,  for each object in these equations. Similarly, the velocity 
equations depend on first and second order properties. It is 
worth noting that while an object such as a sphere can be 
described by a second-order equation in the Cartesian space, it 
does not mean that all third-order partial derivatives are zero. 
In fact, as shown earlier in the example of a sphere, the coeffi- 
cients, gij, F ~ ,  and  L o are not constant and the partial derivatives, 
(02x~ / 0~ k 0~ J), are, in general, nonzero. 

Finally a comment about the two examples considered in the 
paper. At first sight they may appear trivial and may not serve 
to provide adequate justification for the theoretical development 
in this paper. But Eqs. ( 3 4 ) - ( 3 6 )  and Eqs. ( 4 3 ) - ( 4 5 )  are 
completely general, and they work for any contacting surfaces. 
The only information needed are the local differential geometric 
surface properties (the coefficients of the first and second funda- 
mental forms and their derivatives). The main motivation for 
presenting these "simpler examples" is because for these exam- 
pies, the equations are well known for planar motions, and for 
spatial motions under the condition of pure rolling. Therefore, 
for these examples, there is some opportunity for comparing 
the general contact kinematics equations derived here with these 
special equations. And in fact, it can be seen from Section 2.3.1 
that, even in these "s imple" cases, the derivatives of g~, F~ 
and L 0 do not vanish and that a spherical surface does not really 
simplify the second-order equations. 

Current work addresses the application of these equations to 
better understand the stability of multi-contact grasps and the 
optimization of fixtures for restraining three-dimensional ma- 
chine components. 
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A 

A P P E N D I X  

Expressions for o,~c, and o,~c~ 

For any rotation matrix IR,,, its derivatives in frame f is given by 

i n . ,  = I~R r 

I ~ , .  = K R  r _ f ~ f ~  

Thus in contact frame ci, 

o ~0 • [ ( ~ / ~ ) - '  
o f~,, = ,Rc, ,Rc, = L 01×2 

o,~c,  = , . ,R~O,R 
i ci 

(X2) T1 [ (X | ) i  (X2) / ( n ) i ]  
1 (n)TJ 0,×2 o 

2 Oxt . j  Ox2 . j  On . j  ] + 
j=l j=l 01>72 1 __1 fl " 

We introduce Christoffel symbols, [ij ,  k] and F}k and the coefficients of the second fundamental form, Lij, and simplify the 
derivative of the metric tensor through Eq. ( 1 ). After some algebraic manipulation we get 
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[ ----~----([11, 1]lR, + [12, 111'0,) 
(gl l ) l  0 1 

(g=), 
0 

1 
- - ( [ 1 1 ,  1],Ri + [12, 11l~,) 
(g . ) .  

1 1 
- -  ([11, 2],fil -4- [12, 2]~3,) 

(gl,), (g=)l 
1 

- -  { ( L u ) l &  + (L12)11)1 } (g . ) ,  

which can be simplified to 

0 0 

- - ( [ 2 1 ,  1],& + [22, 1]lOt) 0 

0 0 

1 1 
- -  ( [11 ,211& + [12, 21101) 

(gH)i (g22), 
1 

- - ( [ 2 1 ,  1],g, + [22, 1If0,) 
(g=) l  

1 
- -  { ( Z 2 1 ) l / g  1 "4- (L22)101 } 
(g22), 

0 (--~iFIOl) 

o,~, = (~,rlo,) o { - (~) - iL'o ' ) }=×' |  q 
{ (t. G i ) - i L i U i  } ) iTx2 0 J 

where cr~ = { (gzE)~/ (gH) , }  ~:2 for i = 1, 2 are the ratios of the norms of the natural base vectors. 
In order to obtain an expression for o,h~, we start with Eq. (69). 

o- [ 
t 0,X2 

1 
(gH)l 

1 

(g22)1 

1 ] (x=)~/×(n)/T_] ( ~ - ~ ) f  ,=1 ~ ( ~ 7 ) f  /=' ~ ( ~ ' 7 ) f  ] [  ((x/G/)-')01x2 02×,0 ] 

- - -  { (Ll.),Ul + (L12)tS. } 

- -  { (./.a.),g, + (L22),0, } 

0 

( 6 9 )  

+ , , ~ : ,  + Voe'oCl?" \~:, + ,=, 

2 Oxl • ; On • j 

o (-o-,r,G) {-(~,)-'L,O,}ax~ 
- (~riGG) 0 x 

{ 6/~7)-'L,G }fx~ o 
After simplification, we finally write °,he. in the following compact form: 

0 ( - o i ( F i G  + r i W i ) )  

°,h~, = (o/(Fig + PiWi)) 0 
( (~)- i (Lw,  - a,g))fx2 

0 (-~,F,G) 
(GiFiVi )  0 

[ (,/~7)-*L,o, }f×2 

((,~)-'(LW,o - c,8,))2×1] . 

{ -- ( ~ i ) - l L i O i  }2X1 

0 
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Curvilinear Coordinates and 
Physical Components: An 
Application to the Problem of 
Viscous Flow and Heat Transfer 
in Smoothly Curved Ducts 
Expressions are derived for the gradient, divergence, Laplacian, curl, and material 
time derivative in terms of general curvilinear coordinates using physical components 
of all vector quantities. The results are conveniently expressed in terms of two new 
coefficients, involving physical and reciprocal base vectors. An application to the 
problem of  viscous flow and heat transfer in arbitrarily smoothly curved ducts is 
presented. In particular, helical ducts are considered. 

I n t r o d u c t i o n  

When analyzing a flow problem, it is desirable to have a 
coordinate system that follows the boundaries of the flow do- 
main smoothly, i.e., a boundary-fitted coordinate system. The 
reason for this is that the boundary conditions then may be 
applied easily and in an exact manner. In CFD, a boundary- 
fitted grid is often generated by some numerical technique (see, 
e.g., Thompson, 1984). This is required to be able to handle 
arbitrary complex geometries. For particular geometries, how- 
ever, it might be possible to find a simple analytical expression 
(according to Eq. (2) below) for a curvilinear coordinate system 
that fits the boundaries exactly. This is the case for example 
for smoothly curved ducts, which are considered in this paper. 
The governing equations may be derived in terms of the curvi- 
linear coordinates in an exact manner, and the equations may 
then be solved by any convenient analytical or numerical tech- 
nique. An advantage of this approach, compared to CFD em- 
ploying numerical grid generation, is that no approximation is 
introduced in the formulation of the flow problem, which is 
attractive at least from an academic point of view. 

The main motive for writing this paper is to present a method 
for deriving the governing equations for the flow and heat trans- 
fer in helical ducts, even though the obtained results are more 
generally applicable. A helical duct is characterized by the cen- 
ter-line having a constant curvature and a constant torsion, 
which, for example, enables the study of fully developed flow 
conditions. A finite torsion of the center-line implies a finite 
pitch of the duct, and it also makes the associated coordinate 
system nonorthogonal. 

Among the first to analyze, from a theoretical point of view, 
the flow in helical ducts with a finite pitch or torsion were Wang 
( 1981 ) and Germano (1982). They, however, reached different 
conclusions about the effect of torsion on the secondary flow. 
While Wang found a first-order effect of torsion, Germano only 
found a second-order effect. The reason for the discrepancy was 
that different velocity components were used for the secondary 
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flow. Wang employed so-called contravariant components (to 
be defined below), and Germano employed physical compo- 
nents, i.e., the velocity vector was expanded in a physical (i.e., 
an orthonormal) basis. From a conceptual point of view, as 
argued for below, it is recommended to describe the flow using 
physical components, even though full consensus about this 
matter not yet exists. Liu and Masliyah (1993), for example, 
recommend using contravariant components. 

In this paper, a method is presented for deriving the governing 
equations directly in terms of the desired coordinates and suitable 
physical velocity components. Previous authors on helical duct 
flows have used indirect methods to derive the governing equa- 
tions, in the sense that a transformation is involved, either of the 
coordinates or of the velocity components. In the first section 
expressions are derived for some basic vector quantities, e.g., the 
gradient, divergence, and curl. In the next section, the derived 
expressions are applied to the problem of incompressible flow 
of a Newtonian fluid, and in the final section smoothly curved 
ducts are considered. No solutions of the derived equations are 
presented in this paper. Applications to laminar flow and heat 
transfer in helical rectangular ducts may be found in Bolinder 
(1993, 1995, 1996) and in Bolinder and Sund6n (1995, 1996). 

B a s i c  D e f i n i t i o n s  a n d  R e l a t i o n s h i p s  

In this section, expressions are derived for the gradient, diver- 
gence, Laplacian, curl, and material time derivative in terms of 
general curvilinear coordinates using physical components of 
all vector quantities. 

The position vector r expanded in the Cartesian basis (ex, 
ey, ez) reads 

r = x e x + y e y + z e ~ ,  (1) 

where x, y, and z are the Cartesian coordinates. Curvilinear 
coordinates (X I , X 2, X 3) are defined as functions of the 
Cartesian coordinates, i.e., 

X i= X*(x,y,z) ,  i =  1 ,2 ,3 ,  (2) 

where the functions are assumed to be smooth, reversible, and 
single-valued in some region of space. 

The natural base vectors ai and the reciprocal base vectors a i 
of the curvilinear coordinate system (X l , X 2, X 3) arc defined by 

~gr 
ai = - -  a i = V X  i. ( 3 )  

0X~ ' 
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Thus, ai is tangent to the X~-coordinate curve, and a ~ is normal 
to the coordinate surface X i-constant. The components of a 
vector v expanded in the natural basis are called contravariant 
and are denoted by e~ ~, and the components of v expanded in 
the reciprocal basis are called covariant and are denoted b y ,  ~, 
thus 

For the gradient of a vector field v one obtains 

(Vv) o = ei .(Vv)ej 

= e~" @ VX k ej = Yj ~ X k  - P l E l i k  ' (13) 

v = ~ % ,  v = ~ i a  i, (4) 

employing the familiar summation convention. 
If the natural basis is nonorthogonal, so is the reciprocal 

basis, and it is generally not convenient to use either basis to 
expand, for example, the velocity vector. Instead, it is often 
preferable to use a physical (i.e., an orthonormal) basis for the 
velocity. With the terminology of Bowen and Wang (1976), a 
basis which is not the natural basis is also called an anholonomic 
basis. For a physical basis (e~, e2, e3) it is required that 

1, if i = j  
ei 'ej  = 6 o = . (5) 

0, if i - ~ j  

Expanding a vector v in a physical basis yields 

v = viel, (6) 

where v~ are called physical components. Only for a physical 
basis, the components are obtained as projections of the vector 
on the respective base vectors, i.e., 

1) i = v ' e i  . (7) 

This property makes physical bases attractive from a conceptual 
point of view. 

The following relationship is useful (see, e.g., Sokolnikoff, 
1964): 

r:~- I o,~ (8) 
~g OX ~ ' 

where the Christoffel symbols F} (also denoted by {~}) are 
defined by 

F~. = a k" Oai (9) 
OXJ ' 

and where 

g = det (gu) = det (ai "aj). (10) 

go are so-called metric coefficients. Two new coefficients, in- 
volving the physical base vectors ei, are defined by 

Oej 
E~jk = e~" , T/ : e i 'a  j. (11) 

OX k 

Obviously, for Cartesian velocity components, all the coeffi- 
cients E~jk would vanish. This approach is often taken in CFD, 
but for curved duct flows a more convenient choice is made to 
distinguish the so-called axial flow from the secondary flow, 
and also to be able to assume fully developed conditions, see 
further below. 

We are now in a position to derive a variety of vector quanti- 
ties. Many of the basic definitions may be found in the book 
by Gurtin (1981). In the following a lower index is used to 
denote a physical component (and not a covariant component). 

By use of the chain rule and the definition (3)2, the following 
expression for the physical components of the gradient of a 
scalar field f is obtained: 

of 
(Vf),. = e, ' V f  = ~ X  2 7 : .  (12) 

and for the divergence of a vector field v, using Eq. (8), 

0___y_ 1 ~ (~gvjy}). (14) d ivv  ~ t r (Vv)  = OX i ' V X  ~ = ~g OX i 

The divergence of a tensor field T is a vector field, which 
for any vector field v satisfies (Gurtin, 1981) 

v ' d iv  T = div (Try) - tr (TTVv).  (15) 

Using this, the physical components of div T may be written 

1 ~ ,~T, ~,~) - TklEkuY/, (16) (d ivT) i  = ~ g 0 X  ~( g ~:j 

where T U are physical components of T, which satisfy 

T= Toe,@e:, T U= e,.Tej. (17) 

Note that Eq. (17)2 requires that Eq. (5) is fulfilled. 
For the Laplacian of a scalar field f one obtains 

A f  ~ div V f -  ~g OX ~ ~ YkYk • (18) 

An expression for the physical components of the Laplacian of 
a vector field v, Av ~ div Vv, is easy to obtain using Eqs. 
(16) and (13). 

For the curl of a vector field v one obtains 

,[ 0v~ ) 
(curl v)i = eUk(VV)k j = e O k y j ~ -  VmEmkl , (19) 

where e0k is the usual permutation symbol. 
Finally, expressions are given for the material time derivative 

of scalar and vector fields. For a scalar field f,  one obtains 

Of Of + viT{ Of  (20) 
f = ~ +  v ' V f =  0"-~ OX j '  

where v is the velocity field, and for a vector field u, 

-~-Ou' -H-Out , [ Oui ) (t~), = + (Vu)ov J = + T j ~ X ~  - utEuk vj, (21) 

assuming the physical base vectors ei to be time independent. 

Governing Equations for an Incompressible Newton- 
ian Fluid 

The formulas derived in the preceding section are applicable 
to any problem involving partial differential equations. In this 
section, the formulas are applied to the problem of incompress- 
ible flow of a Newtonian fluid, which is governed by the conti- 
nuity, the Navier-Stokes, and the energy equations. In direct 
vector notation these equations read 

div v = 0, (22) 

~, = _ _1 Vp - u curl (curl v), (23) 
P 

= -~- AT + ~ tr (VvTVv + VvVv), (24) 
Pr Cp 
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where the kinematic viscosity u is assumed constant and where 
p is a generalized pressure, which includes conservative body 
forces. The last term in the energy Eq. (24) is the viscous 
dissipation. In component notation, according to the previously 
derived expressions, the governing equations read 

o ( , ~ j ~ , } )  = 0, (25)  
OX ~ 

k [ Ovi '~ 1 0 p  
°~---Z'ot + ~j ~,-d-~x ~ - ~,E,~) ~j = p ° x  j ~/ 

--u%kYJ( 0(curlv)kOX' (curlv),, ,E,,,kt), (26) 

or+~,~/ or ~, 1 o (~g O__L~,~,~) 
O-T OX j = Pr ,~  OX i OX j 

+ -~u OX "--50vl OX -----70vt + 2vl~Xi ,"J + u/v,,,EnliE,,,nj .y~]/~ 

where (curl v)~ in Eq. (26) is given by Eq. (19).  

F l o w  i n  a S m o o t h l y  C u r v e d  D u c t  

In this section, a method is outlined for the derivation of the 
governing equations in a form suitable for the flow in arbitrarily 
smoothly curved ducts. The results are then applied to the spe- 
cial case of a helical duct. 

Let the center-line or any other convenient line of the duct 
be described by the space curve re(s) ,  where the parameter s 
is the arc length, r~ is assumed to be smooth enough, so that 
all required derivatives of r,. are continuous. It is not always 
possible to parametrize r~ explicitly in terms of arc length s. If 
r~ is parametrized in terms of another parameter 0, then s and 
0 are related by 

~--ddrc 
ds = V::-~---O ~ 0 dO. (28) 

From Eq. (28),  one cannot generally obtain an explicit function 
0 = 0 (s).  However, using Eq. (28) and the chain rule, deriva- 
tives with respect to s are possible to obtain. 

As an example, consider a circular helix, with the parametric 
representation 

re(0) = Rer(O) + KOe~, (29) 

where R is the radius of the cylinder to which the helix is coiled, 
and 27rK is the pitch (see Fig. 1 ). R and K are assumed constant. 
e ,  e0, and ez are unit base vectors of the cylindrical coordinate 
system indicated in Fig. 1. Evaluating Eq. (28),  one finds that 

ds = ] -~  + K2dO or s = ~ + K20 + constant. (30) 

Thus, for a circular helix, r~ may be explicitly parametrized in 
terms of s. 

Fig. I Circular helix with pitch 2IrK 

The tangent t ,  normal n ,  and binormal b of a space curve r~ 
are defined by 

1 
t = r ~ ,  n = - r ~ ,  b = t × n ,  (31) 

K 

where a prime denotes a derivative with respect to arc length 
s. Note that t ,  n,  and b constitute a physical basis. The curvature 
K and the torsion 7- of rc are defined by 

K = Ir~l ,  7- = n ' . b .  (32) 

Using Eqs. (31) and (32),  the so-called Frenet formulas may 
be derived, i.e., 

t '  = Kn ,  n '  = T b  - -  Kt, b '  = - - 7 - n .  ( 3 3 )  

For the circular helix described by Eqs. (29) and (30),  t ,  n ,  
and b are given by 

t ( s )  = cos aeo(s) + sin aez, 

n(s )  = - e r ( s ) ,  

b( s )  = - sin aeo(s) + cos ae~. 

(34) 

o~ is the slope of the helix relative to the plane z = constant 
(see Fig. 1). One finds that 

R K 
cos ce r--= , sin a r---= (35) 

K 2 VR ~ + VR ~ K 2 + 

For a circular helix, x and 7- are constant with the following 
values: 

R K 
K R2 + K2,  7- R2 + K2.  (36) 

So far, only the center-line rc of the duct has been discussed. 
To represent points off the center-line, the coordinates x and y 
are used, where x runs in the direction of fi and y in the direction 
of b. fi and b are the orthogonal unit vectors obtained by a 
rotation of n and b the angle ~o(s) in the n ,  b-plane, i.e., 

fi = cos wn - sin ~ob,[ 
%,  

( ~ 

b sin ~pn + cos ~ob,J 
(37) 

(see also Fig. 2). The position vector r of points in the duct is 
thus given by 

r ( s ,  x, y) = re(s) + xfi(s) + yfi(s).  (38) 

This representation of r is especially suitable for ducts of rectan- 
gular cross section. The angle ~o(s) is then chosen such that fi 
and b are aligned to the boundaries of the duct. This makes the 
boundary conditions easy to apply. For a duct of circular cross 
section, it is more convenient to use polar coordinates in the n ,  
b-plane. 

Using the definition (3)1 and the Frenet formulas (33),  the 
following expressions for the natural base vectors ai of the 
coordinate system (s, x, y) may be derived 

Or 
a~ = - -  = M t  - (7- - ~o ' )y f i  + (7- - ~p ' )xb ,  

Os 

Or 
ax = ~x = fi' (39) 

Or _ fi, 
a y -  0y 
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Fig. 2 Various vectors related to the center-line of a duct 

where 

M = 1 - •(x cos ~o + y sin ~o). (40) 

Thus, unless ~- = cp', the coordinate system is not orthogonal. 
An orthogonal coordinate system is obtained, for example, if 
the center-line of the duct lies in a plane, then 7- = 0, and also 
~o is constant, i.e., ~o' = 0. 

A suitable physical basis to expand the velocity vector in is 
obviously ( t ,  fi, I~), which yields 

v = wt + ufi + vii, (41) 

where w is called the axial flow component, and u and v are 
called the secondary flow components. Accordingly, the axial 
flow is the projection of v on the tangent t ,  and the secondary 
flow is the projection of v on the n ,  b-plane. 

The following identifications are made 

X' = s, X2 = x, X3 = y, ] 

ea = t,  e 2 =  fi, e3 = f i ,  I (42) 

U l = W ,  1) 2 -~  U~  13 3 : 13. 

Then, the nonzero coefficients E~ik and y / ,  defined by Eq. ( 11 ), 
are found to be 

E2H = - E r a  = Kcosqo, E3H =--Ei3L = K s i n ~ o , ]  

E321 = -E23, = ~- - ~o', l (43) 
3/~ = 1/M, y~ = (r  - ~p')y/M, 

y3 = - ( r  - ~p')x/M, y22 = y~ = 1. 

~g appears in the divergence and the Laplacian. Using the defi- 
nition (10),  one obtains 

~g = M = 1 - K(x cos ~p + y sin qo). (44) 

The governing Eqs. ( 2 5 ) -  (27) may now be expressed in full 
detail, in a form suitable for arbitrarily smoothly curved ducts. 
In the following, the analysis is restricted to fully developed 
flow in helical ducts. 

For a helical duct, the center-line is a circular helix, which 
implies that ~ and ~- are constant (see Eq. (36)) .  We also 
require that ~o is constant. A helical duct with a rectangular 
cross section is depicted in Fig. 3. Helical ducts include two 
important special cases, namely toroidal ducts, for which r is 
zero, and straight twisted ducts, for which x is instead zero. If 

and T both are zero, the trivial case of a straight untwisted 
duct is obtained. 

Often a fully developed flow is considered. The flow is 
fully developed when it does not change in the axial direction, 

i.e., the velocity v is independent  of the s-coordinate. To be 
able to find a fully developed flow, the coefficients in Eqs. 
(43)  and (44)  must clearly be independent  of s, which im- 
plies that ~- - qo' has to be constant, and that either t¢ and 99 
are constant, or if K is zero, ~p may be a function of s, as 
long as r - ~p' is constant. However, if K is zero, the duct 
is a straight twisted one, and ~o does always enter in the form 
r - ~p' in Eqs. (43)  and (44) .  Accordingly,  in this case, the 
degree of twist T -- ~p' can be fully described by ~r only, and 
without loss of generality, we may for a fully developed flow 
assume that ~, r ,  and qo all are constant. This, in turn, implies 
that a fully developed flow is possible to obtain only in a 
helical duct, or degenerate helical (i.e., toroidal or straight 
twisted).  Further, it is also required that the pressure gradient 
is independent  of s, and that the boundary condit ions do not 
change in the axial direction. 

For a fully developed flow in a helical duct with t~, r ,  and 
qo constant, the continuity Eq. (25)  assumes the form 

0 (Mu + ~-yw) + 0 ~x ~y (My - rxw ) = O. (45) 

Expressions for the Navier-Stokes and the energy equations 
may be found in previous papers by the author, referred to in 
the Introduction. 

A stream function ~P = ~ (x ,  y),  which automatically satisfies 
the continuity Eq. (45),  may be defined according to 

O~ _ Mu + ~ryw, ] 
Oy 

O~ My TXW. 
Ox 

(46) 

• (x, y) = constant defines a three-dimensional surface, and 
V ~  is normal to this surface. For a given s, O(x, y) = constant 
defines a curve in the n ,  b-plane, and V ~  is orthogonal to the 
tangent of this curve. Using Eq. (12),  one finds that 

V ~ =  ( M 0 ~ P  TxO~P]t O~f i  O~P 
"Ox M - ~ y ]  + ~ x  +-~y f~" (47) 

Denote the secondary flow by v~ec, i.e., 

v~e~ = ufi + vb. 

Then, Eqs. ( 4 6 ) - ( 4 8 )  give 

(48) 

09 0~ 
VtI/'v,eo = u "~x + v -~-  = TW(XU + yv), ay 

xK 

Fig. 3 Helical duct with rectangular cross section 
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which means that, unless ~- = 0, so that the above expression 
is zero, the curves ~ = constant do not define streamlines for 
the secondary flow. However, one finds that 

Vqf" v = xT~. (wt + v~oc) = 0, 

which proves that the velocity is tangent to the surfaces • = 
constant. That is, these surfaces define streamtubes for the ve- 
locity field. Note also that similar results concerning the stream 
function apply, if instead polar coordinates are used in the n, 
b-plane. 
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An Approximate Method for the 
Drags of Two-Dimensional 
Obstacles at Low 
Reynolds Numbers 
We propose a new simple method of computing the drag coefficients of two-dimen- 
sional obstacles symmetrical to the main-flow axis at Reynolds numbers less than 
100. The governing equations employed in this method are the modified Oseen's 
linearized equation of motion and continuity equation, and the computation is based 
on a discrete singularity method. As examples, simple obstacles such as circular 
cylinders, rectangular prisms, and symmetrical Zhukovskii aerofoils are considered. 
And it was confirmed that the computed drags agree well with experimental values. 
Besides optimum shapes of these geometries, which minimize the drag coefficients, 
are also determined at each Reynolds number. 

1 In troduct ion  

The modified Oseen method (Lewis and Carrier, 1949) is 
really an extension of the original Oseen's approximation 
(Oseen, 1910), in that it employs a proper approximation to 
linearize the convective terms of governing equations such as 
the Navier-Stokes equations and the energy equations. The 
method is featured by the fact that it introduces some empirical 
modification parameter into the convective terms. Namely, 
Lewis and Carrier (1949) introduced a modification of the 
Oseen linearization in which uniform upstream speed of the 
convective term in the Oseen's approximation is replaced with 
an appropriate average speed. 

This modified Oseen method has been applied to solve sev- 
eral outer-flow problems, such as the flow past a semi-infinite 
or finite plate (Lewis and Carrier, 1949; Carrier, 1965), the 
heat transfer to a melting body in a high speed stream (Carrier, 
1958), and the flow past a quarter infinite plate and the related 
heat transfer (Carrier, 1965) where their solutions were ob- 
tained analytically, not computationally. 

As is clear from these papers, the governing equations can 
be tackled with comparative easiness owing to its linearity, 
analytical approaches being taken in some cases. Whereas, this 
method is not considered so effective where a nonlinearity plays 
an important role in the flow field. However, the method includ- 
ing the Oseen's approximation is sometimes useful so long as 
global characters of flow are concerned. For example, the drag 
coefficient of a sphere at an infinite Reynolds number was suc- 
cessfully obtained using the Oseen's approximation (Weisen- 
born and Ten Bosh, 1993). This means that such an approxima- 
tion is expected to provide useful information at Reynolds num- 
bers even much greater than unity. 

Combination of singularity methods or boundary element 
methods, and the modified Oseen method, enables us to com- 
pute the flow past various obstacles efficiently and conveniently. 
In this paper, this type of technique is employed to obtain ap- 
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proximately the drags of two-dimensional obstacles symmetri- 
cal to the main-flow axis, with the Reynolds number varied 
from zero to about 100. The obstacle geometries considered 
here are circular cylinders, rectangular prisms, and symmetrical 
Zhukovskii aerofoils. The numerical results are discussed, being 
compared with experimental ones. Besides, using the present 
method, we reveal that, at each Reynolds number tested, there 
are optimum shapes which minimize the drag coefficients of 
rectangular prisms and aerofoils. 

2 Bas ic  T h e o r y  

2.1 Modified Oseen's Equation. In this subsection, 
based on the basic concept of the modified Oseen method, we 
try, in our way, to linearize the Navier-Stokes equation of mo- 
tion for two-dimensional flow. 

The nonlinear convective term is expressed as 

= ( u . V ) u ,  (1) 

where u = (u, v), V = (O/Ox, O/Oy), x and y being the 
Cartesian coordinates, and u and v the velocity components 
along x and y, respectively. Velocity u is a function of space, 
and can be written as 

u = fi + u', (2)  

where fi is the velocity spatially averaged with weight all over 
the flow field fL If we introduce a weighting function N = N(x, 
y),  the space-averaged velocity fi can be expressed by 

1 f NudA/A, (3) 

with 

= f N d A .  (4) 

Here, in order to simplify the problem, we assume symmetry 
of both u and N to the x-axis, viz. the axis parallel to the 
direction of the main flow. This assumption leads Eq. (3) to 

o = (a ,  o) .  (5)  
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Substituting both Eqs. (2) and (5) into Eq. (1), we get 

fc ~ aOu/Ox.  (6) 

Letting t~ = /3U=, the convective term is 

fc ~ /3U~Ou/Ox, (7) 

where U~ is the velocity at infinity in the direction of the x- 
axis, and /3 a modification parameter. Then we arrive at the 
modified Oseen's equation first suggested by Lewis and Carrier 
(1949), for two-dimensional incompressible steady flow, 
namely, 

/3U=Ou/Ox = - V p l p  + / jV2u, ( 8 )  

where p denotes the density of fluid, u the kinematic viscosity 
of fluid, and p the pressure. In addition, V2u = OZu/Ox 2 + 02v/ 
Oy 2. And the equation of continuity is 

Ou/Ox + Ov/Oy = 0. (9) 

As is well known, with increasing Reynolds number Re, 
inertia force compared with viscous force increases over most 
of the flow field. Then, the error in simulations by the Oseen's 
approximation (/3 = 1 in Eq. (8)) increases, particularly near 
the body surface. In the present case N ( x ,  y ) ,  having larger 
values near the surface, or an appropriate value of/3, is expected 
to provide a more accurate computation. More specifically, the 
flow details over the whole flow region governed by Eqs. (8) 
and (9), are not considered to coincide with those by the full 
Navier-Stokes equations. However, it can be expected that the 
global flow characters, such as a drag acting on an obstacle, are 
computed accurately by the present equations, even for Re >> 
1, if/3 is properly chosen. 

As far as the drag is concerned, /3 is considered to be a 
function of both Reynolds number and the shape of the cross 
section. To decide the function, it is necessary to compare com- 
putations by Eqs. (8) and (9) with experiments for a variety 
of geometries. In this context, /3 is regarded as an empirical 
parameter. Fortunately, it will be revealed in Section 5.2 that 
/3 is almost independent of the geometries tested in this study. 

According to the existing drag formulae for the Oseen's flow, 
we have the corresponding formulae for the modified version. 
For example, referring to Lamb (1932), the drag coefficient CD 
of circular cylinders in uniform flow is given by 

CD = 2D/(pU~od) = 87r/(ReT), (10) 

where T = ½ - y - loge (/3 Re/8),  Re = U~d/u  and 3/ = 
0 .57721. . .  (Euler's constant), D being the drag per unit length 

and d the diameter of the cylinder. It is found from this formula 
that Co is reduced as fl decreases. In the next section, we shall 
present a more general method to obtain the drags of two- 
dimensional obstacles, including circular cylinders. 

2.2 Discrete Singularity Method. It was shown by Yano 
and Kieda (1980) that a discrete singularity method is expedient 
to solve the Oseen's equations. According to this method, the 
complex velocity Wo = uo - ivo perturbed by a modified Oseen- 
let for two-dimensional flow, which is located at the origin of 
the coordinate system, is given by 

2 

Wo = ~ {a(k)W~)) ,  (11) 
k=l 

where 

W~ 1) ~ e x p ( k x ) { K o ( k r )  

-~ K~(kr) exp( - i0)}  - 1/(kz) (12) 

and 

W~ 2~ = i exp(kx) { - K o ( k r )  

+ KL(kr) exp( - i0 )}  - i / ( k z )  (13) 

with k = / 3 U J ( 2 u ) ,  r = ]z[, 0 = arg (z), i = ~/(-1) and z 
=- x + iy. In addition, K0 and K~ are modified Bessel functions 
of the second kind. 

To realize the flow around an arbitrary obstacle in an un- 
bounded uniform flow field with the velocity U~, we can dis- 
cretely distribute modified Oseenlets of number n on the surface 
(see Fig. l ). Owing to the linearity of Eq. (8), the complex 
velocity W = u - iv is assumed as 

W = ~ { a ~ W  ~ j j j + U=, (14) 
j=l k=l 

where 

W) 1~ = e x p ( k x j ) {  Ko(krj)  + K~(krj)  exp( - iOj )  } - 1/(hzj), 

Wj ~2~ = i e x p ( k x j ) { - K o ( k r j )  + K l ( k r j )  e x p ( - i 0 j )  } - i / (hz j ) ,  

rj = I z j I ,  oj = arg (zj) and zj = z - z f  ( z f  denotes the position 
of a singularity). Letting W;, = W) k~ and a,;, = aJ k~ with m = 
j + ( k -  1 )n ,  weget 

2n 

w = ~ (a,;,W~) + u~.  (15)  
m=l 

Uoo J2 ~ Z ,  x 

~n " 

~ Control point 

Singularity 

Fig. 1 Flow around an arbitrary symmetrical obstacle in a stream with uniform velocity U~: e, 
the position of a singularity zf ; ©, the position of a control point ~j 
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F ig .  2 Side view of experimental apparatus 

So as to satisfy the no-slip boundary condition approximately 
on the surface, the 2n unknowns a,; have to be determined 
numerically from the following system of linear equations: 

W(~k)W*(~k) = O, k = 1, 2 . . . . .  n, (16) 

where the asterisk denotes the complex conjugate and ~ is the 
position of a control point (see also Fig. 1 ). 

Considering the Filon's formulae (1926), the drag coefficient 
of an obstacle is 

CD = 2D/(pU~L) 

=-8~v / (U=  Re) ~ (a,~), (17) 
m = l  

where Re = U=L/u, L being the representative length. 

3 Experimental Arrangements 
To verify the computed drags, experiments were conducted 

with a water tank moving smoothly with a constant velocity on 
a horizontal railway. As is shown in Fig. 2, the tank is driven 
by a variable speed motor by means of a nut engaged on a lead 
screw. The fluid filled is a glycerol-water solution, so as to vary 
its kinematic viscosity. 

The present technique adopted to measure the drag (exactly 
the time-averaged drag, because the drag fluctuates at higher 
values of Re) is primarily identical with what is called "lamp 
scale and mirror method" by Taneda in 1964. The model is 
hung vertically in the tank as a pendulum by a knife edge, and 
the drag can be obtained from the inclination angle of the model. 
In the original lamp scale and mirror method, the inclination 
angle is determined from the image on a ruler reflected by a 
mirror which is attached to the model. But in the present experi- 
ment the inclination angle was measured using a laser extenso- 
meter. 

1.2[ , , i , I I , , I  , I I , , , ,  

1.0'f o o 
o o 

) ~ 0 0  

0.6 

0.4 o o ~,,,ox:~8o~ 

0.2 

0 I I I I I I I J r  ' I I I I l I 

10 100 
Re 

Fig. 3 Relationship between modification parameter fl and Reynolds 
number Re 

4 Modification Parameter fl for Circular Cylinders 
It is obvious from the theory in the preceding sections that 

the computational CD of a circular cylinder based on Eqs. (8) 
and (9) is dependent both on 13 and Re, as can be also seen 
from the drag formula (10), whereas the experimental CD de- 
pends only on Re. Therefore, under the condition that they agree 
with each other, the parameter/3 is assumed as a function of 
Re only. More specifically, we determined such a value of/3 
that the computational CD, obtained by a singularity method 
with 60 singularities (modified Oseenlets) on the surface of a 
circular cylinder at regular intervals as shown in Fig. 1, may 
agree with the Tritton's experimental data (1959) (as will be 
shown in Fig. 4). 

Figure 3 indicates the relation between the modification pa- 
rameter/3 and the Reynolds number Re, which is obtained in 
the range of 0 < Re -< 100. The blank dots show direct compu- 
tations based on the foregoing theory, and the solid line indi- 
cates the empirical formula in the form 

/3 = - 0 . 1 6 2 1 o g ~ ( 1 . 2 3 R e +  1) + 1 ( 0 < R e - <  12) 

and 

/3 = 0.0310 (log~ (Re/12))  2 - 0.130 log~ (Re/12) + 0.553 

(12 -< Re -< 100). (18) 

In this figure it is shown that, in Re - 2, there is some scatter 
in/3 values obtained by direct computations due to a scatter in 
the original CD measurements, whereas this formula is reason- 
able in this range in that/3 -~ as Re ~ 0. 

Figure 4 shows computational and experimental drag coeffi- 
cients CD of circular cylinders, plotted against the Reynolds 

-. J - W - - f  

o, 

I i I i i I i i i i ~ i I i I i 

10 100 
Re 

Fig .  4 Drag coefficient Co versus Reynolds number Re for circular cylin- 
ders: - - ,  modified Oseen's approximation; . . . . .  , Oseen's approxima- 
tion; ©, experimental results (present); e, experimental results ( T r i t t o n ,  
t959) 
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-Q&q 

/ /  ~ ~ -  o.oo3---'----~-z---__ 
/ \ C " ~ / -  0.002 

(a) 

/ 

(b) 

Fig. 5 Streamlines of flow past a circular cylinder at Re = 26: (a) Modi- 
fied Osesn's approximation; (b) flow visualization by Taneda (Van Dyke,  

1982) 

number Re based on the diameter d. Here two computational 
curves for /~ = 1 and for /~ = /3 (Re) given by Eq. (18) 
are shown. A good fit between the curve for ~3 = /3(Re) and 
experimental data shows that Eq. (18) is a proper approxima- 
tion. Additionally, the curve for ~ = 1 (Oseen) is not so good 
over the whole range except in the neighborhood of Re = 1. 
Moreover, data from the present experiment are also added to 
check their accuracy. 

To check the range of the present approximation with/~, we 
computed the flow field around a circular cylinder at Re = 26. 
Figure 5 shows streamlines of flow past a cylinder. The corn- 

10 

8 
Cl 

- \ ' \  b (= a) 

\ \X \  

\ \  

0 \X x 

L I I I I I t  I l I I I I I 

10 100 
Re 

Fig. 6 Drag coefficient Co versus Reynolds number Re for square-sec- 
tion prisms (b/a = 1.0): , modified Oseen's approximation; . . . . .  , 
Oseen's approximation; ©, experimental results 

G \ 
\ 

\ 
\ 

i I I I I I I I  I I I I i I I I I i 

0.2 1 10 25 
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Fig. 7 Drag coefficient Co versus depth-to-height ratio bla for rectangu- 
lar prisms at Re = 10: - - ,  modified Oseen's approximation; - . - , / 3  = 
/3 (Re(a)); . . . .  , ~ =/3 (Re(b)); . . . . .  , Oseen's approximation; ©, experi- 
mental results 

puted length of the region of closed streamlines behind a cylin- 
der (Fig. 5 (a ) )  is somewhat shorter than that of the observation 
(Van Dyke, 1982) (Fig. 5(b) ) .  

5 fl  Independent of Geometry 
In the following sections, it will be shown that the present 

method is applicable to two-dimensional noncircular cylinders, 
using the same/~ as given by Eqs. (18) for circular cylinders. 
That is, we shall examine two types of obstacles: rectangular 
prisms and symmetrical Zhukovskii aerofoils. (For these com- 
putations n is set such that n -> 80.) 

5.1 Equivalent Diameter d, .  To obtain the value of/3 
for geometries other than circular cylinders we introduce a new 
representative length or equivalent diameter de, which enables 
us to use the relationship between fl and Re for circular cylin- 
ders in Eqs. (18). The equivalent diameter de can be defined 
as  

de = ~/(4S/7r), (19) 

where S denotes the area of the cross section. According to this 
definition d~ = d for circular cylinders. The eligibility of this 
assumption will be examined in the next section. 

5.2 Drags of Rectangular Prisms. Figure 6 shows the 
drag coefficient CD plotted against the Reynolds number Re for 
a rectangular prism with the depth-to-height ratio b/a = 1.0 (a 
square-section prism) where a is the height (cross-streamwise 

8 

. . . . . . . .  I 

: -I . . . .  I3 

I I I t I J l l  I I I I . . . .  I , 

0.2 1 t0 25 
b/a 

Fig. 8 Drag coefficient Co versus depth-to-height ratio b/a for rectangu- 
lar prisms: ©, - - ,  Re = 5; e,  . . . . .  , Re = 50; ¢ ,  - . - ,  Re = 100; ©, I1., 
~, experimental results 
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Fig. 9 Drag coefficient Co versus Reynolds number Re for symmetrical 
Zhukovskii aerofoils with t/c = 0.25: , modified Oseen's approxima- 
tion; . . . . .  , Oseen's approximation; ©, experimental results 

dimension) and b is the depth (streamwise dimension). Solid 
and a broken lines represent the numerical results by the modi- 
fied Oseen's approximation and by the Oseen's approximation, 
respectively. Blank dots represent the results by the present 
experiment. Over the wide range of Re from 4 to 100, the 
computations almost coincide with the experiments. In addition, 
it is obvious that the drag by the present method is more accurate 
than that by the Oseen's approximation. 

Figure 7 shows Co plotted against b/a  for rectangular prisms 
at Re = 10. The definitions of lines and dots are the same as 
in Fig. 6. The modified Oseen's approximation agrees well with 
the experiment over a wide range of b/a .  

Until the preceding paragraph, the equivalent diameter d~ and 
the corresponding Reynolds number Re have been used for data 
reduction. Here we try to employ two other definitions of length 
scales L = a and b and the corresponding Reynolds number 
Re(a)  and Re(b) .  In Fig. 7, in addition to the drags calculated 
using Re (solid line), those using Re(a)  and Re(b)  are shown 
by a chain line and a two-dot chain line, respectively, where 
each Co is based on d~. It can be seen from a comparison of 
these lines with blank dots (for the experiment) that a choice 
of the equivalent diameter de as a representative length L enables 
us to predict most accurately the drag within the confine of 0.2 
< b/a < 20. 

Figure 8 shows Co plotted against b/a  for rectangular prisms 
at Re = 5, 50, and 100. As well as the drag at Re = 10, the 
calculated drags agree well with the experimental ones, over a 
wide range of b/a.  

4 

3 

1 

0 0.05 

J f  

/ i f  j 

U~ 

r i i i i i i I I i I I .__L- 
0.1 1,o 

t/c 

Fig. 10 Drag coefficient Co versus thickness ratio t/c for symmetrical 
Zhukovskii aerofoils at Re = 10: - - ,  modified Oseen's approximation; - 
. . . .  , Oseen's approximation; ©, experimental results 

C3 

0.05' , n i i 0.1 

U o o >  

, , , , , , , 

o 

i i I L , i i i 1.0 t/c 
Fig. 11 Drag coefficient Co versus thickness ratio t/c for symmetrical 
Zhukovskii aerofoils: ©, , Re = 15; o, . . . . .  , Re = 50; ~ ,  - • - ,  Re = 
100; ©, o, ~ ,  experimental results 

5.3 Drags of Symmetrical Zhukovskii Aerofoils. Figure 
9 shows Co plotted against Re for a symmetrical Zhukovskii 
aerofoil with the thickness ratio t /c  = 0.25, where c is the chord 
and t the thickness of the aerofoil. A solid and a broken lines 
denote the results by the modified Oseen's and the Oseen's 
approximations, respectively. Blank symbols denote the results 
by the present experiment. As in the case of rectangular prisms, 
the modified Oseen's approximation agrees well with the exper- 
iment. 

Figure 10 shows Co plotted against t /c  for the aerofoils at 
Re = 10. The definitions of lines and dots are the same as in 
Fig. 6. We can clearly see that the modified Oseen's approxima- 
tion agrees well with the experiment. 

Figure 11 shows CD plotted against t /c  for the aerofoils at 
Re = 15, 50, and 100. As can he seen, at each Reynolds number, 
there is a good agreement between the modified Oseen's approx- 
imation and the experiment. 

After all, we can confirm that the drags of noncircular prisms, 
such as rectangular prisms and symmetrical Zhukovskii aero- 
foils, can be computed accurately by the present method, in 
spite of fl determined for circular cylinders with the use of the 
equivalent diameter de defined in Eqs. (18), so long as the 
obstacle is symmetrical with respect to the main-flow axis. This 
fl 's independency of geometry should be further examined theo- 
retically, computationally, and experimentally for a variety of 
cross section geometries. 

6 Optimum Shapes 
Again in Figs. 7 and 8, it can be seen that, at each Reynolds 

number Re, there is an optimum depth-to-height ratio (b/a)opt 

1 5  , -  10 

12 

~ 9  

\",,\\ , , \ \  ~ ~ ~ / / f f /  

\ \  ~_  . / / -  (CD)mi, 
I ~  - -_  .~</ 

I ) I a I I i l l / 0  

6 ~  

4 

,2 
L i n i t , i ,  lOO 

Re 

Fig. 12 Optimumdepth-to-heightratio(b/a)opt(solidline)andminimum 
drag coefficient (Co)~n~. (broken line) of rectangular prisms, against 
Reynolds number Re 
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Fig. 13 Optimum thickness ratio (t/clopt (solid line) and minimum drag 
coefficient (Colm=. (broken line) of symmetrical Zhukovskii aerofoils, 
against Reynolds number Re 

Uoo~ 

(a) 

(b) 

at which the drag coefficient CD of the rectangular prism has 
the least value (CD),~j,,. 

Figure 12 shows (b/a)ovt (solid line) and the minimum drag 
coefficient (CD)m~n (broken line) plotted against Re for the rect- 
angular prism. As Re increases, (b/a)opt becomes larger, while 
( C o ) m i  n i s  r e d u c e d .  

In Figs. 10 and 11, we can also recognize that, at each Reyn- 
olds number, there is an optimum thickness ratio (t/C)oot at  

which the drag coefficient Co of the aerofoil has the least value 
( CD)mi, ,  • 

Figure 13 shows (t/C)opt (solid line) and the minimum drag 
coefficient (CO)m~, (broken line) plotted against Re for the aero- 
foil. (tic)opt as  well as (Co)mi, decreases with increasing Re. 

Additionally, Figs. 14 and 15 show examples of optimum 
shapes for the rectangular prism and the symmetrical Zhukov- 
skii aerofoil at some Reynolds numbers. 

7 Conclusions 
In order to obtain approximately the drag coefficients of two- 

dimensional obstacles symmetrical to the main-flow axis, the 
authors proposed a new simple method of computing the modi- 
fied Oseen's linearized equations, with an empirical parameter 
/3, on the basis of a discrete singularity method. Namely, the 
drag coefficients of simple blunt bodies, such as circular cylin- 
ders, rectangular prisms and symmetrical Zhukovskii aerotbils, 

(a) 

(b) 

Uoo "1 I 
(c) 

Fig. 14 Optimum shapes of rectangular prisms: (a) Re = 1; (b) Re = 
10; (c) Re = 100 

(c) 

Fig. 15 Optimum shapes of symmetrical Zhukovskii aerofoils: (a) Re = 
1; (b) Re = 10; (c) Re = 100 

were computed in a Reynolds number range up to about 100. 
The method has advantages of the simplicity of computational 
algorithm and of the time saving for computing execution. For 
example, for the case of 150 singularities, the time for computa- 
tion was about 1/500-1/1000 times that by a finite difference 
method. 

In the present study, an equivalent diameter de was introduced 
as a representative length, so as to utilize the relationship be- 
tween/3 and Re determined for the case of the drag of circular 
cylinders. Examinations of the computational and experimental 
data for rectangular prisms and the aerofoils lead to the follow- 
ing confirmation. This approximation with/3 enables us to com- 
pute an accurate drag of an obstacle with an arbitrary shaped 
cross section symmetrical to the main-flow axis. 

Besides, it was revealed using the method that, at each Reyn- 
olds number, there is an optimum shape which minimizes the 
drag coefficient of the rectangular prism or the aerofoil, if the 
cross-sectional area is given. 

Lastly, it should be added that all computations were per- 
formed on a HITAC M-680H computer in double precision, 
and that systems of linear algebraic equations were solved by 
the Gaussian elimination method. 
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Closed-Form Transient Response 
of Distributed Damped Systems, 
Part I: Modal Analysis and 
Green's Function Formula 
An analytical method is developed for closed-form estimation of the transient response 
of complex distributed parameter systems that are nonproportionally damped, and 
subject to arbitrary external, initial, and boundary excitations. A new modal analysis 
leads to the Green's function formula for the distributed system and an eigenfunction 
expansion of the system Green's function. The legitimacy of the modal expansion is 
also shown. 

1 Introduction 

This work is concerned with closed-form evaluation of the 
transient response of complex distributed damped systems. The 
distributed system in consideration is an assembly of multiple 
flexible continua, which are subject to various damping and 
constraints, are combined with lumped parameter systems, and 
are under arbitrary external and boundary disturbances. The 
beam structure in Fig. 1 is one example. The structure, while 
hypothetic, presents certain commonly used damping models 
that are developed and justified in a wide range of engineering 
applications, including machine and engine mounting, damping 
treatment, vibration isolation, dynamic vibration absorption, 
passive and active vibration suppression, and smart structure 
design. Structures like that are often termed as constrained and 
combined systems. 

Constrained and combined distributed systems, because of 
their important engineering applications, have been of continued 
research interest for years; for instance, see Bergman and 
McFarland (1988), Yang (1994a), and the references cited 
therein. Due to viscous damping constraints and coupling of 
distributed and lumped elements, constrained and combined 
systems are typically nonproportionally damped, and mathemat- 
ically non-self-adjoint in the original equations of motion. For 
a non-self-adjoint system, conventional modal analysis would 
lead to an infinite set of coupled second-order differential equa- 
tions, whose closed-form solution is intractable. In this case, 
modal truncation and other discretization approaches are often 
used to estimate the response of the distributed damped system. 

NonproportionaUy damped systems, mainly lumped damped 
systems, have been extensively studied in the past several de- 
cades. A summary of the developments is given by Bellos and 
Inman (1989). In predicting the dynamic response of damped 
systems, modal analysis is one popular technique. The modal 
analysis procedure in use is either real-valued (Caughey and 
O'Kelly, 1965), or complex-valued (Foss, 1958). The real- 
valued method is computationally inexpensive, and thus has 
found wide application in many engineering problems. The ma- 
jor disadvantage of the real-valued method is that it cannot 
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decouple nonproportionally damped systems. Because of this, 
approximate real-valued methods using undamped modal data 
or proportional damping presumption have been developed. 
While being intuitive, these approximate methods can lead to 
large errors whose bounds are difficult to estimate, and miss 
some important dynamic characteristics of nonproportionally 
damped systems, like nonconstant phase in vibration. 

The complex-valued method, on the other hand, can decouple 
nonproportionally damped systems via bi-orthogonality of ei- 
genfunctions in a state-space formulation. In a broader prospect, 
state-space formalism is also capable of decoupling other non- 
self-adjoint systems with gyroscopic and circulatory effects 
(Huseyin, 1978; Meirovitch, 1980). Nevertheless, the complex- 
valued modal analysis does have some drawbacks. The method 
is computationally intensive because both associate and adjoint 
state-space eigenfunctions have to be calculated. Unlike in the 
real-valued method, the physical significance of the various 
elements of the complex-value modal analysis is not well classi- 
fied. Furthermore, in analyzing distributed systems, the conver- 
gence of complex modal superposition depends on the com- 
pleteness of bi-orthogonal eigenfunctions in an infinite dimen- 
sional function space, which may not be true, but is often 
assumed. These disadvantages have limited the utility of the 
complex-valued method in engineering analysis. 

Besides nonproportional damping, closed-form transient 
analysis of constrained and combined systems is also compli- 
cated by the coupling of distributed and lumped elements, which 
is mathematically described by a set of hybrid partial/ordinary 
differential equations along with coupled boundary conditions. 
In fact, even if damping is ignored, this coupling may render 
the spatial differential operators of distributed elements non- 
self-adjoint (Friedman, 1956). Thus, these hybrid partial/ordi- 
nary differential equations are often solved by approximate 
methods. In the literature, no exact and closed-form solution 
method is available for transient analysis of constrained and 
combined, distributed damped systems. 

The current study is motivated by the need for a solution 
technique which can efficiently deal with the non-self-M- 
jointnees caused by nonproportional damping, and coupling of 
distributed and lumped elements. In this two-part paper, a new 
method is proposed for closed-form transient analysis of com- 
plex distributed damped systems. In Part I a modal analysis and 
a Green's function formula are developed based on a state- 
space formulation, which predict the transient response of nonpro- 
portionally damped systems in infinite series of vibration modes. 
In Part II (Yang, 1996), the solution method is extended to 
constrained and combined systems'through use of energy func- 
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f(x,t) 

Fig. 1 A complex beam structure: a constrained damping layer in seg- 
ment 1-2; a rigid body viscoelasticaliy mounted at points 4 and 5; damp- 
ing constraints at point 7 (spring-dashpot) and in segment 10-11 (e.g., 
viscoelastic foundation); a lumped mass at point 11; a combined oscilla- 
tor at point 7; and viscoelastically coupling at points 5 and 11 and in the 
region 2-3-10-9-2 

tionals. Throughout the development, no approximation or dis- 
cretizafion has been made; closed-form solution for the coupled 
partial and ordinary differential equations governing the motion 
of the complex system is obtained. 

The proposed method is different from existing modal analy- 
sis techniques in three major aspects. First, a relationship be- 
tween modes of vibration and adjoint state-space eigenfunctions 
of distributed damped systems is established, which implies that 
the calculation of state-space eigenfunctions is unnecessary, and 
tremendous computation can be saved. Second, the convergence 
of the modal superposition is proven without the completeness 
assumption for state-space eigenfunctions. Third, the method 
systematically treats constraints and distributed-lumped subsys- 
tem interaction in an energy form. These features make the 
new solution method more attractive, reliable, and practical in 
engineering analysis. 

2 L u m p e d  Sys tems:  A Tutor ia l  E x a m p l e  

The main idea behind the proposed method can be obtained 
from the analysis of nonproportionally damped lumped systems. 
The response of such a system is described by 

M£(t)  + Dx(t) + Kx(t) = f ( t )  

x ( 0 )  = Xo, x ( 0 )  = vo ( 1 )  

where the overdot denotes temporal differentiation, x(t) c R" 
is the vector of generalized coordinates, f ( t )  ~ R" is the forcing 
vector, and M, D, and K 6 R "×" are the inertia, damping, and 
stiffness matrices with the properties 

M T = M > 0 ,  D T = D ~ - 0 ,  K r = K > 0 .  

The associate eigenvalue problem is 

{kk2M + kkD + K}v~ = 0 (2) 

where he E C is the kth eigenvalue, and vk E C" is the corre- 
sponding eigenvector. Since the system is nonproportionally 
damped, i.e., D M - I K  -~ KM-~D (Caughey and O'Kelly, 
1965), the eigenvectors are complex and nonorthogonal. As a 
result, the classical (real-valued) modal analysis does not de- 
couple the equation of motion. 

To derive a modal expansion of the system response, the 
equivalent state-space form 

~(t) = Az(t) + Bf(t) ,  z(0) = z0 (3a) 

z=(:) A=[0 ,] 
, __M-IK _M-1D 

B = M-~ ' z0 b0 

is used. According to Yang (1994b), the solutions of the eigen- 
value problems associated with (3) 

A~bk = h,~b~, ATO, = Xk0~ (4) 

can be represented by those of the original eigenvalue problem 
(2): 

~bk = hkV~ ~ \ hkMv~ ] 

k = +1, _+2 . . . . .  _+n (5a, b) 

where the overbar represents complex conjugation, k k = Xk, 
and v-k = %. The eigenvectors 05k and 4'k are in the bi-orthogo- 
nality relations 

(~bj, ~bk) = 26j,, (0J, A0k) = 2k¢Sj, (6) 

where cSj~ is the Kronecker delta, and the inner product (a, b) = 
a ' b ,  a* = ~r, Va, b ~ C 2". By (5) and (6), the normalization 
condition for the eigenvectors is 

12 (Oh, 4, , )  = v~Mv~ - ~ v~Kvk = 2. ( 7 )  

Applying (6) to the state space Eq. (3) yields 

fo z(t) = G(t)zo + G(t  - r ) B f ( r ) d 7  (8) 

where 
± n  

G(t)  = ½ Y~ e×k'~bk~bk * ~ R 2"×2". (9) 
k = ~ l  

By (3b) and (5), the solution to Eq. (1) is given by 

x(t) = g(t)Mxo + g(t)(Mvo + Dxo) 

fo + g ( t -  r ) f ( r ) d r  (10) 

where the Green's function, an n by n real matrix, is of the 
form 

1 1 ~k t T g(t) = ~ ~ e  VkVk. ( l l )  
k = ± l  

The relationship (5b) between the vibration modes (hk, vk) 
and the adjoint state-space eigenvectors qg~ is an important key 
to the eigenfunction expansion. With this relationship, the state- 
space analysis is conveniently converted back to the original 
physical coordinates, and the calculation of the adjoint state- 
space eigenvectors is avoided. 

3 M o d a l  Analys i s  of  Dis tr ibuted  S y s t e m s  

The displacement w ( x ,  t) of a distributed damped system is 
governed by 

M w , . ( x ,  t) + Dw, , (x ,  t) + K w ( x ,  t) 

= f ( x , t ) ,  x E ~ 2  (12a) 

F w ( x ,  t) = O, x E 0~2 (12b) 

w(x ,  O) = ao(x),  w, , (x ,  O) = bo(x),  x E f~ (12c) 

where ( ),, = 0( )lOt, f~ is a bounded open region in R m 
with boundary 0f~, 1 -< m -< 3, f ( x ,  t) is the external force, 
ao(x) and bo(x) are given functions, M, D, and K are spatial 
differential operators describing the system inertia, damping, 
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and stiffness, respectively, and F is the spatial boundary opera- 
tor. The M, D, and K are symmetric; namely, 

(Mu, v)mm = (u, MV)Hm), 

(Du, V)u~m = (u, Do)u(m, (gu, v)nm~ = (u, Kv)u(m 

where the inner product is defined by (u, v).m) = faffvdx, and 
u and v are comparison functions from a Hilbert space H(f~). 
Also, M and K are positive definite and D is positive semi- 
definite. The eigenvalue problem associated with (12) is 

{X~M + kkD + K}v~(x) = O, 

k = - + l , - + 2  . . . . .  x ~  f~ (13) 

where k-k = kk, and v_~ = gk. Without loss of generality, assume 
that the distributed system has no rigid body motion, i.e., I X~ I 

0 for all k, 
When the distributed system is nonproportionally damped, 

which is often the case in engineering practice, the eigenfunc- 
tions Vk(X) are nonorthogonal, and cannot decouple Eqs. (12). 
Consequently, conventional modal analysis is not applicable 
here and new techniques are needed for closed-form solution. 
In the following, the concepts described in Section 2 are gener- 
alized to develop a new modal analysis for the distributed 
damped system. 

Equations (12) are transferred to an equivalent state-space 
form 

Aoz,t(x, t) = &z(x ,  t) + B f ( x ,  t), z(x, O) = Zo(X) (14a) 

where 

(w) I; [o 1] z = , Ao ---- A i  = , 
w,~ ' - K  - D  

B =  ( ~ ) ,  z° (x )= (a°(x)'~ I (14b) 

The associate and adjoint eigenvalue problems are 

Alqbk(X) = hkAoqbk(x), AlrOk(X) = kkAoOk(X) (15a, b) 

where k = _+1, _+2 . . . . .  and ~b-k = ~k. The &k(x) of (15a) 
are related to v~(x) of (13) by 

~bk(x)= (Vk(X) ~ .  (16) 
\ X,~k(x) / 

It is easy to show that the state-space eigenfunctions are in the 
bi-orthogonality relations 

( q~j, Aoqbk) = (Ao~j, qbk) = 26~ 

(~b~, At~b~) = (Alr~Oj, q~k) = 2 k j S j k  (17a, b) 

where the inner product is defined by (a, b) = (al, az)nm) + 
(bl, b2)n(a), a = (al, a2) T, b = (bl, b2) r ~ H(Ft) @ H(~2). 

It is well known that the state-space eigenfunctions qbk(x) 
can be expressed by the mode shapes v~(x), Eq. (16). However, 
what is not known in the literature is that the adjoint eigenfunc- 
tions ~O~(x) can also be represented by vk(x), which plays an 
important role in the proposed transient analysis. To show this, 
write 

(X~(x) 
~lk(X) = \ X 2 ( X ) / /  , X l ,  X2 ~ H ( ~ ) ,  ( 1 8 )  

Journal of Applied Mechanics 

Substituting the above into (15b) gives 

1 
X~ = - ~ K x 2 ,  (k~M+ k k D + K ) ~ 2  = 0 .  (19a, b) 

Comparing (13) and (19b) leads to 

1 
Xt = - ~ K ~ k ,  X2=V~. (20) 

Thus, the adjoint eigenfunctions 0k are in the form 

12 ( - K ~ ( x )  ~ 
~bk(x) = ~  \ ~.kgk(X) ] '  k =  ±1, +_2 . . . . .  (21) 

The normalization condition for thk and ~bk, by (16) and (21), 
becomes 

1 
(Oh, Aoqb,) = (vk, Mvk)n(m - k-'~ (gk, KVk)n(m 

= fa (vkMvk -- vkKvk/Xk2)dx = 2. (22) 

Assume that the thk and qtk are complete in the Hilbert space 
H(f~) @ H(~) .  The state-space vector z(x, t) is expressed as 

z(x, t) = ~ qk(t)qbk(X) (23) 
k=.~l 

where qk are the modal coordinates. (The legitimacy of the 
modal expansion will be shown in Section 6.) Substitute the 
modal series (23) into (14) and use the bi-orthogonality rela- 
tions (17), to obtain 

qk(t) 

'L = ½ e×k'(Ok, A0z0) + g e~kU-')(Ok, B f ( ' ,  r ) )dr .  (24) 

By (23) and (24), the state-space vector is determined as 

z(x, t) = fa G(x, (, t)Aozo(~)d~ 

+ G(x, ~, t - r )B f (~ ,  r)d~dr (25) 

with the two-by-two real matrix 

1 G(x, ~, t) = 7 ~ e~k'~b~(x)qlk*({) (26) 
k=±l 

where qJk* = , ~ .  By (14b) and (25), the solution to (12) is 
obtained as 

w(x, t) = fa {g,,(x, ~, t)Mao({) 

+ g(x, ~, t)(Mbo({) + Dao({))}d{ 

fol + g(x, ~, t - r ) f (~ ,  r )d{dr  (27) 

where the Green's function of the distributed system is given 
in the eigenfunction expansion 

1 ~ ~_ e~k%(x)vk({), X, ~ ~ fL (28) g ( x ,  ~, t)  = 
k=+l /X k 

The Green's function is the impulse response of the distrib- 
uted damped system that is subject to zero boundary and initial 
disturbances; i.e., 

Mg,.(x, ~, t) + Dg,,(x, ~, t) + Kg(x, ~, t) 

= 6 ( t ) 6 ( x -  ~), x ,~  ~ f~ (29a) 
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Fg(x, ~, t) =0 ,  x, ~ E Of~ (29b) 

g(x ,~ ,O)  = O, g , , (x ,~ ,O)  = O, x ,~  E f~ (29c) 

where the operators M, D, K, and F act on ~. 
If the distributed system has repeated eigenvalues, the associ- 

ated eigenvalue problem becomes 

{X~M + XkD+ K}Vkj(X) = O, 

j =  1,2 . . . . .  m~, k =  1,2 . . . .  

where m~ is the multiplicity of the eigenvalue k~. In this case, 
the Green's function formula (27) is still valid, and the Green's 
function is given by 

+oo m k 
1 ~ 1 exit g(x,  ~, t) = ~ ~ ~ Vkj(X)Vk~(~), X, ~ ~ fL 

k=±l j=l 

The distributed damped system (12) is non-self-adjoint in its 
original equations of motion. Based on a state-space formula- 
tion, the response w(x,  t) and the Green's function g(x,  ~, t) 
are represented by series of complex and nonorthogonal eigen- 
functions describing the modes of vibration of the damped sys- 
tem. This new method differs from the existing modal analyses 
in that it utilizes the relationship between the vibration modes 
and the adjoint state-space eigenfunctions. 

4 Laplace Transform 

While the Green's function in (28) is an eigenfunction series, 
the Green's function formula (27) does not depend on the modal 
analysis. In this section, we show that the Green's function 
formula (27) can be obtained by Laplace transform. The pur- 
pose here is threefold: (a) to enhance the usefulness and versa- 
tility of the proposed method by relating it to a frequency- 
domain analysis tool; (b) to define distributed transfer functions 
which have wide application in various dynamics and control 
problems of distributed damped systems (Butkoviskiy, 1983; 
Yang and Mote, 1991; Yang and Tan, 1992; Yang, 1994a); 
and (c) to provide a new way to evaluate transfer function 
residues, which are needed for transient response by inverse 
Laplace transform. 

Laplace transform of Eqs. (12) with respect to time gives 

(s2M + sD + K)u3(x, s) =fez(x, s) ~ f ( x ,  s) 

+ M(sao(x) + bo(x)) + Dao(x), x E ~ (30a) 

Fu3(x, s) = 0, x ~ 0f~ (30b) 

where ~(x,  s) andf(x ,  s) are the Laplace transforms of w(x, 
t) and f ( x ,  t), respectively, and s is the Laplace transform 
parameter. The solution rP(x, s) of (30) is of the integral form 
(Roach, 1982) 

v~(x, s) = f g(x,  ~, s)f~z(~, s)d~, x e ~2 (31) 

where the integral kernel ~(x, (, s) is the distributed transfer 
function of the damped system (Butkoviskiy, 1983). The trans- 
fer function is the Laplace transform of the Green's function, 
and by (28) is in the modal expansion form 

1 ±~ 1 
~(x, ~, s) = ~k~,  Xk(s - Xk-----~ Vk(X)Vk((), X, ~ E a. (32) 

The transfer function is the solution of the equations 

( s 2 m + s D + K ) g ( x , ~ , s ) = 6 ( x - ~ ) ,  x , ~ e f ~  (33a) 

F g ( x , ~ , s )  = 0 ,  x , ~ E 0 f ~  (33b) 

which are the Laplace transforms of Eqs. (29). 
It is easy to show that inverse Laplace transform of (31) 

with £-~[g(x, ~, s)] = g(x,  ~, t) retains (27). Hence, without 

modal analysis, the Green's function formula for distributed 
damped systems is derived although one still needs to determine 
the Green's function to predict the system response. Equation 
(28) provides one way to determine the Green's'function in 
closed form. 

Theoretically, when the distributed transfer function is avail- 
able, the Green's function can be estimated by residue theorem: 

g ( x ,  ~, t) = L - l i e ( x ,  ~, S)] 

= ~ eX/Res {g(x ,~ , s )}  (34) 
j=+_l ~=xj 

where kj are the poles of the transfer function, or the eigenvalues 
of the distributed system. Unfortunately, because the transfer 
function of a complex distributed system can only be estimated 
numerically and because the singularities of ~(x, ~, s) at its 
poles can lead to large errors in computation, accurate prediction 
of the residues of g(x, ~, s) is impractical, if not impossible. 
The modal analysis proposed herein actually provides a new 
way to calculate the residues; i.e., by (32), these residues are 

Res{~(x,~,s)}  =~-vk(x)vj(,~),  j=_+l ,_+2 . . . . .  (35) 
s=hj z~j 

The eigenpairs (kj, vj) of a distributed system can be estimated 
by many well-developed techniques, and have been obtained in 
exact and closed form for a large class of complex distributed 
systems (Yang, 1994a). Thus, the relation (35) warrants accu- 
rate prediction of transfer function residues for distributed 
damped systems. 

5 Boundary Disturbances 

The distributed damped system studied in the previous sec- 
tions is under homogeneous boundary conditions. In this sec- 
tion, the effects of boundary disturbances on the system re- 
sponse is investigated. Let y(x, t) be the displacement of the 
damped system described by 

g y , , ( x ,  t) + Dy,t(x, t) + Ky(x, t) = f ( x ,  t), 

x E f~ (36a) 

F j y ( x , t ) = y j ( x , t ) ,  xEOf~, j = l , 2  . . . . .  Ni,,h (36b) 

Fjy(x, t) = O, x E 0~, 

j=N~,h  + 1, N~,,h + 2  . . . . .  Nb (36c) 

y(x,  O) = ao(X), y,,(x, O) = bo(x), x E f~ (36d) 

where among the total Nb boundary conditions, N~,,h (--<Nb) are 
inhomogeneous, with the functions yi(x,  t) representing the 
boundary disturbances (either external loads or displacement 
excitations), and I'j are the spatial boundary operators. By su- 
perposition, the solution to (36) is decomposed into 

y(x,  t) = w(x,  t) + u(x, t) (37) 

where w(x,  t) satisfies Eqs. (12), and u(x, t) is the solution 
of 

Mu,,(x,  t) + Du,t(x, t) + Ku(x, t) = O, x E f~ (38a) 

F j u ( x , t ) =  y j ( x , t ) ,  xEOf2 ,  j =  1,2 . . . . .  Ni,h (38b) 

Fju(x, t) = O, x E Of~, 

j=Ni , , h+  1, Ni,,h+2 . . . . .  Nb (38c) 

u(x, O) = 0, u,,(x, O) = 0, x E ft. (38d) 

The solution to (12) has been given in (27) and (28). So, only 
Eqs. (38) are to be solved. 
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Laplace transform of (38) gives 

(s2M + sD + K)t~(x, s) = O, x E [2 (39a) 

Fj~(x, s) = "~j(x, s), x G 0f2, j = 1, 2 . . . . .  N~,h (39b) 

F f i ( x , s ) = 0 ,  x ~ 0 ~ ,  

j = Ni,h + 1, N~,,h + 2 . . . . .  N~. (39c) 

Recall that the transfer function g(x, {, s) satisfies (33). Con- 
sider the integral 

0 = f ~(x, ~, s)(sZm + sD + K)~t(,~, s)d~ 

= fa  a(~, s ) ( s 2 m  + sO + g ) g ( x ,  ~, s)d~ 

+ B(a,  g)loa = a(x, s) + B(fi, g)loa 

where the boundary conjunct 

fo  Nt, 
[~ j = l  

Ej are the boundary operators arising from integral by part, and 
E j* and F~ are adjoint to Ey and F~. Because the operators M, 
D, and K are symmetric, Ey = E~ and Fj = F~. It follows that 

fo  N' a(x, s) = ~ ( ~ [ g l r ~ a  - EAalF~g)d( 
aj=~ 

f [  Ninh 
= ~ Ej[~(x,  ~, s)]'~(~, s)d~ (40) 

~2 j=l 

where the boundary conditions (33b) for ~(x, ~, s) and (38b, 
c) for a(x, s) have been used. Finally, inverse Laplace trans- 
form of (40) leads to the convolution integral 

u(x,  t) = hi(x, (, t - r )y j (~ ,  r ) d ( d r  (41) 

where the boundary influence functions 

h ~ ( x , ~ , t ) = £ - l { E j [ ~ ( x , C ~ , s ) ] } ,  j =  1,2 . . . . .  N,,,h. (42) 

It is seen that the boundary influence functions of a distributed 
damped system can be represented by the Green's function of 
the system. Once u(x,  t) is known, the complete solution to 
(36) is obtained by the superposition (37). 

As an example, consider a cantilever beam subject to a dis- 
placement excitation we(t) at its left end, and a torque re( t )  
at its right end; see Fig. 2. Assume Zero external and initial 
disturbances. The s-domain response if(x, s) of the beam is 
governed by 

(s2p + sd~)~(x,  s) + ((Sdh + EI)~3,xx(X, s)),xx = O, 

x E  (0, L) (43a) 

~ ( 0 ,  s) = v0~(s), ~ ( 0 ,  s)  = 0 

((sd,, + E/)~,~),~I~=~ = 0 (43b) 

w(x, t) 

l = X ~b( t ) 

x=0 x=L 

Fig. 2 A cantilever beam under boundary disturbances 

where p is the linear density, E1 is the bending stiffnessl d, and 
dh are the viscous and material damping coefficients, and fib(S) 
and ~e(S) are the Laplace transforms of we(t) and re( t ) ,  respec- 
tively. The transfer function of the beam satisfies 

(s2p + sdv)~ + ((sdh + El)g<~),¢~ = 6(x - ~), 

x,~  E (0, L) (44a) 

g(x, 0, s) = 0, ~,~(x, 0, s) = 0, x E (0, L) 

(Sdh + EI)g,¢¢I¢=L = O, ((Sdh + El)g,~¢)q[x=L = 0, 

x E  (0, L) (44b) 

where ( )< = 0( )10~. By (43) and (44), it is easy to show 
that 

f g (x ,  ~, s ){ (s2p  + sdo)~(¢, s) 0 

+ ((sdh + EI)u3<~(~, s)),¢~}d~ 

= ~ ( x ,  s) - ((Sdh + El)~<~),¢[¢=o~b(S) + £~I~=L~,,(S). 
Hence the time-domain response of the beam 

Y2 W(X, t) = (hi(x, t - r)w~('c)  

+ hz(x, t - r ) % ( r ) ) d r  (45) 

where the boundary influence functions are given by 

ht(x,  t) = ((dhO/Ot + El)g,~)<l~=o, 

h2(x, t) = -g,¢l¢=L (46) 

and g(x ,  ~, t) = £-~[~(x,  ~, s)] is the Green's function of the 
beam. 

The vibration of the distributed system (36) is excited by 
external, initial, and boundary disturbances. The contribution 
of the external disturbance is represented by the system Green' s 
function. Equations (27) and (42) show that the influence of 
the initial and boundary disturbances on the system response 
can also be described by the Green's function. Knowing this 
will greatly simplify the solution procedure: The key step in 
the closed-form transient analysis is to determine the impulse 
response (Green's function) of the distributed damped system 
under zero initial and boundary disturbances. 

6 Legitimacy of Eigenfunction Expansion 
The modal analysis proposed in Section 3 has assumed that 

~bk and ~bk are complete so that the eigenfunction expansion of 
the system system response can be derived. The completeness 
of the state-space eigenfunctions is difficult to prove for general 
damped systems. However, as suggested in Roach (1982), it 
is possible to obtain the eigenfunction series through direct 
use of the Green's function. In this section, without assuming 
completeness of the state-space eigenfunctions, we show that 
the proposed eigenfunction expansion is legitimate. 

First, show that the series (34) (residue theorem) is legiti- 
mate. Assume that the boundary value problem described by 
(12) is well posed and has a unique solution. Assume that the 
damped system has a discrete spectrum, which is always the 
case for vibrating continua in a finite bounded region. Then, 
the Green's function of the damped system exists and the system 
response can he represented by the integral (27) although the 
modal expansion (28) is not viable yet. Because M and K are 
positive definite and D is positive semi-definite, the system 
impulse response is such that limg(x, ~, t )e  -~t = O, 'v'te > O, 

which means that the Laplace transform of the Green's function, 
namely the distributed transfer function ~(x, (, s), exists. Be- 
cause none of the poles of ~(x, (, s) are located in the open 
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right-half complex plane and because lims~(x, (, s) = g(x,  ~, 

0) = 0 by (29c), limE(x, ~, s)e ~' = 0 for Re(s) < 0. Thus, 

inverse Laplace transform of ~(x, ~, s) by the Bromwich inte- 
gral is legal, and gives the Green's function in a convergent 
series, which is (34). 

Second, show that (34) is an eigenfunction series. For s near 
the kth pole (eigenvalue) kk, the transfer function given in (34) 
can be written as 

±~ b~(x, ~) bk(x, ~) + R(x ,  ~, s) (47) ~(x,  ~, s) = Y. - -  = - -  
j = ± l  S - -  X j  S - -  X k 

where bk(X, ~) is the residue of the transfer function at kk, and 
R(x ,  ~, s) = Z b~( x, ~)/(s  - k~) is analytic at kk. Substituting 

j*k  
(47) into (33) gives 

1 
L~fbk(x, ~)1 + L~[R(x, ~, s)] = 6(x - ~) 

s - kk 

where L~ is the operator sZM + sD + K acting on ~. The 
Cauchy integral 

-!- fr ( s ~ l x  L ' [ b k ( x , ' ) ]  + L ' [ R ( x , ' , s ) ] )  ds 
27ri 

= ~ /  e(x-~)a~ 
k 

on the contour Fk = {s @ C: Is - kkl = ¢, e < Ihj -- Xkl for 
all k i * kk } leads to 

L~xk[bk(x, ~)] = ( k ~ . / +  kkD + K)bk(x, ~) = 0 (48) 

which suggests that 

bk(x, ~) = a(x)vk(() .  (49) 

Here vk(~) is the kth eigenfunction of the damped system, and 
a(x)  is a function o fx .  Because the operator sZM + sD + K 
is symmetric, ~( x, ~, s) = ~(~, x, s), and therefore 

L~[~(x, ~, s)] = 6(x - ~) (50) 

where L~ is the operator sZM + sD + K acting on x. Plugging 
(47) and (49) into (50) and conducting the Cauchy integration 
on Fk lead to 

L[~[bk(X, ~)] = vk(~)(k~M + XkD + K)a(x )  = 0 

which implies a(x)  = tkVk(X), where lk is a constant. Thus, 
the residue bk(x, ~) = lkVk(X)Vk(() and the Green's function 
and transfer function are expressed by the eigenfunction series 

+ ~  

g(x,  ~, t) = ~ lkeX'%(X)Vk(~) (51) 
k = ± l  

d(x ,  ~, s) = ~ tkVk(X)Vk(~). (52) 
k = ± l  

Third, evaluate the constants ilk. Let the damped system (12) 
be subject zero initial disturbances. By (27), the displacement 
and velocity of the damped system are given by 

foL w(x,  t) = g(x,  ~, t - r ) f ( G  ~-)d~dr (53a) 

w , ( x ,  t) = g , ( x ,  ~, t - ~-)f(G ,')d~d~" (53b) 

where (29c) has been used. By (51) and (53), the state-space 
vector z(x,  t) in (14a) is 

z(~, t) = ( w(x, t) ) 
\ w, ,(x ,  t) 

= ~ td)k(x)  eXk°-~)A(,-)d~" (54) 
k = ± l  

where3~(t) = f a v k ( ( ) f ( G  t)d~. Substituting the Laplace trans- 
form of (54) into that of the state-space Eq. ( 14a ), and applying 
(15a) leads to 

+~ ( 0 ) ~  
tJf~(s)A°4)i(x) = 1 f ( x ,  s) (55) 

j = ± l  

wheref~(s) andf(x ,  s) are the Laplace transforms o f t ( t )  and 
f ( x ,  t), respectively. Take the inner product (0k, ") of both 
sides of the above equation, and use the bi-orthogonality prop- 
erty (17a) to obtain 

tkfk(0k, A0qSk) = ~ fk. (56) 

The forcing function f ( x ,  t) can always be chosen such that 
fk ~ 0. It follows that 

1 lk (57) 
kk(0k, A0qSk) ' 

Finally, show that the Green's function is uniquely deter- 
mined by (51 ). Although ik can be an arbitrary nonzero con- 
stant, depending on how the eigenfunctions ~bk and 0k are scaled, 
/3kVk (X) Vk (~) is independent of any eigenfunction normalization. 
In fact it is easy to see that for ffk(x) = ark(x), with ce being 
an arbitrary nonzero constant 

vk(X)Vk(~) ~k(X)0k(~) 
kk(0k, AoqSk) kk(t~k, A0~k) (58) 

where ~k and ~k are the state-space eigenfunctions correspond- 
ing to Oh. Accordingly, the Green's function given by the modal 
expansion (5 l ) is uniquely determined. Furthermore, by letting 
(Oh, Aoq~k) = 2, which is just the normalization condition (22), 
the coefficients lk = 1/(2kD and the series (51) is identical to 
(28). Therefore, the modal analysis presented in Section 3 is 
indeed legitimate, and does give convergent eigenfunction rep- 
resentation of the system Green's function and system response. 

7 Conclus ions  

The distributed damped system in consideration is non-self- 
adjoint in its original equations of motion; conventional modal 
analysis cannot yield closed-form solutions. In this work, by a 
new modal analysis and a Green's function formula, the re- 
sponse of the distributed system to arbitrary external, initial, and 
boundary disturbances is given in a closed-form eigenfunction 
series. The main results presented in this paper are summarized 
as follows: 

(i) A relationship between the modes of vibration and ad- 
joint state-space eigenfunctions of the distributed damped sys- 
tem is established. Because of this, the analysis in the state 
space can be conveniently converted back into the physical 
coordinates and the modal space where the physical meaning 
of eigenfunctions has been well classified. It is based on this 
relationship that the proposed modal analysis and Green's func- 
tion formula are derived. 

(ii) The legitimacy of modal expansion for general distrib- 
uted damped systems is proven, without assuming completeness 
of the system eigenfunctions. Previous modal analyses for non- 
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self-adjoint systems usually adopt the assumption of complete 
eigenfunctions, which may not be true, and are difficult to ver- 
ify. The proof given in Section 6 guarantees the convergence 
of the new modal analysis for distributed damped systems. 

(iii) The proposed method does not necessarily need to 
calculate state-space eigenfunctions. Although a state-space for- 
mulation has been used in the development, the closed-form 
transient analysis presented only needs to know the eigensolu- 
tions (vibration modes ) associated with the original equations of 
motion. This feature indicates potential savings in computation. 

The relationship between modes of vibration and adjoint 
state-space eigenfunctions has two other implications. First, the 
modal representation of the system Green' s function, Eq. (28), 
provides a physical insight into certain dynamics and control 
problems of distributed damped systems, such as eigenvalue 
inclusion phenomena and modal controllability and observabil- 
ity (Yang, 1992, 1994b). These problems are directly related 
to the mode shapes of vibration of given physical systems, and 
would be difficult to solve in a state-space formulation if the 
physical meaning of the adjoint eigenfunctions is not clear. 
Second, the proposed method can be applied to systems with 
unidentified damping. Many existing methods require a com- 
plete knowledge of damping operators, and would fail to predict 
the damped response if any damping parameter cannot be identi- 
fied. The Green's function given in Eq. (28) is a superposition 
of vibration modes, which does not explicitly relate to damping 
operators. With modem modal analysis equipment, say struc- 
tural analyzers, the eigenvalues and mode shapes that are domi- 
nant in vibration of an uncertain damped system can be obtained 
experimentally in many practical applications. Accordingly, the 
proposed method may provide a new way to study dynamics 
of uncertain distributed damped systems. These subjects are 
interesting future research topics. 
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Closed-Form Transient Response 
of Distributed Damped Systems, 
Part I1: Energy Formulation 
for Constrained and 
Combined Systems 
The transient response analysis presented in Part I is generalized for distributed 
damped systems which are viscoelastically constrained or combined with lumped 
parameter systems. An energy formulation is introduced to regain symmetry for the 
spatial differential operators, which is destroyed in the original equations of motion 
by the constraints, and the coupling of distributed and lumped elements. As a result, 
closed-form solution is systematically obtained in eigenfunction series. 

1 Introduction 
The closed-form solution method given in Part I (Yang, 

1996) assumes that the operators D and K are symmetric, which 
is true for "purely" distributed systems. When a distributed 
damped system is viscoelastically constrained at discrete points 
or combined with lumped parameter systems, the operators lose 
symmetry. Consequently, the closed-form analysis cannot be 
directly applied to constrained and combined damped systems. 
Developed in this part is an equivalent augmented formulation 
in which the generalized or augmented operators retain symme- 
try in their domain. With this augmented formulation, closed- 
form solution for the transient response of complex systems is 
achieved. 

It is worth mentioning that generalized or augmented methods 
for certain undamped combined systems have been proposed 
(Friedman, 1956; Meirovitch, 1967; Ramkrishna and Amund- 
son, 1974; Mote, 1977; Bergman and Nicholson, 1985). In the 
previous study, orthogonality relations for system eigenfunc- 
tions are derived through inclusion of the boundary conjunct 
that is from the integration of the system governing equations, 
and as such, closed-form solutions are obtained in modal series. 
No closed-form solution methods for the transient response of 
general damped constrained and combined systems are available 
in the literature. 

Unlike the existing methods, the augmented formulation pro- 
posed in this work is based on the energy functionals of con- 
strained and combined damped systems. These energy function- 
als are used for three good reasons. First, the functionals serve 
as guidance for obtaining augmented operators whose symmetry 
and definiteness are automatically guaranteed by the quadratic 
form of the functionals. Second, by Hamilton's principle, the 
functionals conveniently lead to the augmented equations of 
motion. Third, the functionals naturally give the normalization 
condition for the augmented eigenfunctions, which is needed 
for the closed-form ti~ansient analysis. These features make the 
proposed energy formulation systematic and efficient in describ- 
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ing various constraints and coupling of distributed and lumped 
elements. 

2 Energy Formulation and Augmented Operators 
A distributed damped system is constrained at point xc by 

an attached spring-mass-damper system; see Fig. 1 where the 
displacement of the lumped mass is identical to w(xc, t) of the 
distributed system. The equations of motion of the constrained 
system are 

Mw,,(x ,  t) + Dw,t(x, t) + Kw(x,  t) 

= f ( x , t ) - 6 ( x - x ~ ) q ~ ( t ) ,  x E ~ 2  ( la)  

F w ( x , t ) = O ,  x E  Of2 ( lb )  

w(x,  O) = ao(x), w . ( x ,  t) = bo(x), x C ft ( l c )  

where q~(t) is the constraint force, 6(x) is the Dirac delta, and 
all other symbols have been defined in Part I (Yang, 1996). 
The constrained force is described by 

mw,,(x~,t) + drw,,(x¢, t) + krw(x~, t) = qc(t) + qe(t) ( ld )  

where q~(t) is the external force applied to the lumped mass 
(not shown in the figure). 

The constraint renders D and K asymmetric; i.e., (Du, V)n(m 
v: (u, Dv)ma ), and (Ku, v)H~m ~: (u, Kv)n(m. As a result, the 
modal analysis developed in Part I is not directly applicable 
here, To overcome the difficulty, a new function space whose 
inner product permits symmetric operators is defined by intro- 
ducing the following functionals: 

HIM(U, V) = (MI/gu, MI/2v)H(a) + m~"vl~. 

liD(u, v) = (DI/2u, D1/2V)H(O) "b drff'Vlx, 

Fix(u, v) = (Kl/2u, Kl/Zv)ma~ + kTff'vl~ (2) 

where the inner product (u, v).{ll) : f a  gvdx u, v E H([2), 
MI/ZM l/z = M, DI/2D 1/2 = D, and KI/ZK lj2 : K. It is seen 
that IIM(W,,, W,,)/2, FIb(W,,, w,,)/2, and IlK(w, w)/2  are the 
kinetic energy, Rayleigh dissipation function, and potential en- 
ergy of the constrained system, respectively. 
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Fig. 1 

D i s t d b u t e d  S y s t e m  

~ m ~ ~ (  ~ 

A distributed damped system subject to a constraint 

Integrating the energy functionals by part yields 

YIM(u, v) = (Mu, v)n(n) + mff'vl~,, 

liD(U, v) = (Du, v)u(~) + D~'vl~c + dr~'vl~,, 

IIK(U, V) = (Ku, ~)n(~) + gr~'~l~ + k~a'vl~, (3) 

where the operators Dr and K~ describe the jumps of the internal 
forces at point x~, and are related to the constraint force by 

q,.(t) = --DTW,t(X~, t) -- Krw(x,, t). (4) 

Consider the function space 3-{ = H(f~) ~ C, whose element 
U has the form U = (u(x)  u~) ~. The inner product on M'is 

(U, V)~c = (u, ~).<.> + ~-~v~, U, V ~ 9-£. (5) 

Define augmented operators based on (3) 

0 ' 0 Dr + dr 

[K o ] 
I( = 0 KT + kT (6) 

with the domain 

79--  { U I U =  (u(x)  u(x~)) T,u E H(f~)} C ~ (7) 

It follows that for VU, V ~ 29 

n~(u ,  ~) = (MU, V ) ~ =  (U, MV)~ 

n . ( u ,  v) = (JIG, v ) ~  = (y ,  ~ v ) ~  

nK(u, v) = ( g u ,  v>~c = ( u ,  RV)~c. (8) 

Therefore the augmented operators are symmetric in 79 under 
the inner product defined in (5). Also from (2), M and R7 are 
positive definite, and/)  is positive semi-definite. 

With the symmetric augmented operators, the modal analysis 
developed in Part I is now extended to the constrained system. 
The system response and external force in the augmented form 
are W ( x ,  t) = (w(x ,  t), w(x~, t)) r ~ 79 × T, T = {tl0 --< t 
< w }, and F(x,  t) = ( f ( x ,  t)q~(t)) r, respectively. The gener- 
alized Hamilton's principle for the constrained system reads 

f'~ (IIM(W,,, 6W,,) -- Fl~(w, ~w) - liD(w,,, ~W) 
I 

+ (F, 6W)~c)dt = 0. (9) 

By (8), (9), and ( lb,  c), the augmented equation of motion 
for the constrained system is 

MW,, (x ,  t) + l~W,,(x, t) + IKW(x, t) = F(x,  t) (10a) 

with the initial conditions 

W ( x ,  O) = Uo(x) = ( a°(x) 
\ao(X~) / 

bo(x) ) 
W,,(x, O) = Vo(x)= bo(x,) ' (lOb) 

The eigenvalue problem associated with (10a) is 

(X~M + ~k~ + ~¢}Vk(x) = 0, vk ~ 79, 

k =  +1,+-2 . . . .  (11) 

where Vk(x) = (Vk(X)Vk(X~)) r, and kk and Vk(X) are the eigenso- 
lutions associated with the original equations of motion, (1) 
and (4), The normalization condition for Vk, by (22) of Part 
I, is 

1 

12 = l iu(N, vk) - -~k l-Ix(gk, Vk) = 2. (12) 

Following (27) of Part I, the solution to (10) is 

W ( x ,  t) = f {G,,(x, ~, t)EMUo(~) 
a~ 

+ G(x,  ~, t)~(MVo(~) +/JU0(~))  }d~ 

+ G(x,  ~, t - T )NF(( ,  ~-)d~dr (13) 

where ~ = diag {1 ~(x - x~)}, and 

1 -+~ 1 
G(x, ~, t) = -~ Y~ ~-ehktVk(x)V ;(~) 

k= .T_ l k 

1 ~ 1 at[vk(x)vk(~) Vk(X)Vk(X~) ] 
= -  2., - - e  ~/  J .  (14) 

2k=±l kk Lv,(Xc)~(~) v~(x,)v~(Xc) 

The legitimacy and convergence of the above eigenfunction 
expansion can be proven following Section 6 of Part I. Thus, 
the displacement of the constrained system is given by 

w(x,  t) = J~ {g,t(x, ~, t)Mao(~) 

+ g(x,  ~, t)[Mbo(~) + Da0(~)] }d~ 

+ g,,(x, xc, t)mao(xc) + g(x,  xc, t)[mbo(xc) 

+ (Dr + dr)ao(xc)] + g(x,  ~, t - r ) f ( ( ,  r ) d ( d r  

+ g(x,  xc, t - -  r )qe(r)d 'c  (15) 

where the Green's function 

1 1 
g(x,  ~, t) = ~ kZ  ' ~ eXktv~(x)v~(~), x, ~ E ~. (16) 

Equation (16) has the same form as (28) in Part I although 
the two systems are different. This means that the energy formu- 
lation is valid for general distributed systems. In other words, 
given a damped system, either purely distributed or constrained, 
one only needs to derive proper operators based on the energy 
functionals; the eigenfunction normalization, the integral repre- 
sentation of the system response, and the modal expansion of 
the system Green's function have the same form as (12), (15), 
and (16). 
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In summary, the proposed energy formulation takes three 
major steps: (i)  derive the energy functionals IIM, FIB, and 
Fig; (ii) define symmetric, augmented operators based on the 
functionals; and (iii) apply the modal analysis developed in Part 
I to derive the eigenfunction expansion of the system response. 

3 Energy Functionals for Other Constrained Sys- 
tems 

The energy formulation is applied to distributed damped sys- 
tems with other types of constraints. In Fig. 2 is a distributed 
damped system with a rotational constraint at point Xc, where 
In, dR, and ke are the rotational inertia, damping, and spring 
parameters, respectively, and r / is  a unit directional vector de- 
scribing the orientation of the constraint. The energy functionals 
for such a constrained system are 

~M(U , l J )  = (Ml/2u, MI/2U)H(fl) + 1R Or/ Or/ x~ 

. o e o v  
n . ( . ,  = + a .  

ar/ ar/ 
x c 

0~- 0v 
I 'Ig(U, V) = (Kl/Zu, KI/Zo)H(fl) "F kn ~ ' ~  x~ (17) 

where Ou/Or/ is the directional derivative of u in the direc- 
tion r/. For an n-dimensional region f~, x = (Xl . . . . .  x .) ,  r / =  

(r/t . . . . .  ~7.), and 0/0r/ = E r/~O/Ox~. Through integration of 
j= l  

(17) by part, the augmented operators are found as 

o] o 1 
0 le ' D / t +  dR ' 

/ ~ =  [K0 KR+kRO ] (18) 

with the domain 79 =- { U[ U = (u(x)Ou(xD/Orl)  r, u C H(f2)  } 
C H = H(f2) @ R. The operators DR and KR describe the 
jumps of the internal forces at x~, and are in the relation 

0 
T~(t) = -- -2- (Dnw,,(x~, t) + KRw(x~, t))  

Or~ 

where T~(t) is the constraint torque at x~. The Green's function 
formula for the constrained system can be obtained following 
the steps in the previous section, and therefore is omitted. 

Now consider a distributed system subject to both transla- 
tional and rotational constraints at nc points Xl, x2 . . . . .  x,,, 
with the parameters (mj, drj, krj) and (IR~, d~j, kRj, r/~J)), 
j = 1, 2 . . . . .  n~, where r/~J) is the unit directional vector 

Fig. 2 

Distributed System 

dR 

A distributed damped system subject to a rotational constraint 

of the j th  rotational constraint. The energy functionals of the 
constrained system are written as 

Hu(u ,  v) = ( M m u ,  Ml/2v)n(a) 

:=1"~ ( or~OF<J) ~ )~ + Z mjff" v + IRj ~) 

Ho(u,  v) = (Dl/2U, Dl/Zv)ma) 

+ ~ drj~" v + dRj 

Hr(u ,  v) = (K'/2u, Kl/2v)nm~ 

+j~ k: .w + k~j - -  Off 0v )~j 
0r/(j) O~ ~) ' 

(19) 

The function space for the augmented formulism is ..7-/-= H(~2) 
@ C 2~, with the inner product defined by 

2 n  c 

(U, V ) ~ =  (U,V)H(m + ~ ffjV~, U, V ~  H (20) 
j= l  

where any element U of H has the form U = (u (x )  
Ul . . .  u2,.) r. The augmented operators are 

~]r = diag {M ml In1 . , .  m.,, In.o} 

/9 = diag {D Dr l + dr j Dm + dnl . . ,  

Dr, c + dr, c DR,,~ + dn,,c } 

/ ~ =  diag {K Krl + krl KRi + k R l . . .  

Kr.c + kr.~ KR.c + kn.c } (21 

with the domain 

D = -  { U I U = ( u ( x )  u(x~) Ou(x~) /Or/~) , . .  

u(x.  c) Ou(x,,c)/Or/%)) ~, u ~ H(~2)} 

Here the operators Dr j, DR j, Krj, and KRj characterize the jumps 
of the internal forces at xj. The symmetry of the augmented 
operators is automatically guaranteed by the quadratic form of 
the energy functionals. The Green's function formula can be 
derived following Eqs. (9) to (16). 

The energy formulation is also applicable to distributed sys- 
tems subject to viscoelastic constraints on a curve or in a subre- 
gion. The energy functionals in these cases are 

1-IM(U, V) = (MtZZu, Ml/2v}n(a) 

IFIo(u, v) = (DI/2u, Dt/2v)n~m + f~ d ( x ) f f ( x ) v ( x )dx  
c 

I'IK(u, V) = (Kl /2u,  Kt/2V)n(f~) + fa k(x)ff(x)v(x)dx 
c 

where ~rc C f~ is either a curve or a subregion, and d(x )  and k(x)  
are the damping and stiffness distributions of the constraint. The 
Green's function formula can be similarly derived. 

The energy formulation is illustrated on an Euler-Bemoulli 
beam subject to both translational and rotational constraints at 
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point x~; see Fig. 3. The displacement w (x, t) of the constrained 
beam is governed by 

pw, .  + dow,, + (dhW,xxt),a~ q- (Elw,~),x~ 

0 
= f ( x , t ) - q c ( t ) 6 ( X - X c )  + T ~ ( t ) ~ x 6 ( X - X c )  (22) 

where d~ and dh are the viscous and material damping coeffi- 
cients, respectively, and qc(t) and ~-~(t) are the constraint force 
and torque. The energy functionals for the beam are 

f2 rIM(U, V) ---- pffv& + ruff'vii, + lff,~'v,~lx, 

fo l I Io (u , v )=  (doffv + d~a,.xV,~.)dx + dra"vl~ + deg,~'u,~l~ 

fj HK(U, v) = Elff,~v,~.dx + k~'vlxo + kRff,~'v,.lxo, (23) 

Integrating HD and Fix by part gives 

Ho(u,  u) = (doff + (dhff, .x),~)vdx + (Drff + drff)"lJlx,. 

+ (Dsff,x + ds~-,.)'v,~lx,, 

l ' Ir(u,  v) = (EIff,~.),~,vdx + (Krff  + krff)' v I.,. 

+ (K~ff,. + k~ff,D'v,~l. .  (24) 

where 

Drff = - x + - x + [(dhu,~.),~].~_, DRff,x = -- [dhU,~]x~_ 

Krff = [(Elff,~x),~]~_ +, KRff,x = -[Elff,x~]~:- + (25) 

with [a(x)]~2 = a(xc+)  - a ( x ~ - )  describing the jump of 
a (x)  at x~. The operators Dr, et al. are related to the constraint 
force and torque by 

q~(t) = --DTW,t(X~, t) -- Krw(x~, t ) ,  

~-~(t) = -Dnw, . t (x~,  t) - KRw,.(x~, t).  

The augmented function space is 9-/'= H([0,  L]) @ C2 with 

the inner product (U,  V ) H  = fo L ffvdx + ff~v~ + ff2v2. The 
augmented operators, by (23) and (24), are 

= d i a g { p  m I} 

/) = d i a g  d~ + Ox--- 5 dh ~ 7  D r + d r  D R + d e  

l w(x,t) 

~ X  

Beam m, 1 

p, El 
x = 0  

kr 

d R 

. kR 

I I 

i 
:c x = L  

dr 

Fig. 3 A constrained Euler-Bernoulli beam 

{o2(o2) } 
/ ~ = d i a g  ~ x  2 El  ~x 2 Kr + kr KR + kR (26) 

with the domain 79 - ~  ¢uI u : (u (x )  U(Xc) U,x(X~))L u e 
H([0,  L]) }. The augmented equation of motion takes the form 
(10a) with F ( x , t) = ( f ( x ,  t )q~( t )  % ( t ) ) r. The normalization 
conditions for the system eigensolutions (k~ and v~(x)) is 

fi~ pv~.dx + (mv~ + IvL)I~ 

1 { ~ E l v ~ x x d x + ( k T v ~ + k R v ~ . ~ ) l x ~ } = 2 ,  (27) 

Following Eqs. (13) to (15), the response of the constrained 
beam is expressed by 

yo w(x ,  t) = {g,,(x, ~, t )pao(~) 

+ g (x ,  ~, t )[pbo(~) + d~ao(() + (dhao<d~))<<] }d~ 

+ g , , (x ,  xc, t)mao(x~) + g ( x ,  x,., t)[mbo(x~) 

+ (Dr + dr)ao(xc)] + g,~,(x, Xc, t)lao(x~) 

+ g < ( x ,  x~, t)[Ibo,x(Xc) + (DR + dR)ao,~(x~)] 

foYo + g(x ,  ~, t - r ) f ( ~ ,  r ) d ~ d r  

fo + g(x ,  x~, t - T)qe(~-)d~- 

fo + g , d x ,  x~, t - r ) r . ( r ) d T  (28) 

where ( )< = 0( )10~, and the Green's function has the form 
(16). 

4 Combined Systems 

A Combination of a Distributed System and a Lumped 
System. Shown in Fig. 4 (a )  is a schematic of viscoelastic 
connection of a distributed damped system and a lumped sys- 
tem, where the connecting points of the lumped system are Yl, 
. . . .  Yr, and those of the distributed system are xl . . . . .  x ,  The 
lumped system also has p other points z~ . . . . .  z/, that are not 
connected to the distributed system. The displacement w ( x ,  t) 
of the damped system is described by 

M w , . ( x ,  t) + Dw, , (x ,  t) + K w ( x ,  t) 

= f ( x ,  t) - i 6 (x  - xj)qcj( t) ,  x C f~ (29) 
j= l  

where q~j(t) are the constraint force at point xj due to the con- 
nection. The equation of motion for the lumped system is 

[ dzML dt'-- S + DL ~d + KL] ( a t ( t ) ~ J  \ f l U )  ] = \ (q~( t )+  f~(t))f~(t) (30) 

where a ( t )  E R r and f l ( t )  E R p are the vectors of displacements 
at points Yl . . . . .  Yr and Zl . . . . .  zt,, respectively, f , ( t )  and f~(t) 
are the external force vectors, and qc(t) = (qcl( t )  . . .  qcr(t)) r 
is the constraint force vector. Assume that ML = ML r > 0, DL 
= D~ -> 0, KL = K~ -> 0. The lumped system itself may be 
nonproportionally damped. The constraint forces are in the form 

qc(t) = De(we(t) - a ( t ) )  + Kc(wc(t) - oz(t)) (31) 

where we(t) = (w(xl ,  t) . . .  w(xr,  t)) T E R r, and Dc and Kc 
are two symmetric, positive semi-definite matrices describing 
the connection. 
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Lumped System 

52> 
Distributed System 

(a) 

Distributed System I 

x X 2 r 

[ Conneetion_Dc,Kc I 

Distributed System II 
(b) 

Fig. 4 Multipoint viscoelastic connection of (a) a distributed system and 
a lumped system; (b) two distributed systems 

The energy functionals for the combined system are of the 
form 

IIM(U, v; 4~, ~b) = (M1/Zu, Ml/Ev).(m + ~b*ML$ 

[ iv(u ,  v; &, t,b) = (D1/2u, Dlnv)n(m 

+ ~b*DLq2 + (u~ - ~b.)*D¢(vc - $~) 

I'IK(U , V; ~ ,  I~) = (KI/2U, K'/2V)n(m 

+ ~b*KL~b + (u~ - 6 . ) * K ~ ( v ~  - t0.)  ( 3 2 )  

where u, v c H(f~), uc = (u(x~) . . .  U(Xr)) r, v¢ = (v(x~) 
. . .V (Xr ) )  r, ~b* = ~T,  and 

The kinetic energy, Rayleigh dissipation function, and potential 
energy of the combined system are represented by IIM(W,, W,; 
,~, y()/2, liD(W,, W,; X, X)/2, and [ ix (w,  w; X, X)/2, respec- 
tively, where X(t)  = (oct(t) l i t ( t ) )  r. 

Integrating of the functionals Ho and IlK by part gives 

liD(U, v; ~ ,  ~b) = (Du, V)n(a) 

+ (Dru~)*v~ + &*Dzqt + (u~ - ¢b,~)*D~(v, - qd.) 

[I,~(u, v; ~b, ~') = (Ku, V)H<m 

+ (Kru~)*v~ + ~b*Kc~ + (u~ - ~b.)*K~(vc - ~,~) (33) 

where Dr and Kr are matrix differential operators presenting 
the jumps of the internal forces of the distributed system at the 
connecting points x~ . . . . .  x .  due to the viscoelastic connection. 
Define the function space 

• -q-f = { UI U = ( u ( x ) u r )  r, 

u(x)  e H ( ~ ) ,  u ~ C 2'+'} (34) 

with the inner product (U, V)H = (u, V)n(m + U'V, U, V 
~ Partition the parameter matrices of the lumped system 

corresponding to the displacement vectors a ( t )  and f l ( t ) :  

nz~ = [ n ~ ,  ~ n e ~ J '  D~ = L/D~ ° D ~ J  ' 

FK~" KZ ~ ] 
K~ = L K ~  K~ z . ( 3 5 )  

With (32), (33), and (35), the augmented operators are ob- 
tained as 

z5 = 

= 

M 0 0 ] 
0 0 0 
0 0 MZ" M~ ' 
0 0 n ~ "  M~PJ 

[i o o o] Dr + D~ -De  0 
- D , ,  D~  ~ + D~ D ~  ~ 

0 D~" D~ ~ 

I 
K 0 0 0 ] 

/~ = 0 Kr + Kc -K~ 0 (36) 
0 -K~ K~. ' ~ + K c  K~ ~ " 
o o K~ ~ K ~  

The domain of the operators is defined by 

7 9  = { U I U  = ( u ( x ) u ( x ~ )  . . . u(xAu~)L 

u(x)  E H(f~), u E C "+r'} C H.  

It is easy to see that the augmented operators are symmetric in 
79; i.e., for any U, V E 29 

HM(U, V; U, V) = (MU, V)~  = (U, MV)~c 

Ilo(u, v; u, v) = (DU, V)H = (U, O V ) x  

IlK(u, v; U, V) = (/(U, V)H = (U, /~V)H. (37) 

With the energy functionals, the original equations of motion 
of the combined system are cast into the augmented form (10a) 
with 

W ( x, t) = (w(x ,  t)WY( t)trr( t ) f l r (  t) ) r, 

F ( x , t )  = ( f ( x , t )  O r f~r(t) f ~ ( t ) )  r (38) 

where wc(t) has been given in (31). Let the kth eigenvalue of 
the combined system be hk, and the corresponding mode shape 
distributions of the distributed and lumped systems be v~(x) 
and Xk = (a~f l [ )  r, respectively. The eigenvalue problem in 
the augmented form is described by (11 ) with the augmented 
eigenfunctions expressed by 

Vk(x) = (ok(x) (v~)r akr f l r ) r  (39) 

where the vector v~ = ( Vk( Xl ) . • • Vk ( X. ) ) r E C r. The eigenfunc- 
tions are normalized by 

1 
(M'/~g~' M'/2Vk)n(m + x~rMLxk - k-~ { (Klngk' K'/2vk)~(m 

+ x[KLxk  + (V~ -- oeDrKc(v~ - ak)} = 2. (40) 

Let the initial conditions of the combined system be 
Distributed system: 

w(x ,  O) = Uo(X), w,,(x,  O) = vo(x) 

Lumped system: 

a ( 0 ) = a o ,  a ( o ) = a 0 ,  3 ( 0 ) = 3 o ,  B ( 0 ) = # o .  

(41) 

Substituting (36), (38), and (39) into (13) yields the response 
of the combined system 
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w(x, t) 
~(t) 
#(t) 

) f ] f ~ (  g w w ( x ' G t - r ) ~ l  = - r)  f (~,  r)d~dr g~W(~, t 
g,eW({, t - r)  / 

+ g~( t  - r)  g~ ( t  - r)  dr  
g~( t  - -r) g~ ( t  - r)  \ f~(r)  

o [ gO~(~,t) M.o(O + 

\ g~ (G t) 

[ gWW(x, ~, t)) } 
+ l g~W(~, t) (Mvo(~) + Duo(i)) d~ 

\ g~W(6 t) 

- -  g ~ ( t )  g~'(t) I 
+ Ot g~"(t) g/elf(t) J IJo/ 

+ 
[ gW~(x, t) g W~(x,t)]  

g " ( t )  g " Z ~ ( t ) l  ( M L ( ; i )  DL ~ 0 ~  
g~"(t) gBB(t ) J + (l:io/ J 

[ gw~(x't) gW~(x't)] [Dr+D,.  -D, .] (u/~]  (42) 
+ g~( t )  g"~(t) I 

g~"(t) g~( t )  J L -D~ D~ \aeo/  

where the vector u~ = (Uo(X~) . . .  Uo(X,)) r, and the Green's 
functions are given by 

gWW(x, ~, t) gW~(x, t) g~'(x, t) g~/~(x, t ) ]  
g~W(~, t) g~( t )  g~( t )  g~( t )  ] gP~(~, t) g¢~(t) gee(t) g~( t )  

= ~ ~L e xkt a t  (Vk(~) (V~) T a r p~) .  (43) 
k± 1 ~k  

On the right-hand side of (42), the first line describes the 
system response due to the external loads, the second and third 
lines represent the contributions of the initial disturbances ap- 
plied to the distributed and lumped systems, and the last line 
is about the effects of the initial motion at those connecting 
points on the transient response of the combined system. 

B Examples. In employing the above energy formulation, 
one does not need to know the original equations of motion. 
By Hamilton's principle, the energy functionals will eventually 
lead to the augmented form (10a).  This advantage of the pro- 
posed method is shown in the following two examples. 

Example 1. For the combined beam-oscillator system 
shown in Fig. 5 (a ) ,  the energy functionals are 

[IM(N,'I);49,@)=f:P~-l~dx"}-49*[~ 1 m02]~ 

lID(U, V; 49, ~) = (doffv + dhff,~v,=)dx, 

2 d2 ~0 + dl(ff(x~) - c~)(v(x~) - O~) 

" ~  Xc 

w(x,t) kl ~ dl 

_x m, I::c~a:.::, lOt(t) 

- £ 2  @ d 2  

w(x,t) m,l 

k d 2 y(t) 

X 1 X 2 
2a 

(a) (b) 

Fig. 5 The Euler-Bernoulli beam combined with (a) an oscillator; and 
(b) a rigid body 

[Ix(u, v; 49, ~) = Elff,~v,~dx + 49" - k 2 ]  ~O 
ks 

-k2 kz J 

-Jr kl( tT(Xc) -- ~a)(V(Xc) -- I]Ja) 

where d~ and dh are the viscous and material damping coeffi- 
cients, and 49 = (49~ 49~)r, O = (0,~ ~p~)r E C z. Integrating 
the functionals by part yields the augmented symmetric opera- 
tors 

/ /4= d i ag (p  0 ml m2) 

0 2 (  0 2 )  
d~ + ox--- 5 dh ~x 2 0 0 0 

R __ 

0 Dr + dj 

0 - d  1 

0 0 

Ox-- EI 7 o 

- d l  0 , 

dl + d z  - d 2  

- d2 d2 

0 0 

0 KT + kl - k l  0 

0 - k l  kl + k2 -k2 

o o - k s  k: 

with the domain 7) = { UI U = (u(x) u(x,.) uT) T, U(X) 
H([0,  L]) ,  u E C 2 }, where Dr and Kr are given in (25). The 
augmented equation of motion is ( 10a ) with W ( x, t) = (w (x, t) 
w(&, t) a(t) fl(t)) T. The corresponding Green's function 
formula and the modal expansion of the Green's functions 
can be obtained based on (42) and (43). 

Example 2. In Fig. 5(b)  a rigid body is viscoelastically 
mounted on a beam. The energy functionals of the combined 
system are given by 

f~ m(~l + ~:)(0, + 02) 
1 

riM(u, v; 49, O) = p~vdx + 

1 
+ -d-fi 1(8,, - G)(4' ,  - 0~) 

f lID(U, V; 49, ~b) = (d~ffv + dhff,~V,,x)dx 

+ d l ( U ' ( X l )  -- ~ I ) ( U ( X 1 )  -- [rO,) 

+ d2(ff(x2) - ~2)(v(x2) - ~2) 

5 llix(u, v; 49, O) = Elff,~xv,x~dx + kl(ff(&) - ~ l )  

x ( v ( x , )  - 0 , )  + k2(~(x~)  - ~ ) ( v ( x ~ )  - O~) 
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where q5 = (thl~2) r, (~gl@2) T ~ C 2. Here ~bl and ~01 correspond 
to the motion of left connecting point of the rigid body, i.e., 
y ( t )  - aO(t); and ~b2 and ~bz the motion of the right connecting 
point, i.e., y ( t )  + aO(t). The augmented operators for this com- 
bined system are 

0 

M= 0 0 
0 (m + I / a 2 ) / 4  
0 (m - I / a 2 ) / 4  

d~+~ d ~  o 

0 D r  + dx 
~5= 

0 0 

0 - d ~  

0 0 

o--2- el  s v  o 
Ox z 

0 K r +  k~ tg= 
0 0 

0 - k l  

0 0 

with the domain 79 = { UI U = ( u ( x )  

0 
(m - I / a Z ) / 4  
(m + I / a Z ) / 4  

0 0 0 

0 - d ~  0 

Dr + d~ 0 - d 2  

0 d~ 0 

-d~ 0 d~ 

0 0 0 

0 - k l  0 

Kr + k2 0 - k~  

0 kl  0 

- k 2  0 kz 

u(xl) u(x~) uT) ~, 
u(x )  E H([0,  L]) ,  u E C2}, where Dr and Kr are given in 
(25). Closed-form solution follows the same steps as discussed 
before. 

C Combination of Two Distributed Systems. The en- 
ergy formulation is also valid for multipoint connection of two 
distributed systems as shown in Fig. 4 (b) ,  where points xl . . . . .  
xr of body OI and points Yl . . . . .  Yr of body f~H are connected 
viscoelastically. Denote the displacements of ~1 and fin by w~(x, 
t) and wtl(x,  t),  respectively. Let q~(t) be the vector of the 
constraint forces applied at the connecting points xl . . . . .  xr of 
~i ,  and q~(t)  the vector of the constraint forces at Yl . . . . .  y~ 
of body f~1i. Assume that the constraint forces are determined 
by 

q~(t) = -q~)(t)  

= D~(W~(t) - W~(t)) - K~(w~(t) - w~(t)) (44) 

where w~(t) = (wi (x l ,  t ) .  . . w t ( x ,  t))  r E R r, wet(t) = (wn(y l ,  
t) . . .  wa(yr,  t)) r E R r, and D~ and K~ are given matrices 
describing the connection. The energy functionals are 

IHM(u~, vl; u~, v,)  

(M)t2ul,  l/2 ,.,1/2 M1/2 v \ = M t  U1)H([I/) + ~lYIll bill, 11 II/H(~2/i ) 

I ' Io(Ul ,  ~)I; UH, VII) = (OJ/2Uzz, Dtl/2Vt)n¢a,~ 

1/2 ~112 \ c , c + (Dlt un, vH Vn?n<n.) + (U~1 -- ul )  De(v .  - v~) 

I~IK(Ul, Ui; U/i, Ult) = (K~/XUl , .r,'q/2 U \ *Xl I/H(fll) 

+ (K~/2u11, KI/2v \ ~ , 11 II/H(a//) + (u~i - u t )  K~(vn - v~) (45) 

where u~ = (u t (x l )  . . .  ut(xr)) r, v~ = (vl(xl)  . . .  vt(xr)) r, 
u~t = (uIl(yl)  . . .  u , ( y r ) )  r, and v~t = (vtt(Yl) . . .  v , (yr ) )  r 
C ~, and M1, D~, Kt and Mzt, Dtt, Kit are the spatial differential 
operators of ~21 and f~11, respectively. The derivation of symmet- 
ric augmented operators and subsequent modal analysis are sim- 
ilar to those in the previous cases, and therefore is omitted. 

D Mult ibody Systems. ,The energy formulation can also 
be extended to multibody systems. For a system assembled from 
N distributed subsystems f~l, fit . . . . .  ~N, its energy functionals 
are defined in the function space H ( ~ ) ,  with ~ = f~l U f~2 U 
. . .  U ON. The derivation of augmented operators is similar and 
the closed-form representation of the system response can be 
systematically obtained. 

5 Conc lus ions  

Through introduction of energy functionals, the closed-form 
transient response analysis developed in Part I is extended to 
constrained and combined, distributed damped systems. One 
advantage of the energy formulation is that it systematically 
leads to the symmetric augmented operators, the Green's func- 
tion formula, and the eigenfunction representation of the system 
Green's function. While the current study is on the construction 
of analytical solutions, accurate estimation of system eigensolu- 
tions, which is needed in the response prediction, is being devel- 
oped for a variety of distributed systems (Yang, 1992; Yang, 
1994; Yang and Fang, 1994; Yang and Zhou, 1995; Zhou and 
Yang, 1996). Combining with that effort, the closed-form tran- 
sient analysis proposed herein will find wide applications in 
modeling, dynamic analysis, and vibration control of complex 
distributed parameter systems. 
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Thermomechanical Equations 
Governing a Material With 
Prescribed Temperature- 
Dependent Density With 
Application to Nonisothermal 
Plane Poiseuille Flow 
The standard practice in the literature for modeling materials processing in which 
changes in temperature induce significant volume changes is based on the a posteriori 
substitution of a temperature-dependent expression for density into the governing 
equations for an incompressible material. In this paper we show this ad hoc approach 
misses important terms in the equations, and by example show the ad hoc equations 
fail to capture important physical effects. First we derive the three-dimensional equa- 
tions which govern the deJbrmation and heat transfer of materials with prescribed 
temperature-dependent density. Specification of density as a function of temperature 
translates to a thermomechanical constraint, in contrast to the purely mechanical 
incompressibility constraint, so that the constraint response function ("pressure") 
enters into the energy equation as well as the momentum equation. Then we demon- 
strate the effect of the correct constraint response by comparing solutions of our 
thermomechanical theory with solutions of the ad hoc theory in plane Poiseuille flow. 
The differences are significant, both quantitatively and qualitatively. In particular, the 
observed phenomenon of expansion cooling is captured by the thermomechanically 
constrained theory, but not by the ad hoc theory. 

1 Introduction 
In general, material properties depend on both thermal and 

mechanical state variables. Nonetheless, in some industrial pro- 
cesses such as polymer extrusion and fiber spinning, one can 
reasonably neglect the pressure dependence of density, specific 
heat, viscosity, and thermal conductivity. This is because the 
mechanical dependence of material properties is weak at the 
low to moderate pressure levels encountered in these processes 
(Spencer and Gilmore, 1950; Cox and Macosko, 1974; Winter, 
1977; Lodge and Ko, 1989). In contrast, the temperatures of 
these processes are high enough and the temperature changes 
and gradients are sufficiently large that the thermal dependence 
of material properties may have a significant effect on process 
behavior. At a fundamental as well as practical level, models 
for design or optimization of these processes must incorporate 
this temperature dependence. The standard practice in the litera- 
ture for modeling such processes is to a posteriori substitute 
temperature-dependent expressions for the material properties, 
in particular density, into the governing equations for an incom- 
pressible fluid. We revisit this practice in a practical benchmark 
flow by comparing solutions of these equations to solutions of 
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our equations of the thermomechanically constrained theory 
which follows from specified temperature-dependent density. 

A general mechanical theory of internal constraints was first 
developed by Noll (1958). The generalization to thermome- 
chanical constraints was made by Green, Naghdi, and Trapp 
(1970) and Gurtin and Guidugli (1973). Trapp (1970, 1971) 
further generalized the form of thermomechanical constraints 
given by Green et al. (1970), and applied the general theory 
to the special case of an inextensible material with an additional 
thermal constraint on the temperature gradient, in the context of 
small deformations and a linear elastic constitutive assumption. 
Reddy (1984) constructed a theory of constrained elastic mate- 
rials which was a slight modification of that proposed by Trapp 
(1971). 

The general form of the thermomechanical constraint adopted 
by Green et al. (1970) and Trapp (1971) is 

A . D  + b .g rad  ® + a ~  = 0. (1) 

In Eq. ( 1 ), D is the symmetric part of the velocity gradient, 19 
is absolute temperature, A, b,  and a are material-dependent 
quantities, grad is the Eulerian gradient, and . . . .  denotes the 
material derivative with respect to time, e.g., 

= 0__O + v" grad ®, (2) 
Ot 

where O/Ot is the Eulerian partial derivative with respect to 
time and v is velocity. 

Prescribed temperature-dependent density was first recog- 
nized as a material constraint by Green et al. (1970), but neither 
they nor any subsequent researchers have studied the flow of a 
material subject only to this constraint. As we shall see, the 
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constraint demanded by prescribed temperature-dependent den- 
sity p = p(O) is the special case of (1) with 

p '  
A = I ,  b = 0 .  a = - - ,  (3) 

P 

where p '  denotes the derivative of p(19) with respect to 19. 
This paper is the first to develop a self-consistent model for 

the large-deformation processing of a material with prescribed 
temperature-dependent density. This thermomechanically con- 
strained theory yields a problem formulation that is simpler to 
solve than the unconstrained theory, yet predicts temperature- 
induced volume-change effects that are missed by both the in- 
compressible theory and the ad hoc theory of the incompressible 
equations with a posteriori substitution of temperature-depen- 
dent density. We compare solutions of our thermomechanical 
theory in plane Poiseuille flow with solutions of the ad hoc 
theory. This study joins a long list of analyses of nonisothermal 
flow in capillary and slit dies (Brinkman, 1951; Bird, 1955; 
Toor, 1956; Gee and Lyon, 1957; Toor, 1957; Kearsley, 1962; 
Kaganov, 1963; Gerrard et al., 1965; Gerrard et al., 1966; Mar- 
tin, 1967; Gould, 1971; Sukanek, 1971; Cox and Macosko, 
1974; Waiters, 1975; Winter, 1975; Hieber, 1977; Winter, 1977; 
Hulatt and Wilkinson, 1978; Hulatt, 1980; Kamal and Nyun, 
1980; Ybalrra and Eckert, 1980; Dinh and Armstrong, 1982; 
Rauwendaal and Fernandez, 1985; Duda et al., 1988; Karagi- 
annis et al., 1989; Langer and Werner, 1989; Lodge and Ko, 
1989; Burton, 1990; Ko and Lodge, 1991; Hossain, 1992; Jan- 
sen and van Dam, 1992; Vergnes et al., 1993). In particular, 
we discover that our constrained theory is able to predict ther- 
momechanical flow features that are present in all of the com- 
pressible analyses in the above list, but unattainable in the in- 
compressible treatments. 

2 T h e  T h e r m o m e c h a n i c a i  C o n s t r a i n e d  T h e o r y  for  
Mater ia l s  W i t h  T e m p e r a t u r e - D e p e n d e n t  Dens i ty  

The governing equations for thermomechanical continua are 
the conservation laws of mass, linear momentum, angular mo- 
mentum, and energy: 

p + p d i v v = 0 ,  (4) 

pC = d i v T  + pg, T = T T, (5) 

pe = T . D  + p y  - div q, (6) 

where T, g, c, % and q are the Cauchy stress, body force, 
internal energy, heat supply per unit mass, and heat flux vector, 
respectively, and div denotes the Eulerian divergence operator. 
In a particular application these equations are accompanied by 
boundary conditions, constitutive equations, and perhaps con- 
straint equations. 

For a material with prescribed temperature-dependent den- 
sity, one specifies p = p(®).  This implies the thermomechani- 
cal constraint 

p '  
- - ~  + I . D  = 0, (7) 
P 

which is consistent with Eq. (4).  
In our derivation of the constraint response necessary to main- 

tain the constraint (7),  we replace internal energy e with free 
energy 0, defined by a Legendre transformation through 

0 = c - 19~7, ( 8 )  

where ~7 is entropy per unit mass. 
We first assume that there is an additive constraint response 

to all dependent quantities, i.e., we assume 

T = 'i~ + T. q = q + q ,  

0 =tP  + ~, r l = O  + ~, (9) 

where " ^ "  denotes a constitutive function of deformation and 
temperature, and " - "  denotes the constraint response. The 
additive constraint response must maintain the constraint while 
producing no entropy. This demands (Day, 1972; Green and 
Naghdi, 1977) 

1 
- p ~  - p ~ 0  + T . D  - ~ q .g rad  O = 0, (10) 

for all processes satisfying the constraint (7).  
In particular (10) must hold for the subset of processes with 

grad O ~ 0, D ~ 0 and 0 -~ 0, which necessarily satisfy the 
constraint (7).  For this subset, condition (10) reduces to 

~=0, (11) 
or, without loss of generality, 

= 0. (12) 

Since the constraint response must be independent of the partic- 
ular process which satisfies the constraint, Eq. (12) must hold 
for all processes, not just the above subset. By considering all 
processes with D =- 0, ~ =- 0, but grad 19 arbitrary, a similar 
argument enables us to deduce 

q = 0. (13) 

Therefore, in a material with temperature-dependent density 
tp and q are determined entirely by constitutive functions of 
deformation and temperature. 

All that remains from condition (10) is 

-p~70  + T . D  = 0. (14) 

The subset of processes with D = 0 but 0 arbitrary is not 
p.ossible for the thermally constrained material, since D and 
19 are not independent. With (0 ,  D) and (p '/p, I)  regarded as 
vectors in the seven-dimensional inner product space E 7, the 
constraint (7) demands 

so that the only admissible vectors (5 ,  D) are those perpendicu- 
lar to (p'/p, I ) .  

The condition (14), which we rewrite as 

( - p ~ ,  T ) . ( 0 ,  D) = 0, (16) 

indicates that the response ( - p ~ ,  T) must be perpendicular to 
all ( 0 ,  D) which are perpendicular to (p'/p, I ) .  Hence we 
deduce that ( - p ~ ,  T) is parallel to (p'/p, I ) ,  i.e., 

( - p ~ , T )  = - p  , I  , (17) 

where p is a scalar function of position and time. The total 
response (constitutive plus constraint) is therefore 

p '  
T = T - p I ,  q = ~ ,  ¢ = ~ b ,  r / = ~ + p ~ -  5 . (18) 

Using the relation (8) between ~p, e, and ~7, we obtain 

e = ~ + p O p P y .  (19) 

The term pO(p ,/p2) is needed in the internal energy to offset 
the entropy created in any volume change by the constraint 
pressure, so that the net entropy generated by the constraint 
response is zero. 

Combining Eqs. (5),  (6),  (7),  (18), and (19), the field 
equations for a material with temperature-dependent density are 
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p l  
div v = - - -  5,  

P 

p¢¢ = div ' r  - grad p + pg, 

p~ + - - ® p  + o p,, -27) 

(20) 

(21) 

= T . D  + PT - div ~. (22) 

The complete three-dimensional initial/boundary value prob- 
lem for a material with temperature-dependent density consists 
of the field Eqs. (20) - ( 2 2 ) ,  together with initial and boundary 
conditions and constitutive equations for T, ~, and L 

3 The  a Pos ter ior i  T r e a t m e n t  of  T e m p e r a t u r e - D e -  
p en d en t  Dens i ty  

For the purpose of comparison, we present the straightfor- 
ward, but inconsistent, extension of incompressibility that is the 
standard practice in the literature for modeling nonisothermal 
processes with significant temperature-induced volume changes. 

The field equations for an incompressible material are 

div v = 0. (23) 

pie = d i v ] ' -  gradp + pg, q? = ' ~ r  (24) 

p~ = T . D  + py  - divc]. (25) 

The three-dimensional initial/boundary value problem in the 
incompressible theory consists of these field equations, constitu- 
tive equations for ~', ~, and ~, and initial and boundary condi- 
tions. 

A comparison of Eqs. ( 2 3 ) - ( 2 5 )  with Eqs. ( 2 0 ) - ( 2 2 )  
shows that a posteriori substitution of a temperature-dependent 
function of density into the equations for an incompressible 
material produces incorrect mass and energy equations. In Hay- 
ashi et al. (1992) and Dutta (1987) temperature dependence of 
density is simply substituted a posteriori into ( 2 3 ) -  (25), and 
terms are missed in both the mass and energy equations. Kase 
and Matsuo (1965) correctly take into account thermal expan- 
sion or shrinkage, i.e., they use (20) instead of (23), but leave 
out the necessary constraint response terms in the energy equa- 
tion. Hahn and Kettleborough (1967, 1968) posit a new term 
in the energy equation, but it is incorrect. 

In applications such as the onset of convection in the Ray- 
leigh-Bernard problem, it is standard practice to employ the 
Boussinesq approximation. In this approximation temperature- 
dependence of density (assumed small) is included in the buoy- 
ancy term pg of the linear momentum Eq. (5) but neglected 
elsewhere (Rayleigh, 1916). In the context of these approxima- 
tions our constrained theory offers an alternative, which will be 
pursued in another place. Here we apply our theory to a problem 
without an applied temperature gradient. 

4 Inves t igat ion  of  P lane  Poiseui l le  F l o w  

In the following, solutions for the velocity and temperature 
distributions in steady plane Poiseuille flow are obtained from 
the constrained theory, Eqs. ( 2 0 ) - ( 2 2 ) ,  and compared to the 
solutions of the ad hoc extensions of incompressibility, Eqs. 
( 2 3 ) - ( 2 5 )  with p = p(®) or Eqs. (20), (24), (25) with p = 
p(®). We show that use of the ad hoc extensions results in 
considerable error and misses qualitative features of physical 
response. 

4.1 The Boundary Value Problem. To complete the 
boundary value problem formulation for a material with temper- 
ature-dependent density, we must specify the constitutive func- 
tions T, ~, and ~ for the determinate parts of stress, internal 
energy, and heat flux, respectively, the body force g, heat source 

- ~OW, 

gravity 

v=O,O=O~, 

vl = vl(z2), v2 = va = 0 
e = 0(.2) 

v = 0, O = O,o 

Fig. 1 Nonisothermal plane Poiseuille flow with isothermal walls 

y, and density function p(®), that appear in the governing Eqs. 
(20) - (22), and appropriate boundary conditions. 

Here we model the steady flow between two infinite hori- 
zontal planes, depicted in Fig. 1. We assume that the flow is 
two-dimensional, laminar, and hydrodynamically and thermally 
fully developed. Hence, the velocity and temperature fields are 
of the form 

vl =vl(x2),  v2 = 0, v3 = 0, ® = ®(x2), (26) 

subject to the boundary conditions of no slip and isothermal 
walls: 

h 
v = 0 ,  ® = ®w, @x2 = + - ,  (27) 

2 

where ®w is a specified constant temperature. 
For simplicity, we assume constant specific heat and constant 

thermal conductivity in the constitutive functions for internal 
energy and heat flux, 

d~ = cd®, dl = - k  grad ®, (28) 

although c and k could just as well be taken as functions of 
temperature and not change the form of the governing equations. 
We employ a Newtonian model for the fluid, 

~7 = 2#(@)D, (29) 

where viscosity #(®) is a specified function of temperature ®. 
Dependence of viscosity on shear rate can be incorporated in a 
straightforward manner, but this feature is omitted here so as 
to not complicate the discussion. 

The body force is 

g = -ge2,  (30) 

where g is the acceleration of gravity and e2 is a unit vector in 
the Xz direction. We assume no heat supply, i.e., 3' = 0. 

4.2 Solution of the Boundary Value Problem in the Con- 
strained Theory. With assumption (26) on the velocity and 
temperature fields, the constraint Eq. (20) is identically satisfied 
for any specified function p(®), the x~, x2, and x3 components 
of the momentum Eq. (21) simplify to 

dT~2 Op _ O, Op p(~))g = 0, 0 = 0, (31) 
dx2 Ox, Ox2 

and the energy Eq. (22) becomes 

_ _  d2• 
P'(®)  v1® Op = T~2 dv---A + k - -  (32) 
p( O ) Oxt dx2 dx~ " 

Equations (31 ) imply 

p = -13Xl - g f p(®(x2))dx2, (33) 

T12 = -/3x2, (34) 

where /3 is the constant rate of pressure drop (positive when 
the pressure decreases in the flow direction). From Eq. (34) 
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we see that the absolute value rw of shear stress at wall is 
related to the pressure gradient/3 by 

r~ = ½ h/3. (35) 

Eliminating T~2 from Eqs. (31) and (32), the reduced one- 
dimensional equations governing the velocity and temperature 
distribution are 

dr__2 = /3 
- - -  x 2 ,  ( 3 6 )  

dx= lz ( 0 ) 

d2® - ~ x~ /3 p ' ( O )  or®. 
ax~ ku(O) k p(O) 

(37) 

In Eq. (37), the term - ( / 3 1 k ) ( p ' ( ® ) l p ( ® ) )  v lO  is the effect 
of constraint response; this term is absent if the temperature- 
dependent density is inserted a posteriori into the equations for 
an incompressible material. 

To perform specific numerical simulations we must adopt 
explicit forms for the temperature dependence of density and 
viscosity. Here we assume a linear dependence of density on 
temperature, 

p(O)  = Po - p a O ,  (38) 

where Po and p~ are constants, and an Arrhenius form for viscos- 
ity, 

/.z(®) = #~ exp - , (39) 

where the constants, E, R, and ~w are the activation energy, 
gas constant, and viscosity at the wall temperature ®w, respec- 
tively. The constants po, #~, E, R, and 0~ are positive; p~ will 
also be positive if the material expands while heated. 

To nondimensionalize Eqs. (36) and (37), we scale tempera- 
ture to the wall temperature ®w, lengths to the wall separation 
h, and velocity to 

v® = /3h2 = rwh (40) 
8#~ 4#~ ' 

which is the maximum velocity in the isothermal solution of Eq. 
(36) with the boundary condition of no-slip. The dimensionless 
transverse coordinate is then 

x_2 (41) 
• ~2= h , 

and dimensionless temperature and velocity are 

~) = ~® ~1 = _vl = 81ZwVl _ 4~wvi (42) 
@w ' v® /3 h 2 r wh 

Using the material density Pw at the wall temperature as the 
characteristic value of density, the dimensionless form of the 
density function (38) becomes 

~3 ( ~ ) )  = P ( ® )  - 1 - P O  
pw 1 - P ' (43) 

where the dimensionless thermal expansion number, 

p = ~PlOw, (44) 
P0 

is a characteristic measure of the degree of temperature depen- 
dence of the material's density at the processing conditions. 

The dimensionless forms of Eqs. (36) and (37) are 

de2 
(45) 

d %  
d ~  

64.r  e,p[ 

where 

+ 8 B r P l _ p O ,  (46) 

_ r w h  E =  (47) Br = #wv2 - /32h4 2 2 E 

k®w 64k/zw®~ 16k#wOw ' R®w ' 

Br is the Brinkman number indicating the balance of the com- 
peting effects of viscous heating and thermal conductivity, and 
E is a dimensionless number quantifying the degree of viscosity 
variation with temperature. The dimensionless boundary condi- 
tions are 

1 ~ = 0 ,  O = 1 @~2 = ±~.  (48) 

The two-point coupled boundary value problem (45), (46), 
and (48), involving the three dimensionless parameters Br, E 
and P, is solved with a relaxation method, and, as a check, a 
shooting method. 

Because of the constraint response 8 BrP(~O) / (1  - '  PO) 
in the energy equation due to thermal expansion, the governing 
equations for the fields of velocity and temperature are coupled, 
and the boundary value problem (45), (46), (48) must be 
solved simultaneously for the velocity and temperature distribu- 
tions. Without this term the temperature distribution can be 
obtained first and then used to determine the velocity profile as 
done by Burton (1990), but it is precisely this coupling that 
creates the phenomenon of expansion cooling, as we show be- 
low. 

4.3 Solution of the Boundary Value Problem in the ad 
hoe Theory. If we model the same plane Poiseuille flow 
shown in Fig. 1 with the ad hoc theory, in which a temperature- 
dependent density is substituted a posteriori into either the in- 
compressible Eqs. (23) - (25) or the incompressible Eqs. (24), 
(25) accompanied with the thermal expansion constraint (20), 
the dimensionless governing equations reduce in both cases to 

dY2dJ"-! = - 8 9 2  e x p [ - E ( ~ -  1 ) ]  , (49) 

dY---~- = - 6 4  Br Y22 exp - E  - 1 , (50) 

subject to the boundary conditions (48). The parameter P de- 
scribing the temperature dependence of density does not appear 
in Eqs. (49) and (50);  in fact, the equations are exactly the 
same as the governing equations derived for an incompressible 
material in nonisothermal plane Poiseuille flow. Hence, this a 
posteriori approach leads to a result that, no matter how strong 
the temperature dependence of density, it has no effect on the 
velocity, temperature, and stress distributions. The only effect 
of temperature-dependent density is on the density itself: once 

is determined from the boundary value problem (48), (49), 
and (50), the nondimensional density is obtained from 

1 - PO(Y2) 
~ ( x 2 )  = ( 5 1 )  

1 - P  

Also note that Eq. (50) for the temperature distribution dec®u- 
pies from Eq. (49) for the velocity. 

4.4 Comparison of the Solutions and Discussion. The 
effects in the constrained theory of temperature-dependent den- 
sity on the velocity and temperature fields are shown in Fig. 
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Fig. 2 The transverse velocity and temperature distributions in noniso- 
thermal plane Poiseuille flow with isothermal walls as predicted by the 
constrained theory, showing the effect of varying the level of temperature 
dependence of density: E = 5.0, Br  = 0.2, va ry i ng  P .  The vertical coordi- 
nate is the dimensionless transverse coordinate .£2. The solution for al l  
values of P from the ad hoc theory (a poateriori substitution of tempera- 
ture-dependent density into the incompressible theory) is the same as 
the solution to the constrained theory with P = 0. 

2. As the temperature dependence of density becomes more 
pronounced (i.e., as P becomes greater), a depression develops 
at the center of the temperature profile, and the difference be- 
tween the wall temperature and mean temperature of the flow 
decreases. In fact, at P = 0.3, the temperature at mid-channel 
is less than the wall temperature. This behavior is due to the 
phenomenon of expansion cooling (Toor, 1956; Cox and Ma- 
cosko, 1974; Winter, 1977): In the plane Poiseuille flow we 
model, the fluid interior undergoes viscous heating, which tends 
to increase fluid temperature in the center; however, the viscous 
heating also tends to expand the fluid when the fluid is heated, 
and the work done in this expansion leads to loss of temperature. 
These competing effects lead to the temperature profiles in Fig. 
2. The inflection points observed in these temperature profiles 
from our constrained theory are also predicted in all compress- 
ible analyses of fully developed nonisothermal Poiseuille flows 
in the literature. 

The ad hoc theory cannot reflect the competing effects of 
viscous heating and expansion cooling. Although viscous heat- 
ing is included, expansion work is missing when the tempera- 
ture-dependent density is inserted a posteriori in the incompress- 
ible equations. The solutions for the velocity and temperature 
distribution in the ad hoc theory are not affected by the degree 
of temperature dependence of density: the predicted distribu- 
tions for temperature-dependent density and constant density 
are identical, and given by the solutions with P = 0 in Fig. 2. 
When modeling plane Poiseuille flow with the ad hoc theory 
the temperature dependence of density decouples from the tem- 
perature and velocity problem, and only affects the density dis- 
tribution itself. The ad hoc theory makes both qualitative and 
quantitative errors: it cannot predict the two inflection points in 
the temperature distribution, and predicts average and maximum 

temperatures that are too large. The ad hoc theory overestimates 
the fluid maximum absolute temperature by 5.3 percent and the 
velocity at the mid-channel by 16.7 percent for the case with 
density expansion number P = 0.2; polymers are typically pro- 
cessed with P in the range of 0.1 to 0.3 (Toor, 1957). 

The density distribution across the channel predicted by the 
two theories is shown in Fig. 3. In our constrained theory the 
density has a local maximum in the channel center, reflective 
of the depressed temperature there due to expansion cooling. 
In the ad hoc theory, the density minimum is in the center of 
the channel. Since the ad hoc theory cannot model the lowering 
of temperature at mid-channel due to expansion cooling, it un- 
derestimates fluid density there. 

The errors in material density and velocity distributions that 
result from use of the ad hoc theory have contrary effects on 
the mass flow rate: the overestimated fluid temperature lowers 
fluid viscosity and thus leads to higher velocity, as shown in 
Fig. 2, and therefore too high a volume flow rate; on the other 
hand, the underestimated density distribution in the ad hoc the- 
ory leads to an underpredicted mass flow rate. In the simulation 
shown in Fig. 4, with E = 5.0 and Br = 0.2, the net result of the 
two competing errors in the ad hoc theory is an overprediction of 
the mass flow rate. Figure 4 compares the dimensionless mass 
flow rates f2 pfitdx2 resulting from the velocity and density 
profiles predicted by the two theories, as functions of parameter 
P. Note that the ad hoc theory overestimates the mass flow 
rate for any material with temperature-dependent density. The 
difference is significant even for moderate temperature depen- 
dence of density: e.g., when P = 0.1, the dimensionless mass 
flow rate predicted by the ad hoc theory is 5.9 percent higher 
than the value predicted by the constrained theory. 

As an explicit example, when poly(ethylene terephtalate) 
(PET) is melt processed in a steady nonisothermal plane Poi- 
seuille flow with a wall separation h of 0.2 mm and a wall 
temperature ®w of 558.2 K, the dimensionless numbers E and 
P are calculated to be 12.18 and 0.1869, respectively (see Table 
1 ). The Brinkman number is in addition a function of the shear 
stress mw at the wall, or equivalently, the imposed pressure 
gradient # = 2Tw/h. When 7w = 0.82 MPa (/9 = 8.2 MPa/ 
mm), Br = 0.1 and the dimensionless mass flow rate predicted 
by the constrained theory and the ad hoc theory are 0.7983 and 
0.9574, respectively, so the ad hoc theory overestimates the 
mass flow rate at this wall stress by 19.93 percent. 

The relation between volume flow rate and either pressure 
drop or wall shear stress is important in many process and 
viscometric measurements. To study this relation, we compute 
for the process of Table 1 the dimensional volume flow rates 
per unit channel width as a function of shear stress at wall mw 
predicted by the two theories. For comparison, we also compute 
the volume flow rate per width given by the exact solution for 
a flow with "effective" constant values of density and viscosity. 
The exact solution follows from setting E = P = 0 in the 
boundary value problem (45), (46), and (48). The constant 
values of density and viscosity in this "effective incompressible 
flow" model are taken as their values at the wall temperature, 
i . e . ,  p = Pw,  r/ = Dw. 

Figure 5 shows that the ad hoc theory underestimates the 
wall shear stress 7-w (or pressure gradient #)  which is necessary 
to produce a desired volume flow rate, or, viewed differently, 
the ad hoe theory overestimates the volume flow rate created by 
an imposed pressure gradient or wall shear stress. Alternatively, 
ignoring the temperature dependence of viscosity and density by 
employing the "effective incompressible flow" model results in 
errors in the other direction. At the specified volume flow rate 
per width of 0.15 cm2/s, the "effective incompressible flow" 
model produces an error of +4.57 percent in the wall shear 
stress, and the ad hoc theory produces an error of -2.46 percent. 
As the flow rate increases, so do the errors: for 0.38 cm2/s the 
"effective incompressible flow" model and ad hoc theory give 
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Fig. 3 The density distribution across the channel for different levels of tempera- 
ture dependence of density: E = 5.0, Br = 0.2, varying P. The horizontal coordi- 
nate is the dimensionless density, and the vertical coordinate is the dimen- 
sionless transverse coordinate gg2. Solid lines are the predictions from the con- 
strained theory, and dashed lines are the predictions from the ad hoc 
formulations. 

errors of +27.7 and -10.8 percent, respectively. For such flow 
rates, process modeling based on either the ad hoc theory or 
the "effective incompressible flow" model can lead to serious 
design flaws. 

The cessation of the curves for both the constrained theory 
and the ad hoc theory in Fig. 5 indicates that there are no stable 
solutions to the boundary value problem for fully developed 
flow in these equations when the pressure gradient exceeds 
threshold values. This was also noticed in the incompressible 
theory with temperature-dependent viscosity (equivalent in two- 
dimensional Poiseuille flow to the ad hoc theory) by Martin 
(1967) and Sukanek (1971). As can be seen in Fig: 5, this 
behavior is not captured by the "effective incompressible flow" 
model. 

The effects of temperature dependence of density are aug- 
mented by large Br, as shown in Fig. 6. When there is viscous 
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Fig. 4 The dimensionless mass flow rate as a function of the level of 
temperature dependence of density: E = 5.0, Br = 0.2, varying P 

heating in the flow of a fluid with poor thermal conductivity 
(and hence large Br), the concavity in the temperature distribu- 
tion at mid-channel deepens, the bulk temperature and mean 
velocity in the channel increase, and the temperature and veloc- 
ity gradients at the wall become greater, relative to a fluid with 
good thermal conductivity. 

The effect of temperature dependence of viscosity, or equiva- 
lently E, on the temperature distribution is similar to that of Br 
just described, but less pronounced (see Fig. 7). 

Figure 8 illustrates the danger of neglecting temperature de- 
pendence of density and viscosity altogether in the modeling 
of a process. The "effective incompressible flow" solution for 
temperature-independent viscosity and density differs greatly 
from the result given by the constrained theory for a process 
with Br = 0.1, E = 10 and P = 0.2, and cannot capture the 
phenomenon of expansion cooling. The maximum dimen- 
sionless temperature predicted by the "effective" constant den- 
sity/constant viscosity theory is 1.033 at the middle of the 

Table 1 PET properties and flow conditions used in the simulations of 
Figs. 5 and 6, and the corresponding dimensionless numbers 

Material properties for PET 
Densi ty  coefficient P0 = 1493 k g .  m - s  t 

Densi ty  coefficient Pl = 0.5 k g .  m - ~ .  K -1 "t 

T h e r m a l  conduct iv i ty  k = 0.147 W .  m -1  • K -1 $ 

Int r ins ic  viscosity [y] = 0.6450 d l . g - 1  :~ 

Act iva t ion  energy £ = 56.54 x 10 s J .  mole -1 t 

Flow condi t ions  
Wal l  separa t ion  h = 0.2 m m  
Wal l  t e m p e r a t u r e  O~ = 285 *C = 5 5 8 . 2 K  

Viscosity p ~ a t  wal l  t empera tu re  = 204.6 P a  .s  ¶ 
shear  stress at  wall  r~ = var iable  
Dimensionless  numbers  

Griffith number E = 12.18 
Brinkman number Br = Br(r~0) = 0.1489r~ 
Dimensionless expansion number P = 0.1869 

Mpa -2 

tHayashl e~ al (1992). 
:~Polymer Handbook (1989), 
¶ c ~ c ~ t e a  by .(O) = N]5' l~e~p{~ - ~.3} poi~. 
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channel, and by the constrained theory is 1.020 at dimensionless 
length scale 0.3. If the material is processed at a wall tempera- 
ture of 558.2 K, this means the mid-channel temperature pre- 
dicted by the constant density/constant viscosity solution is 7.1 
K higher than the correct temperature given by the constrained 
theory. For comparision, the mid-channel temperature predicted 
by the ad hoc theory is 15.3 K too high. 

4.5 Conc lus ion  
A theory for the processing of materials with temperature- 

dependent density is derived in such way that this temperature 
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thermal plane Poiseuil le f l ow  with isothermal wal ls as predicted by the 
constrained theory, showing the ef fect  of  varying the thermal conduct iv-  
i ty of  the fluid: E = 5.0, P = 0.1, varying Br. The vert ical coordinate is 
the dimensionless transverse coordinate J~2. 

0.5 

0.3 

0.1 

-0.1 

-0.3 

-0.5 
1.00 

/ / 
, I 

! I 

~ E= 
J ~ - - 1 .  J / 

~ 10. 

t 

1.01 1.02 1.03 1.04 
dimensionless temperature 

0.5 

0.3 

0.1 

-0,1 

-0,3 

-0.5 
0.0 

• i , , • 

I E= 1, 

i- % 
0.5 1.0 1.5 

dimensionless velocity 
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thermal plane Poiseuille f l ow  with isothermal wal ls as predicted by the 

• constrained theory, showing the ef fect  of  temperature dependence of 
viscosity: Br = 0.1, P = 0.1, varying E. The vert ical coordinate is the 
dimensionless transverse coordinate £2. 
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dependence is recognized a priori, and not inserted a posteriori 
as is often done in the literature. In our a priori treatment, a 
constraint response appears not only in the momentum balance 
but also in the energy balance as compression or expansion 
work. Our theory provides a simpler formulation than the un- 
constrained compressible theory which retains essential temper- 
ature dependence of material properties. We apply our theory 
to the problem of nonisothermal plane Poiseuille flow to pro- 
duce the following conclusions: The equations modeling the 
process from our theory are significantly different for quantita- 
tive and qualitative predictions than either an ad hoc theory in 
which temperature-dependent density is inserted a posteriori in 
the theory for an incompressible fluid, or an "effective" con- 
stant density/constant viscosity model. In particular, neither the 
constant density/constant viscosity theory nor the ad hoc theory 
can model the phenomenon of expansion cooling in plane Poi- 
seuille flow, and both significantly overestimate the mean tem- 
perature and mass flow rate. 
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Theory for Multilayered 
Anisotropic Plates With 
Weakened Interfaces 
Rigorous kinematical analysis offers a general representation of displacement varia- 
tion through thickness of multiIayered plates, which allows discontinuous distribution 
of displacements across each interface of adjacent layers so as to provide the possibil- 
ity of incorporating effects of interfacial imperfection. A spring-layer model, which 
has recently been used efficiently in the field of micromechanics of composites, is 
introduced to model imperfectly bonded interfaces of multilayered plates. A linear 
theory underlying dynamic response of multilayered anisotropic plates with nonuni- 
formly weakened bonding is presented from Hamilton's principle. This theory has 
the same advantages as conventional higher-order theories over classical and first- 
order theories. Moreover, the conditions of imposing traction continuity and displace- 
ment jump across each interface are used in modeling interphase properties. In the 
special case of vanishing interface parameters, this theory reduces to the recently 
well-developed zigzag theory. As an example, a closed-form solution is presented 
and some numerical results are plotted to illustrate effects of the interfacial weakness. 

1 Introduction 

It has long been recognized that the classical two-dimensional 
laminated plate theory, which is based upon the Kirchhoff 
hypotheses of straight inextensional normals for the entire plate 
package, yields inadequate results for analysis of composite 
plates in many engineering problems. Due to their low ratio of 
transverse shear modulus to the in-plane modulus, composite 
laminates often exhibit significant transverse shear deformation, 
which if neglected as in classical plate theory precludes an 
accurate prediction of both overall behavior and local failures 
caused by delamination. From the theoretical viewpoint, one of 
the central issues of various theories is how to account for 
the effects of transverse shear flexibility and other nonclassical 
factors, such as transverse normal strain. Many approaches have 
been proposed to this end and there are numerous publications 
in the field of multilayered composite plates and shells; e.g., 
see the review papers of Bert (1984), Reissner (1985), Noor 
and Burton (1989) and Reddy and Robbins Jr. (1994), and the 
references cited in them. 

All the different approaches for constructing two-dimensional 
shear deformation theories of multilayered plates can be catego- 
rized as either equivalent single-layer theories or discrete-layer 
theories. In equivalent single-layer theories a heterogeneous 
laminated plate or shell is treated as a statistically equivalent 
single layer, possibly having complex constitutive behavior. 
Examples are classical and first-order shear deformation theo- 
ries (e.g., Chia, 1980, 1988) based on linear distribution of the 
in-plane displacements in the thickness direction, and higher- 
order theories (e.g., Librescu, 1975; Reddy, 1.984) based on 
a nonlinear distribution of the in-plane displacements in the 
thickness direction. The advantage of introducing a global dis- 
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placement approximation in the thickness direction is that only 
three or five generalized displacement parameters are involved 
in the resulting equations and the order of the governing equa- 
tions is independent of the total number of layers. The global 
response characteristics predicted by higher-order shear defor- 
mation theories are fairly accurate. However, the distributions 
of the stresses and displacements through the thickness obtained 
by these theories are not so accurate, as transverse stresses do 
not satisfy continuity at layer interfaces. 

In contrast to the equivalent single-layer theories, most dis- 
placement-based discrete-layer theories are based on piecewise 
linear approximation for in-plane displacements in the thickness 
direction, the transverse shear stresses are constant within each 
layer and so do not satisfy compatibility conditions on the two 
bounding surfaces of the plate. On the other hand, although the 
discrete-layer theories are generally very accurate, they are quite 
cumbersome in solving practical problems because the number 
of unknowns and the order of the theories depend upon the 
number of layers that the plate has. 

Because of this, various zigzag theories, alternatively called 
simplified discrete-layer theories (Noor and Burton, 1989) or 
refined single-layer theories (Reddy and Robbins Jr., 1994), 
have recently been proposed for describing the deformation of 
plates and shells; see Di Sciuva ( 1986, 1987, 1992), Di Sciuva 
and Icardi (1993), Savithri and Varadan (1990, 1993), Li- 
brescu and Schmidt (1991), Gaudenzi (1992), Cho and Par- 
merter (1992, 1993, 1994), Xavier et al. (1993), He (1993, 
1994), and Schmidt and Librescu (1994). The displacement 
field assumed is such that the displacements and tractions are 
continuous at layer interfaces. This continuity can be used to 
reduce the total number of unknown parameters in the theories. 
Such approaches formulate a multilayered plate model of the 
discrete-layer category for which the total number of general- 
ized displacements does not increase with the number of layers. 
This number is usually five, as in most equivalent single-layer 
theories such as first-order theory or the third-order theory of 
Reddy (1984). 

Unlike their homogeneous isotropic counterparts, the aniso- 
tropic constitution of multilayered composite structures often 
results in unique phenomena that can occur at vastly different 
geometric scales, i.e., at the global level, the ply level or the 
reinforcement-matrix level. The equivalent single-layer theories 
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are generally capable of accurately describing the global re- 
sponse, whereas at the ply level discrete-layer and zigzag theo- 
ries are needed to determine the three-dimensional stress field. 
When equivalent overall elastic properties at the reinforcement- 
matrix level of random composite materials are required, they 
can be found by efficient micromechanics theories, e.g., the 
Mori-Tanaka mean field approach (Moil and Tanaka, 1973; 
Weng, 1984; Benveniste, 1987), the self-consistent method 
(Hill, 1965; Budiansky, 1965), the generalized self-consistent 
method (Christensen and Lo, 1979) and the differential scheme 
(McLaughlin, 1977; Norris, 1985). The present paper gives a 
theory which is general in so far as results at the ply level are 
concerned and only requires that the elasticity constants of each 
layer have been determined either by experiment or from micro- 
mechanics methods. Particular attention is paid to multilayered 
anisotropic plates with imperfect layer interfaces. 

It is well known that properties of composite materials are 
significantly influenced by the properties of interfaces between 
the constituents. A perfect interface, which implies continuous 
displacements and tractions across the interface, is assumed in 
most analytical and numerical work on composite materials and 
thus interface properties and structures are eliminated. However, 
in many cases of interest this perfect interface assumption is 
not adequate. Examples for multilayered composites are either 
the presence of a thin layer between adjacent ply layers or of 
a coating on the surface of the reinforcing constituent. Such an 
interfacial layer is generally referred to as an interphase. It may 
be due to chemical interaction between the constituents or it may 
be deliberately introduced in order to improve the properties 
of composites. In the limit of vanishing interphase-thickness, 
displacement jumps occur when crossing the interphase from 
one side to another while the tractions must remain continuous 
from simple equilibrium consideration. The simplest approach 
used to model this is that the jumps in normal and tangential 
displacements are assumed to be proportional to the tractions, 
giving a spring-layer model. Such a model has recently been 
applied in micromechanics-based researches on imperfect inter- 
faces of composites at th~ reinforcement-matrix level; e.g., see 
Benveniste (1985), Aboudi (1987), Achenbach and Zhu 
(1989), Jasiuk and Tong (1989), Benveniste and Dvorak 
(1990), Hashin (1990, 1991a, b, 1993) and Qu (1993a, b). 
However, few attempts have been made to evaluate the effects 
of weak bonding at the ply level of multilayered composites. 

A large class of new composite materials, e.g., ARALL (ara- 
mid fiber-reinforced aluminium alloy laminates) and CARALL 
(carbon fiber-reinforced aluminium alloy laminates), has re- 
cently been developed for aircraft and civil application. These 
materials consist of alternating layers of aluminium alloy sheets 
bonded by an adhesive impregnated with high strength aramid, 
ramie or carbon fibers; e.g., see Vogelesang and Gunnink 
(1986), Aboudi and Paley (1992), Mao and Han (1992), Li 
et al. (1994), and Lin et al. (1994). In addition to their lower 
density and higher strength than aluminium alloys, excellent 
fatigue crack growth resistance has been observed for these 
materials. However, the aluminium alloy has a very different 
thermal expansion coefficient from that of the adjacent sheet, 
e.g., of CFRP (carbon fiber-reinforced polymer) sheets for 
CARALL. Therefore the curing process will certainly produce 
substantial residual stresses at layer interfaces and these stresses 
will influence the mechanical properties of such materials, espe- 
cially their bending behavior. In addition, although the surface 
of the aluminium sheet is pretreated by chemical or mechanical 
methods in order to improve adhesion, in practice imperfect 
bonding still exists to different extents. A recent development 
(Mao and Han, 1992) is to pre-coat the aluminium alloy and 
CFRP surfaces of CARALL material with a kind of adhesive 
called CCVC (copolymer of controllable volume change on 
curing). CCVC can form a very thin interfacial layer between 
the atuminium alloy and CFRP sheets, and different ratios of 
its constituents can lead to different interfacial bonding proper- 

x3 

/ • (=).Q 

h 

= x z 

/ 
xl 

Fig. 1 G e o m e t r y  o f  a mutt i layered p la te  

ties. One purpose of the CCVC coatings is to increase the bond- 
ing strength between the aluminium alloy sheet and the CFRP 
sheet, because the main composition of CCVC is a kind of 
adhesive, while another purpose is to reduce the residual stresses 
generated from the curing process so as to prevent premature 
delamination. These expectations have been confirmed by ex- 
periments, including those of Mao and Han (1992). 

The present work incorporates some of the interracial proper- 
ties into the theory of multilayered anisotropic plates. Each 
interface between adjacent layers is characterized by a spring- 
layer model as employed in micromechanics. An important fea- 
ture is the introduction of this micromechanics model into mac- 
rostructural analysis in order to model interphase properties. As 
will be shown, the use of this model in the two-dimensional 
theory of multilayered plates and shells avoids the physically 
impossible phenomenon of interpenetration at the interfaces. 
However this model might lead to such interpenetration within 
the three-dimensional theory of elasticity, as discussed briefly 
by Achenbach and Zhu (1989), although perhaps more accurate 
models could be found to overcome this problem. An exact 
representation of displacement variation through the thickness 
of a multilayered plate is obtained by rigorous kinematical anal- 
ysis. This representation can include displacement jumps across 
each interface and thus can enable interfacial imperfection to 
be incorporated. However, in the present paper only a small 
amount of interrfacial weakness is allowed because, when deriv- 
ing the present theory from Hamilton's principle, certain ap- 
proximations have been made concerning displacement varia- 
tion. As the displacement model satisfies the compatibility con- 
ditions of transverse shear stresses both at layer interfaces and 
on the two bounding surfaces of the plate, there is no need for 
the use of shear correction factors, and the number of unknowns 
is eventually shown to be five irrespective of the number of 
layers, i.e., the same number as for most first and third-order 
smeared theories. The governing set of equations has variable 
coefficients due to the nonuniform bonding strength involved 
in each interface. Thus in this theory uniform bonding corre- 
sponds to governing equations with constant coefficients. In the 
limit of vanishing interface parameters this theory reduces to 
exactly the fiat-plate limit of the conventional zigzag theory 
for multilayered anisotropic shells of He (1994). A simple 
numerical example is presented to give a good understanding 
of how a small amount of interface weakness affects the overall 
and local behaviors of multilayered plates. 

2 General Representation of Displacement Variation 
Figure 1 shows a multilayered plate consisting of k homoge- 

neous anisotropic layers with uniform thickness. For conve- 
nience, the undeformed lower surface of the plate is chosen as 
the reference surface defined by x3 = 0 and the x3-axis is normal 
to it, where {xi } (i = 1, 2, 3) is a Cartesian axis system. Let 
('~f2 (m = 0 . . . . .  k) denote the lower surface (m = 0), the 
interface between the mth and (m + 1)th layers (m = 1 . . . . .  
k - 1 ) and the upper surface (m = k) of the plate. The volume 
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V of the multilayered plate is thus divided by the (k - 1 ) 
interfaces ~">~2 (m = 1 . . . . .  k - 1 ) into k subspaces ("~V (m 
= 1 . . . . .  k) corresponding to the volumes of the k layers. The 
range of ~m)v in the x3-direction is [°"-~>h, ° " h i ,  where (m)h 
(m = 0 . . . . .  k) is the distance between (o~f~ and (")f~. Obvi- 
ously, (°)h = 0 and (k~h = h, where h is the total thickness of 
the plate. It is assumed that the displacement vector (m)v(x ; t) at 
time t of a point in the mth layer after deformation is sufficiently 
smooth in <")V, in the sense that it is differentiable with respect 
to xe as many times as necessary. Here x is the vector (x~, x2, 
x3) and v is the corresponding displacement vector. 

The displacement vector v (x ;  t) of any point in V can be 
expressed as 

k--I  

v(x ;  t) = ~ [(m+l)v(x; t) - ("')v(x; t )]H(x3 - (re)h), (1) 
m=O 

where (°)v(x; t) =- 0 and H(x3 - (m)h) is the Heaviside step 
function. Taylor expansion of (")v(x; t) (m = 0 . . . . .  k) with 
respect to x3 gives an alternative form of Eq. ( 1 ) as 

v (x ;  t) = ~ Y~ ( ')u(")(xl ,  x2; t) 
m=0 n=O 

× (x3 - °")h)"H(x3 - o,%), (2) 

(m)u(")(xl, x2; t) = ___1 o,,+l~V0,~(x=, X 2 ,  (")h; t) 
n! 

1 
- - -  ("°v(")(xl, x2, ("%; t ) ,  ( 3 )  

n! 

retaining, unlike He (1994),  the term 

°")u(°)(xl, x2; t) = ( '+l )v(xt ,  x2, (m)h; t)  

- ~"°v(x~, x2, c')h; t ) .  ( 4 )  

This term implies that the displacements at interfaces are al- 
lowed to be discontinuous, so as to provide a possible incorpora- 
tion of imperfect interfaces of multilayered plates, e.g., weak- 
ened bonding or even delamination. The case of perfect bonding 
corresponds to this term being a null vector. 

3 S p r i n g - L a y e r  M o d e l  o f  I m p e r f e c t  I n t e r f a c e s  

To incorporate the properties and structures of interfaces in 
the evaluation of composite behavior, interfaces must be treated 
as regions of distinct atomic structure and, possibly, distinct 
composition. They should have different properties from the 
bulk properties on either side of the interface. In the context of 
continuum mechanics, one simple approach is to introduce a 
thin layer of interphase material which replaces the interface. 
The limiting case of vanishing interphase-thickness then gives 
an interface which is a mathematical surface across which mate- 
rial properties change discontinuously, with the interracial trac- 
tions being continuous while the displacements are discontinu- 
ous. Although nonlinear relationships may be proposed between 
the interfacial tractions and displacement jumps, a linear spring- 
layer model is explored in this paper to characterize the imper- 
fect bonding. 

If ~ and n are used, respectively, to denote the interface and 
its unit positive normal vector, the interface conditions may be 
written as 

A c r ' n  ~ [¢r(f~ +) - ~ r ( ~ 2 - ) ] ' n  = 0, (5) 

A v  =- [v ( f~  ÷) - v ( f ~ - ) ]  = R ' c r ' n ,  ( 6 )  

where o-(Q +) and o ' (f~-)  are the values of stress tensor o-(x) 
as x approaches the interface from positive and negative direc- 
tions of the normal to the interface, respectively, and v(Q +) 
and v ( f~- )  are defined similarly. The second-order tensor R in 
Eq. (6) represents the compliance tensor of the spring-layer 

interface. For simplicity, it is assumed in this paper that R is 
symmetrical and positive definite. It is also clear from Eq. (6) 
that R = 0 corresponds to a perfect interface, while R 1 = 0 
represents complete debonding, i.e., at. n = 0 on fL From this 
point of view, a slightly weakened interface may be modelled 
by small values of R. Such an imperfect interface may be due 
to the presence of an interphase but could also be due to inter- 
face bond deterioration caused by, e.g., fatigue damage or envi- 
ronmental and chemical effects. 

A special form of R that has some physical significance is 
given by 

R = R'I  + (R" - R ' ) n  @ n,  ( 7 )  

where I denotes a second-order unit tensor and the symbol @ 
is the usual dyad symbol. It can easily be shown that R'  and 
R" represent the compliance in the tangential and normal direc- 
tions of the interface, respectively, i.e., 

A v ' ( I  - n @ n)  = R ' n . c r . ( I  - n @ n ) ,  ( 8 )  

A v . n  = R " n . a r . n .  (9) 

When R" = 0, this constitutive characterization of the inter- 
face allows relative sliding between the two surfaces, but no 
separation. Furthermore, the free-sliding case can be achieved 
by setting R'  ~ oo with R" = 0. It should be noted that when 
R" ~ 0 this mathematical model includes solutions which are 
physically impossible because one constituent would have to 
penetrate another, as noticed by Achenbach and Zhu (1989) 
and Qu ( 1993a, b) .  This violates the compatibility requirements 
and therefore the model is apparently unreasonable for such a 
case. Fortunately, the normal stress a33 for the plate problem 
under consideration is assumed to be negligibly small compared 
with other stress components, so that it is ignored in the present 
theory as in most other theories for plates and shells. This 
automatically leads to a vanishing displacement jump in the 
normal direction, see Eq. (9) ,  regardless of the value of the 
interface parameter R". Therefore it seems to be reasonable to 
adopt this spring-layer model in the theory of plates and shells 
with imperfect bonding in shear. 

4 A p p r o x i m a t e  E x p r e s s i o n s  f o r  D i s p l a c e m e n t s  

Throughout the following derivations, a comma followed by 
a subscript denotes a derivative with respect to the correspond- 
ing spatial coordinate, and a dot over a quantity refers to a 
derivative with respect to time, t. The Einsteinian summation 
convention applies to repeated subscripts of tensor components, 
with Latin subscripts ranging from 1 to 3 while Greek subscripts 
are either 1 or 2. The spatial derivative with respect to x3 is 
stipulated as the right-hand one so that H,3(X 3 -- ° n ) h )  = O. 

Equation (2) can be rewritten in component form as 

k - I  

vj(xi; t ) =  ~ ]L o,,)uj ('')(x~," t) 
m=0 n = 0  

X (x3 -- ("Oh)"H(x3 - (re)h). (10) 

TO develop a practical theory of multilayered plates, which can 
model weakened interfaces but not debonding, the above series 
is truncated by using the approximations 

0 , 1 , 2 , 3  

n =  0 ,1  

0 

for j = a  and m = 0  

for j = a and m = 1 . . . . .  k -  1. 

for j = 3 and m = 0 . . . . .  k -  1 

(11) 

By also using the contact condition of adjacent layers in the 
normal direction of each interface, i.e., 
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( m + l ) l J 3 ( X a ,  (m)h+; t) = ( m ) l / 3 ( x a ,  (re)h-; t), 

(m = 1 . . . . .  k -  1), (12) 

the displacements can be expressed as 

v , ( x i ;  t )  = u ,  + O,x3  + ~o~x 2 + f lux  3 
k-I 

-Jc Z [ ( m ) A 1 ) a  -Jc ( m ) u a ( X  3 - -  ( m ) h ) ] n ( x 3  - (m)h),  
m = 1 

v3 (x i ;  t) = u3, (13) 

where (°)u!°), ~°)u~, (°)u~2), ~°)u(.3), <m)u(.°~, and (m~u~l) in Eq. 
(10) have been replaced by the quantities u~, ~,~, qo., rl~, (m)Av~ 
and <m~u., respectively. 

For most plate problems transverse normals do not experience 
significant extensions and therefore it has been assumed, with- 
out significant loss of accuracy, that v3 is independent of the 
thickness coordinate, Theories higher than third order are not 
used because the extra accuracy achieved is so small that the 
effort required to solve the equations is not justified. (Of course, 
theories developed for calculating delamination need more 
terms than are retained by Eqs. (13), e.g,, see Chattopadhyay 
and Gu (1994), and so the use of Eqs. (13) in the present 
theory means that it only applies to multilayered plates with 
slightly weakened interfaces and no debonding.) 

The strain and stress components of the plate can be obtained 
from 

! 
eli = ~( vi,j + vj, i ), a~z  = H ~ z ~ e ~ ,  ~ 3  = 2 E ~ 3 ~ e ~ ,  (14) 

where e o and cry1 are components of the strain and stress tensors, 
Ee~ are components of the elasticity tensor associated with an 
elastic anisotropic body, and 

Eo,,~a3 E33,oo 
Ha~wp = E ~  o ( 15 ) 

E3333 

Here, as indicated by Librescu (1975), the second and third 
of Eqs. (14) hold only under the assumptions that each layer 
possesses a plane of elastic symmetry parallel to the x3 = 0 
plane and that ~r33 is vanishingly small compared with the other 
components of the stress tensor. 

The compatibility conditions of transverse shear stresses on 
the two bounding surfaces of the plate as well as at the interfaces 
are now used to reduce the number of unknowns in Eqs. (13). 
For simplicity, it is assumed that no tangential tractions are 
exerted on ~o)f~ and ¢k)~2, where Eqs. (13) and the first and third 
of Eqs. (14) give the tangential tractions. Hence 

~o:-~ ~oo+~ 
m=l 

The conditions of continuously distributed transverse shear 
stresses at the interfaces lead to, by using Eqs, (16), (13) and 
the first and third of Eqs. (14), 

l~i)~ ( i ) . ,  + ( ( i+  l)Ea3~o3 ( i ) E . 3 w 3 ) [ ( ( i ) h - ~ ( i ) h 2 ) q o  w 2 /--~3w3 t4to 

i k-I ] 
1 <m~u ~ 1 (i)h2 ~ ('n)uw = O, 

+ 2 2h  ~ m=l m=l 

( i =  1 . . . . .  k -  1). (17) 

In fact, Eq. (17) can be regarded as 2(k - 1) linear algebraic 
equations involving the 2(k - 1) unknowns (~)u. (i = 1 . . . . .  
k - 1 ), which give the following relationship between (°u. and 
~ox 

(i)uo, = (i)a.~.qox, (i = 1 . . . . .  k - 1), (18) 

in which the (°a.x depend only on the material elasticity proper- 
ties of each layer and are therefore known constants, 

Substitution of Eqs. (16) and (18) into the first of Eqs, (13) 
yields 

k 1 

v,~ = u .  - x3u3,. + f ,  aqox + ~ (m)z~xuaH(x3 - <")h),  ( 1 9 )  
m=l 

in which, using the Kronecker delta, 

L~ ~ L~(x~) = 6o~x~ + c.~x~ 
k-I 

+ ~ (m)a.x(x3 -- (m)h )H(x3  - (re)h) ' 

m=l 

c.~ = - ~  6 . x + ~  2 (")a~x . (20) 
m ~ 1 

The spring-layer interface model of Eq. (6) for plate prob- 
lems can be rewritten in the component form 

(m)Avo~ = (m)Ra~( Xp)a~3(xo~, (re)h; t),  

(m = 1 . . . . .  k -  1). (21) 

The displacement jump at each interface is obtained, from Eq. 
(19), the first and third of Eqs. (14) and Eq. (21) as 

(m),~Xl)ot = (m)ea,6(Xp)(m+l)Eo3oo3fwx,3((m)h+)tpx , (22) 

and then substituting into Eq. (19) gives the approximate dis- 
placement expression 

Va : Ua -- X3U3,a "q- h,~xqo×, (23) 

in which 

h.× =- h . x ( x i )  = f.x(x3) 
k - I  

q- Z (m)ga~(xp)(m+l)E#3~o3fo~x,3((m)h+)H(x3 - ( ' ) h ) .  ( 2 4 )  
m=l 

The fact that the interface parameter (re)Ran depends upon xp 
implies that the bonding strength at the interface (")f~ (m = 1, 
. . . .  k - 1) may be nonuniform, i.e., general cases of a small 
amount of interface weakness are included in the present theory. 

By using the displacement expressions of Eq. (23) 'and the 
second of Eqs. (13), the associated strain and stress components 
can be obtained from Eqs. (14), but their explicit forms are not 
given herein. 

5 Equat ions  of  M o t i o n  and B o u n d a r y  Condi t ions  

It is assumed that the mass density p of the plate is indepen- 
dent of time t and that an arbitrarily distributed normal load 
q(x~;  t )  is applied to the surface f~ ((0)f~ or <k)f~). From Hamil- 
ton's principle 

fi°(fvff,~6eiidV-ro,60,pdV-rq~v~datdt=O, (25) 

the dynamic fundamental equations are derived as 

N,~,~,~ - ~as + Ja3.a - l~bfl  = 0, 

M . ~ , ~  + q - la3 - Ja,~,~ + K~i3,~,~ - ( J,~B~bp).. = O, 

P×,.~ - Rx - / ~ × a .  + J~/3,.  - K~×~bp = 0, (26) 

associated with either one of each of the following pairs of 
boundary conditions 

nBN.  ~ = 0, or 6 u .  = O, 

n~( M , ~ , .  - Jii~ + Ka3,B - J, oa@a) = 0, or 6u3 = O, 
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where 

n # P . # = O ,  or 6~o~=0, 

n , M . # = O ,  or 6u~,~=O, (27) 

i [N~e, M.#, P×#] = a~[1 ,  x3, hax]dx3, (28) 

Rx = a.ihax,i dx3, (29) 

I; [I, J ,  KI = p[1, x3, x~]dx3, (30) 

£ [I.#, J-t~, Kx#] = phi#[1, x3, h.h]dx3. (31) 

Furthermore, Eqs. (28) and (29) can be rewritten, by using Eq. 
(23), the second of Eqs. (13) and Eqs, (14), as 

M~.e 
Px# 
R× 

I -C~p C~.p C<3a - 
C~,#,,p.p l Ua,~p [ (32) : / " , ( 3 )  F ~ ( 5 )  / " , (7 )  , 

r ~ ( 3 )  _ F , ( 5 )  ~ ( 7 )  ( - , ( 8 )  

where 

2 = H.#~p[1, x3, h~.,  x~, x3h~ ,  h.xh~o., h.hho~.,p]dJc3, (33) 

Ji ~x,r(8) = (H,,~ph~xeh~o. . + Ea3w3h,x.3hoou.3)dx3. (34) 

Finally, substitution of Eqs. (32) into Eqs. (26) yields 

- Iris + Jfi3., - l~,~be = O, 

+ q - Hi3 - Jg. , .  + Ka3,.,~ - (J~e~b,a),~ = O, 

C(~p)x,6,uw,p B t ' - , (5)  , / " , ( 6 )  ^ ,,... wpXlO~3,wp13 -]- 

[ f , ( 6 )  /--,(7) f , ( 7 )  ~ (7 
+ k~xBvp,#  + - -  

~xp~, ,-..px)w.,p + (Cx~, ,  r(8)~ . ',,.- Xu ) W u  

- -  I a x a a  + J a x a 3 , a  - Kax@# = 0. ( 3 5 )  

These equations need to be solved with the boundary condi- 
tions of Eqs. (27) to obtain the unknowns u,,  u3, and ~o, for 
any set of plate parameters and the load parameter q. Obviously, 
Eqs. (35) have variable coefficients simply due to the nonuni- 
form value of interface parameters (")R.# at the interfaces (m)~2 
(m = 1 . . . . .  k - 1 ), so that for problems with uniform bonding 
strength at each interface, Eqs. (35) will have constant coeffi- 
cients. By setting <")R.e = 0 (m = 1 . . . . .  k - 1), the corre- 
sponding governing equations and boundary conditions become 
simply those for perfect bonding, being exactly the same as 
those given by specializing the shell theory of He (1994) to 
the plate case. They are also very similar to those proposed by 
Di Sciuva (1992) and by Cho and Parmerter (1992, 1993), but 
are more general in the sense that layers are anisotropic rather 
than just orthotropic. 

6 Numerical Example 
Assessment of the accuracy of the present theory for cases 

with perfect bonding is unnecessary because of the final senten- 
ces of the previous section. However, it is interesting to get an 

4 ~ Present 
- -a-  - Exact (~r =0) 

R= 0, 0.2, 0.4 B 0,6 

0 I I I I 

10 20 30 40 50 
l i b  

Effect of span-to-thickness ratio on central deflection 

~3 

Fig. 2 

insight into the influence of intetrfacial weakness on the global 
and local behaviors of multilayered anisotropic plates. Determi- 
nation of interface parameters would need either theoretical 
evaluations of interfacial properties and microstructures or ex- 
perimental measurements. However, here attention is restricted 
to investigating the effects of slightly weakened interfaces on 
the static bending behavior of multilayered plates. Therefore, 
an infinitely wide three-ply (0 deg/90 deg/0 deg) laminated 
plate of length 1 (in the xl-direction) between simply supported 
edges at x~ = 0 and xl = l was chosen as the example even 
though it is not so representative as a CARALL plate for analys- 
ing interfacial weakness. Another reason for choosing this sim- 
ple example is that its exact solution was obtained by Pagano 
(1969) from three-dimensional elasticity analysis of a perfectly 
bonded plate. 

Each layer has identical thickness and the stiffness properties 

EL = 172 GPa (25 X 106 psi), Er = 6.9 GPa (106 psi), 

GLr = 3.4 GPa (0.5 x 106 psi), 

Grr = 1.4 GPa (0.2 X 106 psi), Vrr = Vrr = 0.25, (36) 

where E is the tensile modulus, G is the shear modulus, v is 
Poisson's ratio and the subscripts L and T signify parallel and 
normal to the fibers, respectively. The values are given in En- 
glish units because the calculations were performed in English 
units since they were used by Pagano (1969) to obtain the exact 
results with which we are comparing. It is assumed that the 
interface parameter (m)R,# = 6 , a ~ h / E  r (m = 1, 2), with /~ 
being a dimensionless quantity. This implies identically uniform 
bonding of the interfaces. Under the action of q = qo sin 7rxl/ 
l, an exact solution of this problem has the following form 

[ul,  u3, ~ol] = Ul cos - T - '  U3 sin --~-, ~j cos , (37) 

From these expressions, exact displacements, strains, and 
stresses can easily be calculated for any point of the plate. Hence 
some numerical results are plotted in Figs. 2 - 6  to illustrate the 
effect of a small amount of interfacial weakness on the overall 
and local behaviors of the plate. 

Figure 2 shows the variation of dimensionless central de- 
flection as the span-to-thickness ratio varies. Figures 3 - 6  
show the variations of dimensionless in-plane displacement, 
bending stress, and transverse shear stress distributions with 
position within the plate thickness. Here the transverse shear 
stress was calculated, respectively, from the constitutive 
equation to obtain Fig. 5 and from the equilibrium equation 
a,,.j = 0 to obtain Fig. 6. The exact results given by Pagano 
(1969) for perfect bonding of the plate are also plotted in 
these figures. It is already well recognized in the literature, 
e.g. see Di Sciuva (1986, 1992), Cho and Parmerter (1992, 
1993) and He (1994), that for the cases of moderately thick 
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Fig. 5(a,  b) Transverse s h e a r  s t ress  through t h i c k n e s s  at  x l  = O, using const i tut ive equation 

and very thick plates most plate theories which make an a 
priori assumption of through-thickness displacement distri- 
bution fail to accurately predict transverse shear stresses 
directly from constitutive equations. This is true for perfect 

interfaces with continuity conditions of tractions and dis- 
placements enforced. Instead, accurate evaluation of trans- 
verse shear stresses is obtained by using equilibrium equa- 
tions. This is confirmed by comparing our results for/g = 0 
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Transverse shear stress through thickness at x l  = O, using equilibrium equation 

on Figs. 5(a, b) and 6(a, b) with the exact results for perfect 
bonding. It can also be seen clearly that the trend of interface 
stress in Fig. 5 changes in an unexpected pattern, while the 
trend of interface stress in Fig. 6 is physically reasonable. 
Therefore, conclusions concerning transverse shear stress 
should be drawn from Figs. 6(a, b) rather than Figs. 5(a, b). 

Figs. 2 - 6  show results when the interfacial parameter has 
the values R = 0, 0.2, 0.4, 0.6. These values represent a 
decreasingly stiff interphase, i.e. a progressively weakened 
bonding, with/~ = 0 corresponding to a perfect bond. There- 
fore increasing K' means relaxation of the interracial bonding 
strength, and hence reduction in the overall rigidity of plates. 
When curing composite materials, one purpose of weakening 
the interfacial bonding is to reduce interfacial stresses. Con- 
sistently with the foregoing, examination of Figs 2 - 6  reveals 
that the dimensionless central deflection increases as the in- 
terface parameter increases, while the dimensionless inter- 
face stress decreases, especially for small span-to-thickness 
ratios. Thus, as expected, increasing the parameter/~ causes 
reductions in interface stresses which are beneficial, but at 
the expense of increases of the central deflection. 

7 Concluding Remarks  and Suggestions for Future 
Work  

A spring-layer model has been introduced to simulate interra- 
cial weakness of multilayered anisotropic plates. By invoking 
rigorous analysis of through thickness displacement variation, 
the linear dynamic response of the plates has been incorporated 
in the present theory, which preserves all of the advantages of 
existing zigzag theories for perfect interfaces. Numerical results 
indicate that the strength of weakened bonding has significant 
effects on both the overall and local behaviors of the plates. 

Suggestions for further improving the current predictive capa- 
bility of the response of multilayered composite plates with 
interfacial imperfection include the following possible exten- 
sions of the theory presented: 

1 The exact representation of through thickness displace- 
ment variation for plates in the present paper makes possible 
the incorporation of imperfect interfaces, including not only the 
slightly weakened bonding covered in this paper but also more 
pronounced weakening and even debonding. This would require 
retention of more terms than in Eqs. (13) for the displacement 
expressions. 

2 Within the range prior to debonding, interracial optimiza- 
tion and design could be performed so as to improve overall 
and local behaviours of the multilayered plates in a controlled 
manner, especially for interface stresses. 

3 Complicating factors such as the microstructures and non- 
linear properties of interphases and the residual strains resulting 
from curing of laminations are expected to be accounted for in 
due course. 
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Analytical Study of the Duffing 
Oscillator Excited by Colored 
Noise Using a Systematic 
Adiabatic Expansion 
Analytical studies of  nonlinear systems driven by colored noise are quite involved. 
I f  the inertia o f  the system is included in analysis, the results are physically realistic 
although the problem becomes more complex. Research along this line is in progress 
and this paper is an effort to study a nonlinear oscillator excited by correlated noise. 
The work delves on the Duffing oscillator driven by exponentially correlated noise. 
The colored Fokker-Planck equation is derived and the method of  systematic adiabatic 
expansion is used to obtain the reduced probability density function from which 
the second-order moments are evaluated for  different values of  system parameters. 
Numerical simulation is carried out by generating colored noise using the spectral 
method. In the region where perturbation is valid, the results of  adiabatic expansion 
agree very well with that of  Monte Carlo simulation. 

1 Introduction 
Nonlinear oscillators subjected to random excitation occur in 

many areas of science and technology. In this context, the non- 
linear system model that has received much attention in the last 
few decades is the Duffing oscillator (Lin and Cai, 1995; Rob- 
erts and Spanos, 1989). It is one of the simplest nonlinear 
systems which nonetheless demonstrates a highly complex be- 
havior (Guckenheimer and Holmes, 1983; Scheffczyk et al., 
1991 ). Many problems in engineering ranging from dynamic 
buckling to flow-induced vibration have been modeled using 
the white noise excited Duffing oscillator. 

Nonlinear systems excited by white Gaussian noise have been 
studied thoroughly and are quite well understood. Great stride to 
the understanding of such oscillators has been made through the 
use of methods like stochastic linearization, moment closure, and 
perturbation, etc. (Caughey, 1971, 1986). To model physical 
systems realistically, however, it is imperative to take into ac- 
count the correlation time of the noise, i.e., use the so-called 
colored noise (Moss and McClintock, 1989; Lin and Cai, 1995). 
Over the last decade substantial work has been carried out on 
nonlinear systems where the excitation is due to colored noise. 
Again, the method of stochastic linearization (Falsone and Eli- 
shikoff, 1992) has been innovatively applied to solve physical 
problems, and the results are compared to that of white noise in 
terms of percentage error of mean square. The method of stochas- 
tic averaging (Stratonovich, 1963; Lin and Cai, 1995) has also 
been applied to evaluate response and stability. A particular kind 
of noise, the so-called narrow-band excitation has been applied 
to the Duffing's oscillator using a combination of stochastic lin- 
earization and the method of multiple scales (Iyengar, 1988, 
1989; Davis and Nandall, 1987; RajaH and Davis, 1988). The 
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Duffing oscillator under nonwhite noise has also been studied 
using the Wiener-Hermite functional representation (Roy and 
Spanos, 1992). Lately, the so-called van Kampen expansion 
method, which is a method using the cumulant expansion, has 
been applied for the Duffing oscillator excited by an exponen- 
tially correlated noise (Weinstein and Benaroya, 1994). 

In all these methods, the time scales are not explicitly dis- 
cussed and therefore the effect of correlation time of noise is 
not directly accounted. It is well known that the method of 
stochastic averaging, introduced by Stratonovich (1963), con- 
siders two distinct time scales for nonlinear systems, and has 
bee, la applied to many problems in engineering. Its use has been 
justified based on the rigorous proof of the validility of the 
method given by Khasminiskii (1967). Unfortunately, the 
method is suitable for systems where damping is nonlinear. In 
the case of Duffing oscillator, with hardening or softening 
spring, the method averages out the nonlinear stiffness effect, 
and reduces the problem to a linear one. 

In physics, some work has been carried out on the nonlinear 
Duffing oscillator driven by colored noise. Much of the work, 
however, examines the response behavior of the system repre- 
sented by one relevant variable, obeying an overdamped equa- 
tion of motion excited by a color noise. This results in a system 
where the effect of inertia is neglected from the very beginning 
(van Kampen 1985) and two coupled first-order equations are 
solved; one for displacement x and the other for noise y. Even 
in this case, the coupled system is non-Markovian and approxi- 
mate analysis must be used. Various methods along this line 
are outlined in Moss and McClintock (1989). 

In many physical situations, however, the assumption of over- 
damped dynamics is not appropriate. Great difficulties are en- 
countered when the inertia of the nonlinear system and the 
correlation time of the excitation are accounted for in the analy- 
sis (Moss and McClintock, 1989; Lindenberg and West, 1990; 
Hwalisz et al., 1989; Schimonsky-Geier, 1988; Fronzoni et al., 
1986; Marchesori et al., 1988). Nevertheless, the work repre- 
sented by these references have contributed greatly to the under- 
standing of the response of the nonlinear dynamic systems sub- 
jected to colored noise. 

2 Problem Definition 
The problem of a Duffing oscillator driven by colored noise 

has not been completely solved as yet and therefore is the source 
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of interest among many researchers. In particular, recently, the 
van Kampen expansion method (Weinstein and Benaroya, 
1994), and modified stochastic linearization technique (Falsone 
and Elishakoff, 1994) were applied to the Duffing oscillator 
which evaluated the response of this oscillator under exponen- 
tially correlated colored noise. In the present work, the adiabatic 
expansion technique (van Kampen, 1985), which was pre- 
viously found useful in stability studies (Graham and Schenzle, 
1982; Billah and Shinozuka, 1991), has been utilized for this 
problem and the result is compared with that of Monte Carlo 
simulation. 

The system considered is described by an equation of the 
form 

1 
--2" + X + dx  + bx  3 = y(t) .  (1) 
Y 

A convenient model for the noise is a stationary Omstein-Uhlen- 
beck process, described by the equation 

y( t )  1 = - - y  + - - { ( t ) ,  (2) 
T 7" 

where {(t) is the Gaussian white noise with ({(t))  = 0 and 
(~(t)~(0))  = 6(t). The correlation function o f y ( t )  thus satis- 
fies 

(y( t )y(O))  = ~ e-1'l'7. (3) 
2T 

Note that y(t)  becomes a Gaussian white noise as r ~ 0 with 
Q fixed, in which case (y( t ) )  = 0 and (y( t )y(O))  = Q6(t). 

3 Systematic  Adiabatic  Expansion and Reduced 
Probabil ity Density 

Usually a dynamic system has widely different response 
times and often the behavior on a very short time scale is not 
of much interest. In fact, the purpose of the present paper is to 
consider the long-term behavior of a nonlinear system using the 
adiabatic expansion method. The method is consistent with*the 
goal of concentrating on the long time scale of the system 
(Gardiner, 1986; Moss and McClintock, 1989; van Kampen, 
1985). To explicate the method, consider as an example the 
Brownian motion for which the Lagevin equations are 

dx 
- -  = v (4) 
dt 

dv 
m - -  = -/3v + 2 f l ~ ( t )  (5) 

dt 

with the following Fokker-Planck equation for probability den- 
sity function p(x ,  v, t) 

Op 0 O f v p ~  kTO2p 
Ot -- Ox (vp) + -~ ~ 7 )  + --~7"r Ov ' g  ' (6) 

where rr  = m//3 is the relaxation time. The limit of large /3 
and small m should result in very rapid relaxation of Eq. (5) 
to a quasi-stationary state, i.e., when rr  ~ 0, dv/dt ~ O, therefore 

= ~ - ~  ~(t) (7) l /  

resulting in 

dt ~(t). (8) 

In this case v has been eliminated; v is called the fast variable, 
which is assumed to relax very rapidly to the value given by 

Eq. (7).  The Fokker-Planck equation corresponding to Eq. (8) 
is thus 

ap(x,  t) _ kT 02p(x, t) 
(9) 

Ot /3 Ox 2 

where 

p(x ,  t) = f f ~  p(x ,  v, t)dv. (10) 

The above procedure of eliminating the fast variable is some- 
what drastic. A more systematic method of deriving the reduced 
equation (in the form of Eq. (9) from Eq. (6))  in a perturbative 
manner with higher corrections in powers of a small parameter 
is called adiabatic expansion (Stratonovich, 1963; Wilemski, 
1976; Titulaer, 1978). In the present work, Wilemski's system- 
atic analysis is followed for solving a nonlinear oscillator ex- 
cited by colored noise. 

4 Adiabatic  Expansion for the Duffing Oscil lator 

For Eq. ( 1 ), the following scaled variables are introduced: 

X' = x / l f O ,  

y' = (1/ y ~ ) y ,  

k ' ( x ' )  = k ( x ) / , ~ ,  (11) 

where k ( x )  = d x  + bx 3 is the force due to potential V ( x )  

associated with the Duffing equation: 

V ( x )  = -dx2 + b-x4. (12) 
2 4 

Two more important parameters are also introduced: 

k = 1 / (yZ) ,  

: ,/iVy. (13) 

Rewriting Eq. (1) in terms of the scaled variables and the 
new parameters, the following system of ordinary differential 
equations is obtained: 

dx' 1 
- -  U ,  

dt e 

_ _  1 _ ,), du = _ 1_ k ' ( x ' )  - ~ (u y 
dt e 

dy' 1 1 
dt e2 ky'  + -e k~(t). (14) 

This system is solved for long-term behavior with large value 
of y (fast relaxation) and arbitrary k, i.e., k = O(1) ,  and e 
0. From now on, all primes are omitted in the notation for 
simplicity. 

For the probability density function p(x ,  y, u, t),  the Fokker- 
Planck equation is obtained by the method introduced by Lax 
(1966) as outlined below. For systems described by equations 

2,(t)  = L,({x, }) + Go({xi })Fj, (15) 

where Fj is the Gaussian white noise, the stochastically equiva- 
lent equation for p({xk}, t) is 

O O 
p({xk}, t) = ~ (k}~)({xkI)p({&}, t)) 

1 0 2 
+ - - - ( k ~ 2 ) ( { x k } ) p ( { x i } , t ) ) ,  (16) 

20xiOxj 
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where the coefficients k~l)({xk } ) and k~2)({ &})  are related to 
the coefficients of Eq. (15) by the following relations: 

and 

k!l)({xk}) = Li({xk}) + _10G u Gu 
2 0 x t  

(17) 

k}~)({&}) = Gi,({xk})Gj,({x~}). (18) 

It is to be noted that in Eqs. ( 1 5 ) - ( 1 8 ) ,  summation over re- 
peated indices is implied. 

The Fokker-Planck equation corresponding to Eq. (14) is 
then • 

O p l [ O  K2 02 0 ] 
0 - 7 = 7  h" ~y Y + -~-~5 + ~u ( u - Y )  P 

,[ o o]  
+-• k ( X ) ~ u - ~ x U  p, (19) 

where p represents p(x,  y, u, t). The reduced probability den- 
sity p(x,  t) is marginal density defined as 

p(x,  t ) =  f~_= f~=p(x,y,., t)dudy, (20) 

and the moments j.,,,, are defined as 

j.,m(x, t) = f unymp(x, y, U. t)dudy, (21) 

and in particular. 

jo,o(X, t) = p(x,  t). (22) 

Integrating the Fokker-Planck equation Eq. (19) for the joint 
probability p(x.  y. u, t). the following equation for p(x,  t) is 
obtained: 

~ p ( x ,  t) 1 0 7 0-x j~'°(x' t). (23) 

By utilizing a method developed by Wilemski (1976),  a closed- 
form expression for p(x,  t) can be derived in the form of a 
perturbation expansion in the parameter •. Multiplying Eq. (19) 
by u"y m and integrating, the following equation is obtained: 

0 
"ffttJ.,m(x. t) 

[ o ] 
- •el (n + hm)j..m - 1• nk(x)j.-,.m + ~xj.+,.., 

l[ ] 
+ 75 nj.-1,m+, + -~ m(m - 1)j.,~ 2 • (24) 

As c ~ 0, Eq. (24) describes a rapidly damped time evolution 
of the moments j,.= for n, m ~ 0 in a time scale c 2 as indicated 
by the diagonal term in Eq. (24).  In the asymptotic time regime 
(t >>e),  Eq. (24) has the approximate solution 

__•2 
jn..,(x, t) 

n +  km 
- - { { [ n k ( x ) j .  ,,,. +Oj.+,,,~ 1 

1 h2 - 1 ) j  .... z ] }  
e2 [n j .  1.m+l + -~ -m(m (25) 

Substituting Eq. (25) back into Eq. (24),  the iterative solution 
ofjn.m(X, t) is then obtained as 

- e  2 O] t 
jn'm(X'l)~- ~ ;~m~ 

i=o n 

{ [  o ] 
- -  - •  nk(x)j.-l,m + 7-J.+1,,. n +  hm 

'jn m2]}  26, + [n j .  1.m+, + - ~  m(m - 1 

The momentjLo is evaluated up to a given order in e by express- 
ing it in terms of j0.0 and its derivatives. In order to derive 
expressions to the first order in e from Eq. (27),j2.0 is evaluated 
to the zeroth order of • andj0a to the first order, which requires 
the evaluation ofjL1 and j0.2 to the zeroth order: 

jo,z = ~ Jo,o, (27) 

1 
Jla - 1 + X j°'2, (28) 

e O  e 1 0 . 
jo,, X Ox j''' - 2 1 + X Ox J°'°' (29) 

1 X 
j2,o = jLl - -  2 1 + h j°'°' (30) 

Equation (26) is then simplified to 

jl.o(X, t) = - ek (x )p (x ,  t) 

2 1 + k Ox p ( x , t )  + O(e3). (31) 

Substituting Eq. ( 31 ) into Eq. (23) gives the desired equation 
for the reduced probability density p(x,  t):  

o E lo] O p ( x ,  t) = -~x k(x) + 2-~x p(x,  t). (32) 

Table 1 The normalization constants N for different system parameters 

(a) d=1, q=l (b) d=1, b=t (c) b=1, q=l 

b N I! q N 
0.000000 0.8862303 C0.500000 0.6597789 
0.500000 0.7916504 1.000000 0.7431554 
1.000000, 0.7431586 1.500000 0.8692590 
1.500000 0.7097491 2.000000 0.9676239 
2.000000 0.6842151 2.500000 1.0491899 
2.500000 0.6635685 3.000000 1.1193506 
3,000000 0.6462587 3.500000 1,1811996 
3.500000 0~6313795" 4.000000~ 1.2366907 
4.000000 0.6183469 4.5000'00 1.2871428 
4.500000 0.6067659 5.000000 1.3334919 
5.000000 0.5963565 Table l (b)  

Table l (a) 

d N 
0.0000000 1.077907 
0.2500000 0.9641283 
1.000000 0.7431586 
2.250000 0.5583446 
4.000000 0.4338767 
6.250000 0.3512605 
9.000000 0.2940762 
12.25000 0.2525835 
16.00000 0.2212347 
20.25000 0.1967601 
25.00000 0,1771393 
30.25000 0.1610662 
36.00000 0.1476617 
42.25000 0.1363139 
49.00000 0.1265841 

Table 1(c) 
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Fig. 1 Stationary probability density distribution po(x) with different sys- 
tem parameters d, b and Q 
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Fig. 3 The comparison of the second-order moments (x2) from theorati - 
cal analysis and Monte Carlo simulation, as functions of b, Q and d, 
respectively. The lines are from adiabatic expansion, and the points are 
from numerical simulation. 

The cprresponding stationary solution is then 

P°(x)=Nexp{  dx2 l b  ) Q  2QX4 (33) 

which is written in terms of the unscaled and unprimed variables 
with N being the normalization constant. The second-order mo- 
ment is defined as 

(x ~) =f]x2po(x)dx.  (34) 

The normalization constants N are given in Table 1 for differ- 
ent system parameters d, b, and Q. 

5 Numerical Simulation 

A numerical study is now presented and compared with the 
above analytical results. To this goal colored noise is generated 
by a method introduced originally by Shinozuka (Shinozuka, 
1972). The method has been revised over the years (Shinozuka 
and Deodatis, 1991 ) and has been found to be suitable for the 
type of nonlinear analysis presented here (Wu et al., 1995; 
Billah and Shinozuka, 1990, 1991). The one-dimensional 
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Fig. 2 Time evolution of the second-order moment (x 2) obtained from 
numerical simulation. 

Gaussian noise was simulated by the following series with a 
large N: 

N I 

y(t) = ~/2 ~ 2S(uJn)Z2xcO) 1/2 COS (UJnt + ~n), ( 3 5 )  

n = 0  

where w,, = nA~, n = 1, 2 . . . . .  N, and Aw = u&/N. cu, 
represents an upper cutoff frequency beyond which the power 
spectral density may be assumed to be zero. The ~n appearing 
in Eq. (35) are independent random phase angles distributed 
uniformly over the interval [ 0, 27r]. The period of the stochastic 
process is To = 27r/A~. 

In the present case the power spectral density S(w), corre- 
sponding to the exponential correlation function, has the form 

(a) Q=I 

d 
^ ~ .  
~ o  °! 

>%'%.. 
0 ~ '~  ' 

g 

Fig. 4(a)  

(b) d=l 

Fig. 4(b) 

Fig. 4 The second-order moments (x 2) as functions of b, d and b, Q by 
adiabatic expansion 

1030 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



4 , , i I i t I t  

d=20, b = 1 ] - -  
3.5 . . . . .  

3 

2.5 

~- 2 

1.5 

1 

0.5 

0 I ~ [ I I 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
X 

Fig. 5 Potential V(x )  = ( d l 2 ) x  = + ( b l 4 ) x  4 with d = 20, b = 1 and d = 
20, b = 0 

Q 1 
S(aJ) = - -  (36) 

27r7- 2 w 2 + (1/7-) 2 ' 

Using Runge-Kutta method to integrate Eq. (1), the long- 
term response of the Duffing oscillator excited by colored noise 
is found, from which statistics such as standard deviation (or 
the second-order moments) are obtained. 

6 R e s u l t s  a n d  D i s c u s s i o n  

To satisfy the requirement that y be large, y in Eq. (1)  is 
taken as 100. At the same time, 7- is chosen as 0.01 to ensure 
that ~. = 1/(7-y) = O ( 1 ) ,  thus e = l ~ y  = 0.1. 

Figure 1 shows the stationary probability density distribution 
po(x) with different values of d, b and Q obtained from preced- 
ing adiabatic expansion analysis. Figure 2 shows the time evolu- 
tion of the second-order moment (x 2) calculated by means of 
Monte Carlo simulation. It can be seen that (x z) becomes stable 
in a short time. Figure 3 shows the comparison of the second- 
order moment (x:) as functions of b, Q and d, for both theoreti- 
cal analysis and numerical simulation. It can be seen clearly 
that the results of theoretical analysis are in Very good agree- 
ment with those of the numerical simulation. Figure 4 shows 
the second-order moments (x 2) as functions of b, d and b, Q 
by adiabatic expansion. 

For the limiting case b ~ 0, the oscillator response can be 
solved exactly and the mean square is obtained as (Stratonovich, 
1963; Gardiner, 1985) 

f_~  Q 1 1 
(x2) = =2~2a~2+(1/~-)2(d-w2/y)2+co2dw" (37) 

By using the computer algebra system Maple, for b = 0, d = 
1, and Q = 1, a value of (x 2) = 0.498 is obtained. The Monte 
Carlo simulation (1000 samples) gives (x 2) = 0.496, which 
agrees very well with the exact value. The point corresponding 
b = 0 forms an anchor point to verify the accuracy of both 
theoretical and simulation methods. When d is large compared 
to b, the system can be approximated by the corresponding 
linear system. Figure 5 shows the potential V(x) respectively 
with d = 20, b = 1 and d = 20, b = 0. In the range of 
significance, the potentials are almost identical. The exact mean 
square for the linear oscillator with d = 20 and Q = 1 is (x 2) 
= 0.0227, while the Monte Carlo simulation gives (x 2) = 
0.0226 for d = 20, Q = 1 and b = 1 (the nonlinear term is 
included). This agreement again verifies the validity of the 
Monte Carlo simulation results. 

7 C o n c l u s i o n  
The Duffing oscillator excited by colored noise is studied in 

this paper. The limitations of analytical methods are clearly 

shown by the restriction on the parameter values of the equation. 
These limitations are due to the use of colored noise in the 
analysis which results in extended Fokker-Planck equation. 
Such an equation is intrinsicaly difficult to solve and therefore, 
solution of the equation for other parameter values can only be 
obtained by numerical simulation. Results obtained by using 
stochastic linearization, stochastic averaging or Van Kampon 
expansion are difficult to compare with the present results since 
the former ones do not address the issue of restricted parameter 
values. The paper emphasizes that such parameter value restric- 
tions are absolutely necessary for obtaining physically valued 
results. 
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Out-of-Plane Displacement 
Derivative Measurements Using 
Interferometric Strain/Slope 
Gage 
An optical method originally developed for measuring derivatives of in-plane dis- 
placements is redefined to measure derivatives of out-of-plane displacements. The 
technique is based on interference of laser beams reflected and diffracted from two 
microindentations closely depressed on a specimen surface. As in-plane and out-of- 
plane displacements cause the microindentations to move relatively to each other, 
the two interference fringe patterns change accordingly. Movement of the interference 
fringes is monitored with linear photodiode arrays and analyzed via a computer- 
controlled system that allows simultaneous measurements of the in-plane and out- 
of-plane diaplacement derivatives. The technique is referred to as the interferometric 
strain/slope gage (1SSG). Having short gage length (~100 #m), the technique is 
unique for measurements of high deformation gradients and for applications in com- 
plex geometries. Its principle as well as an experimental validation of  measuring 
bending strains/stresses and deflection slopes in a cantilever beam is presented. The 
experiment shows that both the first-order and second-order derivatives of" out-of- 
plane displacements can be obtained. Measurement sensitivities to in-plane and out- 
of-plane rigid-body motions are systematically investigated. The technique can be 
potentially extended to measure large deflection angles. The derived governing equa- 
tions indicate a coupling effect between the in-plane and out-of-plane components. 
The associated instrumentation for data acquisition and analysis is described in great 
detail 

Introduct ion 
Derivative of the in-plane displacement or strain is often 

measured using a strain gage. Resistance strain gages, exten- 
someters, and capacitor strain gages are examples of conven- 
tional strain measurement devices. With the advent of the laser, 
optical strain gages including diffraction strain gages (Bell, 
1956; Pryor and North, 1971) and interferometric strain gages 
(ISG) (Sharpe, 1968 ) have been developed. The interferometric 
strain rosette (ISR) (Li, 1995) is extended from the ISG for 
measurements of three in-plane strain components, which func- 
tions similarly as a strain rosette. Optical strain gages possess 
advantages over conventional gages in that they are associated 
with short gage lengths and noncontacting nature. Full-field 
optical strain measurement techniques such as holographic, 
speckle, and moir6 interferometry methods (Kobayashi, 1987) 
can be used to measure derivatives of out-of-plane displace- 
ments in addition to derivatives of in-plane displacements (Ho- 
vanesian and Varner, 1970; Hung et al., 1974; Chiang et al., 
1976; Ligtenberg, 1954). However, these interferometry meth- 
ods require special environmental stability and are not well 
suited for industrial applications (Klumpp and Schnack, 1990; 
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Sirkis and Lim, 1991; Sullivan, 1991; Schultheisz and Knauss, 
1994). The moir6 method requires a grating on a flat surface 
and thus prohibits its application to complex geometries such 
as notched areas (Parks, 1993; Post, 1993). 

In this work, an interferometric strain/slope gage (ISSG) is 
extended from the ISG to measure derivatives of out-of-plane 
displacements besides derivatives of in-plane displacements. 
The principle of the ISG technique for measuring an in-plane 
strain (Sharpe, 1968) is based on the interference of laser light 
reflected from two microindentations placed on a specimen sur- 
face. The size and separation of the indentations are made small 
enough for the light diffracted from the two indentations to 
interfere. Strain causes the spacing between the indentations to 
change, which generates a phase shift in the interference fringes. 
Therefore, by measuring the shift in the interference fringes, 
the strain component in the direction of the indentation separa- 
tion can be determined. When three indentations are used in an 
ISR technique (Li, 1995), the system is equivalent to a strain 
rosette and three strain gages are defined in the directions of 
the indentation separations. In the previous papers of Sharpe 
(1968) and Li ( 1995 ), measurements of out-of-plane displace- 
ments were not considered. The phase shift in the fringe patterns 
of an ISG or ISR can be caused by not only in-plane but also 
out-of-plane displacements. Measuring the phase shift in the 
fringe patterns could allow the simultaneous determination of 
both in-plane and out-of-plane displacement derivatives. This 
leads to the development of the ISSG technique. Besides mea- 
suring in-plane strains, the ISSG technique can be used to mea- 
sure deflection slopes in beams, plates, and shells. The measure- 
ment principle is presented and the governing equations are 
derived for a pair of ISG microindentations. Using the same 
principle, the derivation may be extended to an ISR. An experi- 
mental investigation of cantilever beam deformations using a 
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Fig. 1 A photomicrograph of a pair of the ISG indentations spaced 100 
~m apart 

pair of the ISG indentations is described. The ISSG technique 
is validated by comparing the experimental results with the 
well established analytical solutions. Advantages of the new 
technique over conventional methods will be discussed. 

P r i n c i p l e s  o f  M e a s u r i n g  I n - P l a n e  a n d  O u t - o f - P l a n e  

D i s p l a c e m e n t  D e r i v a t i v e s  

An ISSG consists of two ISG indentations which are pyrami- 
dal in shape, Fig. 1. The indentations are depressed on a speci- 
men surface using a microhardness tester (LECO M-400-H). 
The size of the indentations is approximately 20 #m and the 
indentation separation is about 100/zm. The angle between the 
opposite facets in each indentation is 136 deg. 

As illustrated in Fig. 2, two ISSG indentations on a deflected 
specimen surface are illuminated by a laser beam that is perpen- 
dicular to the original position of the specimen surface. Two 
reflective facets in each indentation diffract the incident laser 
beam in two directions. The diffracted patterns from the two 
indentations overlap to create two Young's interference fringe 
patterns. A typical fringe pattern is shown in Fig. 3. Since the 
fringe patterns are distant from the indentations, it is assumed 
that the interfering beams are parallel to each other between 
which the path length difference is formulated. The path length 
difference between the two incident laser beams upon the two 
indentations is £x= = d sin ix. The path length difference between 

Fig. 3 A photograph of the interference fringe pattern of the two inden- 
tations in Fig. 1, taken at a distance of 30 cm from the indentations 

the reflected laser beams takes different formula for the two 
patterns: ~l.r = d sin (0~ + o~), for the pattern numbered 1; 
~X2.r = d sin (02 - c~), for the pattern numbered 2. The total of 
the path length difference includes both differences between 
the incident beams and between the reflected beams: ~Xl = 
[d sin (01 + c~) + d sin c~], for pattern 1; ~2 = [d sin (02 - 
a )  - d sin a],  for pattern 2. The interference principle dictates 
that fringes occur when the path length difference equals one 
wavelength or an integer multiple of a wavelength, which can 
be described by 

~xl = d[sin (01 -~- OL) + sin ct] = kml (1) 

A2 = d[sin (02 - a )  - sin a] = Xrn2 (2) 

where £x~ and A2 are the respective path length differences for 
the fringe pattern numbered 1 On the top and the fringe pattern 
numbered 2 on the bottom; k is the wavelength of the laser; 
tnl and m2 are fringe orders in the two fringe patterns; d is the 
indentation separation; a is the deflection angle of the specimen 
surface which approximately equals to the out-of-plane slope 
for small deflection; 01 and 0z are the respective angles between 
the incident and reflected laser beams for pattern 1 and pattern 
2. For small deformation, the reflective facets in each indenta- 
tion can be assumed to remain the same reflecting directions, 
and we have 01 = 02 = 0. Angle 0 is twice the inclination angle 
of the reflective facets in an indentation. 

= Fringe Pattern 1 

x t o  

Fringe Pattern 2 
Indentation 1 Deflected Specimen Surface 

Laser Beam 

Fig. 2 A schematic diagram showing the interference principle of laser beams 
reflected from the ISSG indentations closely spaced by d on a specimen surface 
deflected with a tangent angle of 
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Specimen deformation causes a relative displacement be- 
tween the two indentations. As a result, the path length differ- 
ence between the interfering beams changes, which induces a 
phase shift in each fringe pattern. The relative displacement 
generally consists of both in-plane and out-of-plane displace- 
ment components. Consequently, the phase shift is related to a 
combination of both displacements. Since the separation of the 
indentations is small, the relative displacement may be consid- 
ered as a displacement derivative. Differentiating Eqs. (1) and 
(2) gives two equations relating the two dependent variables 
of the indentation separation d and deflection angle a to the 
independent variables of the fringe orders mi and mz, while 
other parameters such as k and 0 are constants. In the derivation, 
it is assumed that the deformation and the deflection angle a 
are small so that the following relations hold: 01 ~ 02 ~ 0; cos 
a ~ 1, tan a ~ sin a ~ c~ and 6a ~ 6w/d  where w is the out- 
of-plane displacement. Simplification of the two differentiated 
equations gives in-plane and out-of-plane displacement deriva- 
tives as follows: 

6d k 
- - -  (6ml + ~m2) (3) 

d 2d sin 0 

6w h 
( tm ,  - 6m2) (4) 

d 2d(1 + cos0 )  

where 6d and 6w are in-plane and out-of-plane components of 
the relative displacements between the two indentations; 6ml 
and 6m2 are the change of the fringe orders in the two interfer- 
ence fringe patterns. Equations (3) and (4) show that the deriva- 
tive of the out-of-plane displacement is measured independently 
from that of the in-plane displacement. Simultaneous determina- 
tion of the derivatives of in-plane and out-of-plane displace- 
ments is accomplished by measuring the phase shift in the two 
fringe patterns, i.e., 6ml and ~5m2. The effect is additive for 
determining the in-plane displacement derivative or strain, and 
subtractive for determining the out-of-plane displacement deriv- 
ative or deflection slope. 

Equations (3) and (4) are valid under the condition that the 
deflection angle is small. As for a large deflection angle, the 
previous assumptions regarding a small deflection angle do not 
hold any more. Considering the case that a rigid-body rotation 
of the indentations causes the diffraction patterns to turn 
slightly, the path length difference formulated between the in- 
terfering beams is only related to the positions of the indenta- 
tions to the first order approximation, and thus is not influenced 
by the change of the reflective directions of the indentation 
facets. Therefore, the angles 01 and 02, in Eqs. (1) and (2) can 
be taken as 0 for large deflection angles as well as small deflec- 
tion angles. The governing equations for measuring the in-plane 
strain and out-of-plane deflection angle can be derived directly 
from Eqs. (1) and (2) and shown as follows: 

6d h 
- -  - tan o~ta - ( tm l  + 6m2) (5) 
d 2d sin 0 cos a 

6d k 
= ( t m l  - 6m2) (6) 

tan a --~ + 6a 2d(1 + cos 0) cos a 

The in-plane strain and out-of-plane deflection angle are cou- 
pled in the above equations. Since the measurement is in real 
time, increments are measured with the obtained instantaneous 
value of the deflection angle. The increments are accumulated 
to get the next instantaneous value for the next sampling step 
of increment measurements. As the fringe shift of interference 
patterns can be measured, the in-plane strain and the deflection 
angle of bending can be obtained. Experiments on large beam 
deflection will be conducted in near future. 

C o m p u t e r - C o n t r o l l e d  S ignal  Process ing  S y s t e m  
A 10-mW He-Ne laser is used as a coherent light source. 

The wavelength of the laser light is 0.6328/zm. A linear photo- 

diode array (EG & G Retican, RL512S) is mounted on a model 
RC 1001 satellite board which is installed on a precision stage 
(Edmund Scientific, G36,347). The position of the satellite 
board can be adjusted in two orthogonal directions to intercept 
an interference fringe pattern. Two boards are kept approxi- 
mately at a distance of 48 cm from the indentations and oriented 
perpendicular to the reflected laser beams. The satellite boards 
are connected to mother boards (RC1000). One mother board 
is used as the master board to slave the other board for scan 
and trigger control. The mother boards are enclosed in an elec- 
tronic case as a remote controller to process the optical signals 
sent from the satellite boards. The linear photodiode array sys- 
tem monitors the light intensities of the fringe patterns and 
converts them into electrical voltage signals. 

A Pentium-based microcomputer (60 MHz) is equipped with 
a data acquisition board (Data Translation DT2821-F-8DI) for 
data acquisition and analysis. The computer algorithm used to 
implement the technique is similar to that of ISG and ISR, and 
requires two steps of data acquisition. The first step involves 
scanning the sensors and displaying and storing the fringe sig- 
nals in the computer. The second step is to analyze fringe signals 
from the ISSG so that the derivatives of in-plane and out-of- 
plane displacements in the specimen can be calculated using 
Eqs. (3) and (4).  Phase shift of fringes is measured by de- 
termining the position change of the minimum light intensity. 
The increments of strains and deflection angles are accumulated 
in real time to get instantaneous measurement results. 

E x p e r i m e n t s  and Discuss ions  

The purpose of the experimental investigation is to verify the 
capabilities of the ISSG technique in measuring derivatives of 
in-plane and out-of-plane displacements. A thin cantilever beam 
is chosen as the test sample because the setup is simple and is 
well suited for creating a significant deflection angle. However, 
the in-plane strain is small and represents an extreme case for 
measurement accuracy. The material is Aluminum 606 l-T6 and 
has a Young's modulus of 70 GPa. The dimensions of the beam 
are: length = 254.0 ram, width = 25.3 mm, and thickness = 
3.0 ram. The beam is clamped at one end, and the free end of 
the beam is subjected to a lateral load at the middle point of 
its width. Deflection of the free end is measured using a microm- 
eter gage that has a resolution of 0.0254 ram. A pair of ISSG 
indentations with a separation of 150 #m is applied to a surface 
point at 136.5 mm from the fixed end of the beam. The ISSG 
gage is centered and oriented along the axis of the beam. An 
incident laser beam upon the indentations creates two symmetri- 
cal Young's interference fringe patterns. Therefore, two linear 
photodiode arrays are needed to monitor the fringe patterns. A 
schematic diagram of the experimental setup is shown in Fig. 
4. Seven tests were conducted. During each test, a lateral force 
is manually applied to the free end of the beam using the mi- 
crometer gage. As the load increases, the bending strain and 
the beam deflection increase. The computer-controlled system 
is used to measure and record the bending strain and the deflec- 
tion angle in real time. 

During each measurement, the rigid-body motion takes place 
at the location of ISSG, which includes in-plane and out-of- 
plane components. The in-plane rigid-body motion causes the 
two fringe patterns to move in the same direction. Since the 
linear photodiode arrays are mounted opposite to each other, 
the fringe order may be taken as positive in one and negative 
in the other. Thus the in-plane rigid-body motion is canceled 
in the additive calculation of the two fringe orders in Eq. (3).  
The in-plane rigid-body motion does not alter measurement 
results of in-plane strains. However, its influence on the mea- 
surement of the deflection angle is doubled due to subtraction 
of the fringe orders in Eq. (4).  On the other hand, the out-of- 
plane rigid-body motion causes the fringes to move in opposite 
directions and the fringe sPacing in the two patterns to change 
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Fig. 4 A schematic diagram of the computer-controlled system for measuring 
in-plane strains and deflection angles of a cantilever beam 

by the same amount, so that the fringe orders have the same 
sign. The out-of-plane rigid-body motion should not influence 
the deflection angle measurement but has a doubling effect 
on the in-plane strain measurement. Due to linear relationship 
between fringe movements and the change of the path length 
difference between the interfering laser beams, measurement 
sensitivities to rigid-body motion are proportional to the amount 
of rigid-body motion. Therefore, the factor of the measurement 
sensitivity can be defined as the strain/angle reading caused by 
one micro of rigid-body motion. In addition, since the fringe 
spacing increases proportionally with the distance between the 
ISSG and the photodiode arrays, the influence of the rigid-body 
motion on the relative change of the fringe orders is inversely 
proportional to the distance. The measurement sensitivity is 
inversely proportional to the distance between the ISSG and 
the photodiode arrays. 

An investigation of the measurement sensitivities to rigid- 
body motion is conducted on a rigid steel plate. The sample is 
mounted on a x -y  translation stage equipped with two microme- 
ter gages. The in-plane and out-of-plane rigid-body motions of 
the sample are generated and measured using the micrometer 
gages. A pair of ISSG indentations with a separation of 150 
#m is placed on the surface of the sample. Two satellite boards 
are mounted opposite to each other and are positioned at a 
distance of 48 cm from the indentations, which duplicates the 
experimental protocol for the cantilever beam test. For any 
rigid-body motion of the sample, the computer-controlled sys- 
tem assesses the movement of the fringe patterns to give read- 
ings for strains and deflection angles. The test results show that 
one micron of in-plane rigid-body motion causes a reading of 
6.8 × 10-7 radians of the deflection angle, and gives essentially 
zero reading for the in-plane strain. The maximum in-plane 
rigid-body motion, which can be detected, is limited by the 
diameter of the laser beam. Measurements can only be made if 
the indentations remain within the middle third of the laser 
beam to insure that the intensity is satisfactory for monitoring 
with the current measuring facility. On the other hand, one 
micron of out-of-plane rigid-body motion causes a reading of 
1.45 microstrains of in-plane strain, and gives essentially zero 
reading for the deflection angle. The strain sensitivity to out- 
of-plane rigid-body motion increases to 1.65 microstrains per 
micron as the distance between the indentations and the linear 
photodiode arrays decreases to 43 cm. Because of the strain 
insensitivity to in-plane rigid-body motion and the deflection 
angle insensitivity to out-of-plane rigid-body motion, the tech- 
nique is tolerant to certain vibrations, and does not always re- 
quire strict environmental stability. 

In the cantilever beam experiment, the in-plane rigid-body 
motion is small and its influence on the measurement of the 
deflection angle is negligible. The measured results of deflection 
angles at the location of the ISSG are compared with the analyti- 
cal results using Eq. (9) in Table 1. However, the out-of-plane 
rigid-body motion in the beam experiment is significant and 
compensation must be made for the determination of in-plane 
strain. The sensitivity factor calibrated in the above rigid-body 
motion tests is used to estimate the influence of the out-of- 
plane rigid-body motion on the in-plane strain measurement. 
Generally, the out-of-plane rigid-body motion may be measured 
using a dial gage or calculated using beam theory. Here, Eq, 
(7) is used. The strain correction is calculated by multiplying 
the sensitivity factor with the amount of the out-of-plane rigid- 
body motion. Subtraction of the strain correction from the ISSG 
measurement gives the in-plane strain. The experimental results 
of in-plane strains after compensation are compared in Table 2 
with the analytical solutions given by Eq. (8). The out-of-plane 
displacement, bending strain, and small deflection angle given 
in the following equations are taken from the well-established 
cantilever beam theory: 

Table 1 Comparison of the measured and calculated tan- 
gent angles of the beam deflections 

Test W a . . . . . . .  d O/analytica I [ amcasurca - %,,alt×ic,=l 
no. (mm) ( 1 0  -3  r a d . )  (10 -3 rad.) O/analytica I 

1 0.127 0.564 0.589 4.2% 
2 0.254 1.215 1.179 3.1% 
3 0.381 1.783 1.770 0.7% 
4 0.635 2.944 2.950 0.2% 
5 1.016 4.722 .4.716 0.1% 
6 1.270 5.906 5.895 0.2% 
7 2.540 11.81 11.79 0.2% 

Table 2 Comparison of the measured and calculated bend- 
ing strains 

T e s t  W ~Ymeasured e . . . . . . . .  d eanaiytieal [ emeasured --  eanalytical[ 
no. ( m m )  (MPa) (#e) (#e) ea,,°lytioal 

1 0.127 0.235 3.36 4.098 18% 
2 0.254 0.680 9.71 8.196 15% 
3 0.381 0.735 10.5 12.29 14% 
4 0.635 1.645 23.5 20.49 14% 
5 1.016 2.471 35.3 32.78 7.6% 
6 1.270 2.702 38.6 40.98 5.8% 
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W x  2 
w = 2£.~ (3L - x) (7) 

h 6Zw 3Wh (L  - x )  (8) 
e = 2  6x 2 - 2L 3 

6w 3Wx (2L - x) (9) 
a = 6x 2L 3 

where h is the thickness of the beam, which equals 3 mm in 
the test; x is the distance between the ISSG location and the 
fixed end of the beam, which equals 136.5 mm in the test; W 
is the deflection at the free end of the beam; and L is the beam 
length. 

Table 1 shows that the difference between the measured and 
calculated deflection angles is small. The maximum deflection 
applicable to the free end of the beam is 2.54 mm as found 
out in the seventh test: The maximum deflection angle mea- 
sured at the ISSG location is 1.18 × 10 -4 radians. After the 
maximum deflection is reached, the interference fringe pat- 
terns move out of the scanning windows of the linear photodi- 
ode arrays and measurements can not be made. Therefore, the 
system requires modification to measure larger deflections. 
Future research is planned to measure large beam deflections 
using longer linear photodiode arrays. The measured tangent 
angles of the beam deflections during a test are plotted versus 
time in Fig. 5, The waviness of the data shown in the plot is 
due to fluctuations of the manually loading condition. The 
measurement is carried out on a real-time basis. This shows 
that the technique has a potential to be applied to study vibra- 
tion problems. As real-time measurements are made, the first 
and second-order time derivatives of vibrational displace- 
ments, which are equivalent to velocity and acceleration, may 
be determined. 

As shown in Table 2, bending strains and stresses in the 
beam are measured using the current ISSG system. Equation 
(8) elucidates the fact that bending strain is related to the sec- 
ond-order derivative of out-of-plane displacements. Therefore, 
the ISSG technique can be used to measure both the first and 
second-order derivatives of out-of-plane displacements. Consid- 
ering the very small strains which are measured with the com- 
pensation of the rigid-body motion, the experimental data agree 
satisfactorily with the analytical solutions. The measurement 
difference decreases with increasing strain. Therefore, for mea- 
surements at the fixed end of the beam, where maximum bend- 
ing stresses are expected, the difference between the measure- 
ments and analytical solutions should be reduced. Similarly, for 
stiffer beam structures with stiffer support conditions, for which 
out-of-plane rigid-body motions are small and bending strains 
are large, the measurement accuracy is expected to increase. 
The technique provides a useful means to study bending stress 
problems in various solid structures where out-of-plane rigid- 
body motion is negligible. 

The interferometric strain rosette technique (Li, 1995) can 
be extended to measurements of three derivatives of in-plane 
and three derivatives of out-of-plane displacements. Based on 
the same principles which have been discussed for the ISSG, 
the ISR can be also used to measure bending strains and stresses 
as well as deflection angles. Because the ISR measures deriva- 
tives with respect to three gage directions, it can be used to 
study bending problems in two-dimensional structures in such 
as plates and shells. 

Conclusions 
The ISSG method for measuring derivatives of in-plane 

and out-of-plane displacements has been presented. By means 
of laser beam interferometry, strain and deflection slope on a 
surface point can be accurately measured in real time. The 
optical principle and experimental procedure are described in 
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Fig. 5 Real-time measurement result of the tangent angle of the beam 
deflection plotted versus time 

the paper and easy to follow. A systematical study of the 
measurement sensitivities to rigid-body motion shows that an 
application of the ISSG to in-plane strain measurements is 
not influenced by in-plane rigid-body motion and its applica- 
tion to out-of-plane displacement derivative measurements is 
not influenced by out-of-plane rigid-body motion. Influences 
of in-plane rigid-body motion on out-of-plane displacement 
derivative measurements and out-of-plane rigid-body motion 
on in-plane strain measurements can he compensated for. Ex- 
periments conducted on a cantilever beam have shown that 
the ISSG is a satisfactory method for measuring the first and 
second-order derivatives of the out-of-plane displacements as 
well as bending strains and stresses. A small beam deflection 
angle approximately equals the first-order derivative of out- 
of-plane displacements or the slope of the deflection, which 
can be separately measured from the in-plane strain. The gov- 
erning equations for measurements of large deflection angles 
have been derived and indicate a coupling effect between the 
in-plane and out-of-plane components. The ISSG technique 
is useful for studying bending problems of beams, plates, 
and shells, and has a potential to be extended to vibration 
measurements. 
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after publication. Readers who need more time to prepare a Discussion should request an extension 
of the deadline from the Editorial Department. 

On the Oblique Compression of Two 
Elastic Spheres 

D.  E l a t a  i 

In this note Walton ' s (1987)force-displacement relations for  
a contact between two identical elastic spheres are discussed. 
The relations are based on the solution for  the oblique compres- 
sion of  two elastic spheres (Walton, 1978) which is rederived 
here in a simple fashion that relates it to Mindlin's (1949) 
solution for  contact stress. Specific limitations o f  these relations 
are reviewed and it is demonstrated that misusing the relations 
leads to thermodynamic inconsistencies. 

Introduction 

An exact solution for the contact traction between two elastic 
spheres can assist in developing models for the mechanical 
behavior of granular materials. One problem of particular inter- 
est is the oblique compression of two identical elastic spheres. 
This problem was solved by Walton (1978) who used laborious 
symmetry and energy flux considerations. Walton's solution is 
different from the one obtained by Mindlin (1949) in that the 
latter predicts a singular shear traction on the contact area con- 
tour, which may cause slip, whereas the former predicts a 
bounded shear traction that either causes slip on the entire con- 
tact area or does not cause slip at all. 

Based on his solution of the oblique compression of two 
identical elastic spheres, Walton (1987) calculates the effective 
elastic moduli of a random packing of identical spheres. In this 
work it is assumed that the centers of the spheres and their 
mutual contacts are displaced in accordance with a uniform 
displacement field (pointwise displacement affinity). Endres 
(1990) further developed this model by considering the effect of 
generation and elimination of contacts as the granular material 
deforms. 

i Earth Sciences Division, Lawrence Livermore National Laboratory, P.O. Box 
808, Livermore, CA 94551. 
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The solution proposed by Walton (1978) is rederived in a 
simple and straightforward way that trivially relates it to the 
work of Mindlin (1949). The derivation is the same as in John- 
son (1985) (Section 7.3), but Johnson did not relate it to Wal- 
ton's solution. Next, based on this solution, contact force-dis- 
placement relations are derived, and their limitations are dis- 
cussed. Specifically, it is shown that misuse of these relations 
leads to violation of the second law of thermodynamics. 

Contact Traction 

Mindlin (1949) has shown that when two identical elastic 
spheres of radius R are pressed together the stress distribution 
on the contact surface is 

N = ~ (a 2 -- r2) 1/2, ( l a )  
7r 2 R B 

2u 
P - 7r2(2B + C) (a2 - r2) - In '  ( l b )  

where 

a 2 = Rw,  ( l c )  

B = 4 ~ r  + k + #  

C = 47r k + " ( le )  

In the equations above, N is the normal traction, P is the tangen- 
tial traction, a is the radius of the contact area, r is the radial 
distance from the center of the circular contact area, w and 
u are, respectively, the values of the normal and tangential 
displacements of the center of the contact relative to the center 
of the spheres, and k and # are Lamt's  constants. This solution 
is based on the assumption that the two spheres are initially 
pressed together along the normal to their mutual contact area 
and only then a relative displacement parallel to the contact 
area is applied. The tangential traction ( lb )  is clearly singular 
on the contour of [he contact area whereas the normal traction 
is bounded. This means that the possibility of slip must be 
addressed (Mindlin, 1949). 

By using lengthy symmetry and energy flux considerations, 
Walton (1978) has shown that when the relative displacements 
w and u increase from zero to their final value with a fixed 
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proportionality, the traction distribution on the contact surface 
is 

N : ~ ( a  2 -  r2) 1,2 
7r 2 RB 

(2a) 

4 u  
p = (a 2 _ r 2) m. (2b) 

7r2(2B + C ) R w  

In contrast to ( l b )  the tangential traction (2b) is bounded. 
Moreover, there is a fixed ratio between N and P which means 
that slip occurs over the entire contact area or does not occur 
at all (Walton, 1978). 

In the following, Eq. (2b) is rederived in a simple and 
straightforward fashion. It is assumed that the displacements w 
and u increase with a variable proportionality so that 

6u 
= c ( w ) ,  (3) 

6w 

where c is a scalar valued parametric function of w. Since 
Mindlin's solution assumes that the tangential displacement is 
applied only after the normal displacement has been applied, 
the variation in contact traction is related to variations in contact 
displacement by 

6N = ~ (Rw - r 2)-1/26w, 
rr2g 

(4a) 

26u 
6P = (Rw - rZ) -1/2 

7r2(2B + C) 

2 c ( w ) 6 w  
- ( R w  -- r e )  -1/2,  (4b) 

rr2(2B + C) 

where 6P results from an applied 6u while keeping w fixed. 
Notice that although 6P and 6N are singular on the circumfer- 
ence of the contact area, their ratio is a (bounded) linear func- 
tion of c (w). This means that the normal displacement variation 
either causes slip around the contour of the contact area or does 
not cause slip at all. At any given radius r in the final contact 
area, assuming that no slip occurs, the  integrated tangential 
traction is 

ff =w 2c(v~) 
P ( w ,  r) = (Rv~ - r 2 ) - J n d ~ ,  (5) 

=r2/a rr2(2B + C) 

where the lower boundary of the integration is due to the fact 
that while w < r2/R,  all points at radius r are subjected to no 
traction. In the specific case where c ( w )  is a constant, the 
tangential traction is 

P ( w ,  r) = 
4 c  

(Rw - r2) '/2 
7r2(2B + C) R  

4u 

7r2(2B + C ) R w  
(a 2 - r2) 1/2, (6) 

which is identical to Walton's (1978) solution. 
In addition to eliminating the lengthy derivation and compli- 

cated theoretical considerations in Walton (1978), the present 
derivation clarifies the relation of Walton's solution to Mind- 
lin's solution. It is noted here that for any nonproportional strain 
path the tangential traction must be calculated by (5) while 
continuously considering the possibility of slip (Mindlin and 
Deresiewiez, 1953; Chang et al., 1992). , 

u I u 1 

w 1 w 1 

~/ w 
(a) (b) 

Fig. 1 Two possible contact displacement cycles for which misuse of 
Eqs. (7a, b) results in (a) dissipation of energy, (b) "generation" of en- 
ergy 

P | r = ~  2 (Rw r2)l/22~rdr 
4 R  ,/2 

. . . .  W 3/2 , ( 7 a )  
Or=O ~ R B  3wB 

p = P | r = ¢ ~  4u 

Or=0 7r~(2B + C ) R w  
( R w  - r 2) 1/227rrdr 

3~-(2B + C) 
(7b) 

These contact force-displacement relations are relatively simple 
and it is enticing to use them in modeling the mechanical re- 
sponse of granular material. In this respect it is important to 
emphasize that these force-displacement relations are path-de- 
pendent and they are derived assuming a fixed ratio between 
the normal and tangential displacements of the contact. Consid- 
ering the intergaranular contacts in a general (unordered) granu- 
lar material, this specific displacement trajectory is unlikely 
even when the overall material is subjected to boundary dis- 
placements of a fixed arbitrary proportionality. 

Another deterring consideration is the thermodynamic impli- 
cation of misusing these contact force-displacement relations 
by regarding them as path-independent. If Eqs. (7) are used to 
calculate the work W done by the contact forces in a displace- 
ment cycle described in Fig. 1 (a)  it may be shown that 

8R1/2 
W 2 1/2 (8) U l W  1 . 

6rc(2B + C) 

The forces vanish at the beginning and end of the displacement 
cycle and therefore the elastic strain at these points vanishes. 
Consequently, all the work done by the forces has dissipated. 
The fact that a cyclic displacement of a contact is mechanically 
dissipative is well known (Mindlin and Deresiewicz, 1953). 
The physical reason for this dissipation is energy loss due to 
friction. In contrast, the dissipation quantified in (8) is solely 
due to the misuse of the contact force-displacement relations 
(7) to described nonproportional contact displacements. In par- 
ticular, consideration of the reverse displacement cycle de- 
scribed in Fig. 1 (b) shows that a net energy equal to W may 
be generated (without any work being done), which clearly 
violates the second law of thermodynamics. 
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Contact Force-Displacement Relations 
By integrating Eqs. (2a, b) over the contact area, Walton 

(1987) has calculated the resultant forces: 
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E x t r e m u m  Problem Formulat ions  of  
Mixed-Form Models  for Elastostatics 

J. E. Taylor 2 

The material of this note is related to variational models for 
the analysis of elastostatic structural response. Established and 
familiar mixed stress and deformation models for such analysis, 
e.g., the Hu-Washizu, Hellinger-Reissner, and the various mod- 
els summarized in Oden and Reddy (1976) and elsewhere in 
the literature, have the form of saddlepoint problems. As an 
alternative to dealing with the functional associated with the 
saddlepoint form, expression is given here to the general elasto- 
statics problem in the (stronger) form of convex constrained 
extremum problems. The alternate formulations make use of 
a decomposition of the measure of stress or strain into two 
variationally independent components. This provides for the 
interpretation of the results as mixed models, as is to be demon- 
strated in what follows. Two examples are described below; 
they are complementary formulations, parallel in sense to the 
basic minimum potential energy and minimum complementary 
energy principles. 

The developments to follow are expressed for linear elasto- 
statics of general continua. As a first step in each description, 
the symbolic expression of a constrained minimization problem, 
supposed to represent the elastostatics analysis, is simply stated. 
That the model does in fact comprise a valid statement for the 
mechanics analysis is then confirmed through an interpretation 
of the variational problem. For the first example formulation, 
which amounts to an extension of the classical minimum poten- 
tial energy characterization, the problem is expressed symboli- 
cally in the form 

{f~ [1 I I f  1 min 7Egue~e~ + ~Cuucr~o'~ - ftu~ d V  - t~u~dS 
oq,%,lt t l ¢ F t ) 

[P ] .  
subject to 

½(u~j + uz~) - (e~ + C,~ucr~) = 0 x ~ f~ 

The notation here is to reflect that the minimum point in [P] is 
identified with independent variation with respect to (w.r.t.) the 
arguments cry, e~, and ut. Symmetric, positive definite tensors 
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fields Eukl and C~jkl (to be interpreted later) and (load) vector fields 
f and tt are prescribed, ut symbolizes elements of the set of vectors 
defined (in the usual way) to be kinematically admissible, a U are 
differentiable in ~2, and ~r U and c~ are further defined jointly in 
relation to u~ according to the constraint in [P]. 

Symbol hu is introduced to represent the Lagrange multiplier 
associated with this constraint. The necessary conditions for a 
minimum in problem [P],  stated in order w.r.t, variation of a~j, 
e U, and ul, are 

as  

Ciikt~r ij - C u k A k t  = 0 

E~jk~co - X~ = 0 

ku.k + f = 0 

x ~ f ~  

(1) 

(2) 

(3) 

h u n t -  tl = 0 x on Ft. (3a)  

Using the result (1) that ku -= gu, (2) and (3) are restated 

Euklei ~ -- cru = 0 |  ( 2 ' )  
X E f ~  

~ru.k +J~ = 0 ( 3 ' )  

a u n k - - t l = O  x on Ft. ( 3 a ' )  

With the standard model for linear elastostatics in mind, in 
view of (3 ' )  and ( 3 a ' )  the cr U, up to this point undesignated, 
is identified as representing a stress field that equilibrates the 
external forces f and tt. 

According to the constraint equation of [P] ,  an interpretation 
of the quantity (e U + C,juak~) as total strain is consistent with 
convention for the linear model, and of course this measure of 
strain is then compatible. In order to complete the confirmation 
that the system comprises a full statement of the elastostatics 
boundary value problem, it remains only to identify the constitu- 
tive relation. With the introduction of C0u to represent the effec- 
tive compliance tensor, and making use of the interpretations 
for stress and strain already described, the net stress-strain rela- 
tion is expressed as 

CoktO'ij = ( eij + CijktO'kt). (4) 

With the substitution for e U in (4) from ( 2 ' ) ,  the effective 
property Ciju is evaluated in terms of the original, undesignated 
tensors as 

(~ijkl = (E:o I + Cou). (5) 

Thus the demonstration is complete, i.e., it has been shown 
that the system of necessary conditions associated with problem 
[ P ] comprise a complete statement of the classical linear elastic- 
ity problem, with a U and (e,j + Cijk lO-k l  ) representing stress and 
strain, and C~ju providing the relation between them. The relative 
value of E~ju and C~jkt is still open, and may be set for conve- 
nience (perhaps to achieve proper scaling). For example, for 
equal values of Eou and Cou the net compliance ~0kl has twice 
the value of compliance for each constituent within the expres- 
sion for total strain. In summary, note that 

1 the problem represented in [P] is a constrained, convex 
programming problem, and so the solution is generally a unique 
minimizer of the objective, and 
2 relative to the purpose in using a mixed model, namely to 
provide for independence with respect to variation of the field 
variables, characterization of elastostatics in the form of varia- 
tional problem [P] reflects independent variation among aii, e~i, 
and ut. 

As noted in the introductory statement, a second mixed for- 
mulation for elastostatics is available in the form of a relaxed 
version of the classical, single field statement of the "minimum 
complementary potential energy" model in mechanics. Follow- 
ing an approach similar to the one used above, the exposition 
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The material of this note is related to variational models for 
the analysis of elastostatic structural response. Established and 
familiar mixed stress and deformation models for such analysis, 
e.g., the Hu-Washizu, Hellinger-Reissner, and the various mod- 
els summarized in Oden and Reddy (1976) and elsewhere in 
the literature, have the form of saddlepoint problems. As an 
alternative to dealing with the functional associated with the 
saddlepoint form, expression is given here to the general elasto- 
statics problem in the (stronger) form of convex constrained 
extremum problems. The alternate formulations make use of 
a decomposition of the measure of stress or strain into two 
variationally independent components. This provides for the 
interpretation of the results as mixed models, as is to be demon- 
strated in what follows. Two examples are described below; 
they are complementary formulations, parallel in sense to the 
basic minimum potential energy and minimum complementary 
energy principles. 

The developments to follow are expressed for linear elasto- 
statics of general continua. As a first step in each description, 
the symbolic expression of a constrained minimization problem, 
supposed to represent the elastostatics analysis, is simply stated. 
That the model does in fact comprise a valid statement for the 
mechanics analysis is then confirmed through an interpretation 
of the variational problem. For the first example formulation, 
which amounts to an extension of the classical minimum poten- 
tial energy characterization, the problem is expressed symboli- 
cally in the form 
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fields Eukl and C~jkl (to be interpreted later) and (load) vector fields 
f and tt are prescribed, ut symbolizes elements of the set of vectors 
defined (in the usual way) to be kinematically admissible, a U are 
differentiable in ~2, and ~r U and c~ are further defined jointly in 
relation to u~ according to the constraint in [P]. 

Symbol hu is introduced to represent the Lagrange multiplier 
associated with this constraint. The necessary conditions for a 
minimum in problem [P],  stated in order w.r.t, variation of a~j, 
e U, and ul, are 

as  

Ciikt~r ij - C u k A k t  = 0 

E~jk~co - X~ = 0 

ku.k + f = 0 

x ~ f ~  

(1) 

(2) 

(3) 

h u n t -  tl = 0 x on Ft. (3a)  

Using the result (1) that ku -= gu, (2) and (3) are restated 

Euklei ~ -- cru = 0 |  ( 2 ' )  
X E f ~  

~ru.k +J~ = 0 ( 3 ' )  

a u n k - - t l = O  x on Ft. ( 3 a ' )  

With the standard model for linear elastostatics in mind, in 
view of (3 ' )  and ( 3 a ' )  the cr U, up to this point undesignated, 
is identified as representing a stress field that equilibrates the 
external forces f and tt. 

According to the constraint equation of [P] ,  an interpretation 
of the quantity (e U + C,juak~) as total strain is consistent with 
convention for the linear model, and of course this measure of 
strain is then compatible. In order to complete the confirmation 
that the system comprises a full statement of the elastostatics 
boundary value problem, it remains only to identify the constitu- 
tive relation. With the introduction of C0u to represent the effec- 
tive compliance tensor, and making use of the interpretations 
for stress and strain already described, the net stress-strain rela- 
tion is expressed as 

CoktO'ij = ( eij + CijktO'kt). (4) 

With the substitution for e U in (4) from ( 2 ' ) ,  the effective 
property Ciju is evaluated in terms of the original, undesignated 
tensors as 

(~ijkl = (E:o I + Cou). (5) 

Thus the demonstration is complete, i.e., it has been shown 
that the system of necessary conditions associated with problem 
[ P ] comprise a complete statement of the classical linear elastic- 
ity problem, with a U and (e,j + Cijk lO-k l  ) representing stress and 
strain, and C~ju providing the relation between them. The relative 
value of E~ju and C~jkt is still open, and may be set for conve- 
nience (perhaps to achieve proper scaling). For example, for 
equal values of Eou and Cou the net compliance ~0kl has twice 
the value of compliance for each constituent within the expres- 
sion for total strain. In summary, note that 

1 the problem represented in [P] is a constrained, convex 
programming problem, and so the solution is generally a unique 
minimizer of the objective, and 
2 relative to the purpose in using a mixed model, namely to 
provide for independence with respect to variation of the field 
variables, characterization of elastostatics in the form of varia- 
tional problem [P] reflects independent variation among aii, e~i, 
and ut. 

As noted in the introductory statement, a second mixed for- 
mulation for elastostatics is available in the form of a relaxed 
version of the classical, single field statement of the "minimum 
complementary potential energy" model in mechanics. Follow- 
ing an approach similar to the one used above, the exposition 
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of this second model starts with an unqualified, symbolic state- 
ment of a constrained minimization problem. The problem so 
represented also is convex. Here too, the identification of the 
problem statement with the mechanics of elastostatics is accom- 
plished through an interpretation of the "necessary conditions." 
The form for this characterization, stated here for simplicity as 
though boundary displacement where prescribed has value zero, 
is given as 

(crusubjectmintf[½E~ktUi,jUk,t+½Cijkt~zu~k~dVl} l ° ~ j ' " k  +L Eu~tuk,t),jt°:a L + f = 0 in f/ [Q] '  

(aij + Euktu,~.t)nj - ti = 0 on Ft 

The problem statement reflects minimization (of the sum of 
quadratic measures) independently w.r.t, admissible fields a 0 
and u ,  where admissibility requirements correspond to those 
of model [P].  According to the constraints of [Q],  these fields 
jointly equilibrate ( l oads ) f  and ti. As in the prior formulation, 
here Eok~ and C,jk~ represent differentiable, positive definite, sym- 
metric tensors. Also as before, Ei#t, Cukt, f ,  and ti symbolize 
data. hi and /3i are introduced as multipliers associated with 
the field equation and boundary condition constraints of [Q]. 
Stationarity w.r.t. ~r 0 and u~, respectively, requires 

Cuktcrkt- Xi.~ = 0 in f~ (6) 

/~i + hi = 0  on Ft (6a) 

[-E~toui,j + Eijkl~.i,j],t = 0 in  fL (7) 

This system is satisfied with X~ = us, and making use of the 
linear strain-displacement relation e U = (utd + uj,z)/2 and the 
symmetries in the stress and material properties tensors, (6) is 
interpreted as 

Cu~a~ = % (8 )  

It is clear from the equilibrium equation constraint that ~rii + 
Eijkte,,, t represents total stress, and so with the introduction of/~ 
to symbolize the net modulus, the total stress-strain relation is 
expressed as 

aij + Eoktek~ = ~ijklekl. (9) 

Accordingly, in view of (8) the effective modulus for this model 
has the value 

/~uk, = E0k, + Cj2,. (10) 

For example, if E~jkt C~t then/~jkt = 2Eijkt. This completes a 
verification that the formulation [Q] comprises an authentic 
portrayal of linear elastostatics. The earlier comments given in 
relation to version [P] of the problem apply here as well, i.e., 
the solution to [Q] is generally a unique minimizer. 

Summary 
Formulations [P] and [Q] have the relatively simple form 

(among constrained nonlinear programming problems) of 
"quadratic objective with linear constraints," which is conve- 
nient. Creation of these formulations for continuum mechanics 
relies on the feature of the models that has total stress or total 
strain interpreted via a decomposition into variationally inde- 
pendent components which are coupled through the constraints. 
In each of the two problem statements the decomposition is 
expressed in a form that provides for both static and kinematic 
field measures to be present, and so the results appear as mixed 
models. Where the goal in using such models is to achieve a 
desirable balance in precision between the computational evalu- 
ation of stresses and deformations, the relative value of E0kt and 

Cukt may be adjusted to control this balance. More generally, 
compared to familiar forms for mixed principles the extremum 
problem formulations presented in this note may be more conve- 
nient in the treatment of applications, e.g., the development 
of computational models, performance of analysis toward the 
establishment of bounds, or the treatment of structural optimiza- 
tion problems, to name a few. 

Notwithstanding the simplicity of problem formulations [P] 
and [Q],  these two features i.e., the interpretation of the dual 
field variables in terms of a set of (independent) constituents, 
and the interpretation for analysis that follows standard form 
for the mathematical modeling of constrained nonlinear pro- 
gramming models, can be exploited to obtain other useful exten- 
sions to the energetic formulations in solid mechanics. For ex- 
ample, extended versions of the classical complementary state- 
ments of "energy principles" are available in forms that 
comprise constructive formulations for the elastostatics of con- 
stitutively nonlinear systems (see, e:g., Taylor, 1993, 1994; 
Plaxton and Taylor, 1994). Also, the same approach can be 
used to model the more general problem of finite strain elasto- 
statics with nonlinear materials (Hollister et al., 1995). 
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Elast ic  Force  on a Point  Defect  in or 
Near  a Surface  Layer  

H. Yu a, S. C. Sanday 3, and D. J. Bacon 4 

The elastic force on a point defect within or near a surface 
layer is determined by the image method. There is no stable 
equilibrium position for the point defect in the surface layer, it 
is attracted either to the free surface or to the interface. When 
the point defect is in the substrate it is attracted to the interface 
when the surface layer is softer than the substrate and to an 
equilibrium position in the substrate when the surface layer is 
stiffer than the substrate, the equilibrium position being a func- 
tion of the elastic constants and the layer thickness. 

1 Introduction 

The interaction between a point defect and the free surface 
of a material have been studied extensively for many years, 
mainly because it plays an important role in material behavior 
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of this second model starts with an unqualified, symbolic state- 
ment of a constrained minimization problem. The problem so 
represented also is convex. Here too, the identification of the 
problem statement with the mechanics of elastostatics is accom- 
plished through an interpretation of the "necessary conditions." 
The form for this characterization, stated here for simplicity as 
though boundary displacement where prescribed has value zero, 
is given as 

(crusubjectmintf[½E~ktUi,jUk,t+½Cijkt~zu~k~dVl} l ° ~ j ' " k  +L Eu~tuk,t),jt°:a L + f = 0 in f/ [Q] '  

(aij + Euktu,~.t)nj - ti = 0 on Ft 

The problem statement reflects minimization (of the sum of 
quadratic measures) independently w.r.t, admissible fields a 0 
and u ,  where admissibility requirements correspond to those 
of model [P].  According to the constraints of [Q],  these fields 
jointly equilibrate ( l oads ) f  and ti. As in the prior formulation, 
here Eok~ and C,jk~ represent differentiable, positive definite, sym- 
metric tensors. Also as before, Ei#t, Cukt, f ,  and ti symbolize 
data. hi and /3i are introduced as multipliers associated with 
the field equation and boundary condition constraints of [Q]. 
Stationarity w.r.t. ~r 0 and u~, respectively, requires 

Cuktcrkt- Xi.~ = 0 in f~ (6) 

/~i + hi = 0  on Ft (6a) 

[-E~toui,j + Eijkl~.i,j],t = 0 in  fL (7) 

This system is satisfied with X~ = us, and making use of the 
linear strain-displacement relation e U = (utd + uj,z)/2 and the 
symmetries in the stress and material properties tensors, (6) is 
interpreted as 

Cu~a~ = % (8 )  

It is clear from the equilibrium equation constraint that ~rii + 
Eijkte,,, t represents total stress, and so with the introduction of/~ 
to symbolize the net modulus, the total stress-strain relation is 
expressed as 

aij + Eoktek~ = ~ijklekl. (9) 

Accordingly, in view of (8) the effective modulus for this model 
has the value 

/~uk, = E0k, + Cj2,. (10) 

For example, if E~jkt C~t then/~jkt = 2Eijkt. This completes a 
verification that the formulation [Q] comprises an authentic 
portrayal of linear elastostatics. The earlier comments given in 
relation to version [P] of the problem apply here as well, i.e., 
the solution to [Q] is generally a unique minimizer. 

Summary 
Formulations [P] and [Q] have the relatively simple form 

(among constrained nonlinear programming problems) of 
"quadratic objective with linear constraints," which is conve- 
nient. Creation of these formulations for continuum mechanics 
relies on the feature of the models that has total stress or total 
strain interpreted via a decomposition into variationally inde- 
pendent components which are coupled through the constraints. 
In each of the two problem statements the decomposition is 
expressed in a form that provides for both static and kinematic 
field measures to be present, and so the results appear as mixed 
models. Where the goal in using such models is to achieve a 
desirable balance in precision between the computational evalu- 
ation of stresses and deformations, the relative value of E0kt and 

Cukt may be adjusted to control this balance. More generally, 
compared to familiar forms for mixed principles the extremum 
problem formulations presented in this note may be more conve- 
nient in the treatment of applications, e.g., the development 
of computational models, performance of analysis toward the 
establishment of bounds, or the treatment of structural optimiza- 
tion problems, to name a few. 

Notwithstanding the simplicity of problem formulations [P] 
and [Q],  these two features i.e., the interpretation of the dual 
field variables in terms of a set of (independent) constituents, 
and the interpretation for analysis that follows standard form 
for the mathematical modeling of constrained nonlinear pro- 
gramming models, can be exploited to obtain other useful exten- 
sions to the energetic formulations in solid mechanics. For ex- 
ample, extended versions of the classical complementary state- 
ments of "energy principles" are available in forms that 
comprise constructive formulations for the elastostatics of con- 
stitutively nonlinear systems (see, e:g., Taylor, 1993, 1994; 
Plaxton and Taylor, 1994). Also, the same approach can be 
used to model the more general problem of finite strain elasto- 
statics with nonlinear materials (Hollister et al., 1995). 

References 
Hollister, S. J., Taylor, J. E., and Washabaugh, P. D., 1995, "A General Finite 

Strain Model for Elastostatics With Stiffening Materials," ASME JOURNAL OF 
APPLIED MECHANICS, to appear. 

Oden, J. T., and Reddy, J. N., 1976, Variational Methods in Theoretical Me- 
chanics, Springer-Verlag, Heidelberg, Germany. 

Plaxton, S., Taylor, J. E., 1994, "Applications of a Generalized Complementary 
Energy Principle for the Equilibrium Analysis of Softening Material," Comp. 
Meth. Appl. Mech. Engng., Vol. 117, pp. 91-103. 

Taylor, J. E., 1993, "A Global Extremum Principle for the Analysis of Solids 
Composed of Softening Material," Int. J. Solids' Struct., Vol. 30, pp. 2057-2069. 

Taylor, J, E., 1994, "A Global Extremum Principle in Mixed Form for Equilib- 
rium Analysis with Elastic/Stiffening Materials: A Generalized Minimum Poten- 
tial Energy Principle," ASME JOURNAL OF APPLIED MECHANICS, Vol. 61, pp. 
914-918. 

Elast ic  Force  on a Point  Defect  in or 
Near  a Surface  Layer  

H. Yu a, S. C. Sanday 3, and D. J. Bacon 4 

The elastic force on a point defect within or near a surface 
layer is determined by the image method. There is no stable 
equilibrium position for the point defect in the surface layer, it 
is attracted either to the free surface or to the interface. When 
the point defect is in the substrate it is attracted to the interface 
when the surface layer is softer than the substrate and to an 
equilibrium position in the substrate when the surface layer is 
stiffer than the substrate, the equilibrium position being a func- 
tion of the elastic constants and the layer thickness. 

1 Introduction 

The interaction between a point defect and the free surface 
of a material have been studied extensively for many years, 
mainly because it plays an important role in material behavior 
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Fig. 1 Variation of interaction energy W with c/h for the point defect i n  
the substrate for u = u' = ~- and different IX'/IX ratios 

related to diffusion, oxidation, corrosion, spinoidal decomposi- 
tion, etc. When a planar, uniform elastic layer is bonded to an 
elastic semi-infinite solid of different elastic properties and the 
materials are isotropic and homogeneous, the problem of finding 
the elastic force on a point defect which is approximated as a 
center of dilation is an axisymmetric one and the theory of 
Hankel transforms given by Sneddon ( 1951 ) is a powerful tool 
for solving it. For example, the force on a point defect in a 
semi-infinite solid near a surface layer was Studied by using 
Hankel transformations (Dundurs and Stippes, 1966; Bacon 
1972). Equally important is the case when the point defect, 
such as a solute atom, a vacancy, or an interstitial, is in the 
surface layer of a semi-infinite solid, as might be produced, for 
example, by deposition or the formation of oxides which, in 
general, will have different elastic properties from the semi- 
infinite solid. The aim of this paper is to investigate the elastic 
interaction between a point defect, the free surface, and the 
interface in a plane layered material using the image method 
(Yu and Sanday, 1993). 

2 E l a s t i c  S o l u t i o n  

The coated semi-infinite solid consists of an infinite plate 
(surface layer), of thickness h, shear modulus #' ,  and Poisson's 
ratio v', which is perfectly bonded to a homogeneous, isotropic, 
elastic solid (substrate) with shear modulus # and Poisson's 
ratio v, at the interface z = 0 (see insert in Fig. 1 ). The point 
defect, which is approximated as a center of dilatation, is at 
point (0, 0, ±c) .  This problem has cylindrical symmetry and 
the axes of the cylindrical coordinates (r, 0, z) have been chosen 
with the origin in the interface. The boundary conditions at the 
interface, z = 0, are continuity of displacements u~ and u~ and 
stresses ors and ~r,~. The boundary conditions at the free surface, 
z = h, are the vanishing of the normal stress az and shear stress 
O~rz . 

It has been shown that if cry is the stress due to a center of 
dilatation in the homogeneous infinite solid, and cry + cr~ is 
that in the body under consideration, the interaction energy W 
(Bacon, 1972) and the nonzero component of the force on the 
center of dilatation Fz are 

27r(1 - u)  OW 
Q~r~ and F ~ -  , (1) 

W -  1 + v  Oz 

* is the where Q is the strength of the center of dilatation and a ~j 
image stress. It should be noted that the force given in Eq. ( 1 ) 
differs from that given by Dundurs and Stippes (1966) by a 
factor of ½. This is because, as pointed out by Bacon (1972) 

and Moon and Pao (1967), the image interaction energy W 
differs by a factor of ½ from the interaction energy produced by 
an independent source other than the center of dilatation itself, 
and the results given by Dundurs and Stippes were obtained 
using Eshelby's expression (1951 ) for the force exerted on the 
point defect by an external surface traction. 

The elastic solution for a center of dilatation in tri-materials, 
as given by Yu and Sanday (1993), is obtained using the image 
method and the Green's functions in a bi-material for the double 
force, doublet, center of dilatation, and their derivatives. The 
solutions are expressed in terms of the Galerkin stress function 
Z which is the z-component of the Galerkin stress vector. From 
the results given by Yu and Sanday (1993) and by setting the 
elastic constants of one of the semi-infinite solids in the tri- 
material equal to zero, the dilatational stress due to the center 
of dilatation at point (0, 0, - c )  is 

02 
a~k = 4(1 + u ) # O  ~z  2 x ( r ,  z ) ,  (2) 

for points in the substrate (z -< 0) and that due to the center of 
dilatation at point (0, 0, c) is 

02 
crY.k* = 8(1 + v ' ) # ' Q  Oz---- 5 x ' ( r ,  z ) ,  (3) 

for points in the surface layer (0 -< z -< h), where 

x ( r ,  z) = Al~o~ + Az~o~ 
n-  1 

+ A2 [A~ + Y. ~ r~2(j+t)l,~, (4) U n j U z  .I y J2 (n+ l )  ~ 
n=l  j = 0  

x ' ( r ,  z)  = tp~ + A4qo, + ~ (A~p~,+, + A'ff'tp2,,+,) 
n=l  

n -  1 
K / t  /-'12j+ 1 ,^  t + Z Z ( H . j D 2 j + I ~ P 2 , , -  " ' , q ~ ' z  v-'2n 

n=l j=O 

['L2 / ~ 2 ( j + l ) , ^ t  ('~t / ~ 2 ( j + l  
-}- ' J n j J . J z  ¥~2n+1 "[- ~ n j ~ z  ) ~ 0 2 n + l ) ,  ( 5 )  

0 k 
Dz k = - -  (k = 0, l, 2, .), 

Oz k ' •. 

At = 2(/.t - #')/3, A2 = 32(1 - u)(1 - v ' )##' /32,  

A 3  = [(3 - 4u)/z' - (3 - 4u')U]/3, A 4  = (J.ff - ~ ) f l ' ,  

1 

#' + (3 - 4v ' ) #  ' 

1 ~= , ~'= 
# + ( 3 - 4 u ) # '  

-'~ (n - k) ! 
a n j  = (2h) 2(j+l) ~ , (n ~ - j - - - k i ! j !  

( j  + k) !  × 
( k -  1 ) ! ( j +  1)! 

(n - k)! 
= ( 2 h ) 2 " + "  'X (. --- 

k=l  

( j  + k)[ × 
( k -  1 ) ! ( j +  1)! 

H~j -- (2h) 2j+l (n - k)[ ( j  + k - 1)! a~-la . -k+l  

(n  - k ) !  ( j  + k - 1)! Ag_J_kA~+k. 
H:,, = (2h) 2i+1 ' ~  ( n T j - - ~ l j  ! (k  - 1)!j!  

k=l  

~o2,, = [r 2 + (z - c + 2nh ) : ]  -1/:, 

~o:.+1 = [r 2 + (z  + c + 2nh)2]  -1/:, 

Ak-lAn-k+l 3 "-x4 , 

A~-:-*A~+k+ 1, 
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and 

~p6, = [r 2 + (z - c - 2nh)2] -~n, (6) 

~ n + l  = {r 2 + [z + c - 2(n + 1)h]2} -I/2 

The interaction energy and the forces on the point defect in the 
substrate and in the surface layer are obtained, respectively, by 
substituting Eqs. (2), (4) and Eqs. (3), (5)into Eq. (1). When 
the point defect is in the substrate the results obtained by the 
image method are the same as those obtained by the method of 
Hankel transforms (Dundurs and Stippes, 1966) (except for a 
factor of 2 as pointed out previously). 

3 Numerical Results 

The convergence of the infinite series given in Section 2 has 
already been demonstrated (Yu and Sanday, 1993). The force 
on the point defect in the substrate calculated for # ' / #  = 2, v 
= ½ and u' = ¼ and the sum of the first four terms, together 
with the values obtained by Dundurs and Stippes (1966) of the 
sum of the first four terms are shown in Table 1: The values in 
the last two columns are those given by Dundurs and Stippes 
and the values in the second column are those obtained in the 
present study. The convergence when using the image method 
is faster than when using the integral obtained by Hankel trans- 
formations as indicated by comparing the sum of the first four 
terms in each solution with the exact values given in column 
four. 

In the following numerical calculations, the results are the 
sum of the first 12 and 24 terms for the point defect in the 
substrate and in the surface layer, respectively. Let us first con- 
sider the point defect located in the substrate. The numerical 
results showed that when the surface layer is softer than the 
Substrate ( # ' / #  ~ 1), the layer attracts the point defect. When 
the surface layer is stiffer than the substrate ( # ' / #  > 1), the 
defect is repelled from the interface. The effect of the layer on 
the defect when the layer is stiffer than the substrate is analyzed 

1 in Fig. 1 which shows the variation of W for u = v'  = ~ and 
# ' / #  = 1.5, 1.75, 2, 3, and 4. The point defect has a stable 
equilibrium position, i.e., W is minimum and F~ equals zero, 
and this equilibrium exists because the stiff layer masks the 
attraction of the free surface, and its position increases in depth 
from the interface with increasing layer stiffness. The existence 
of this effect has implications for the segregation of point de- 
fects in coated crystals. When the point defect is in the surface 
layer, the results for W are given in Fig. 2 for u = u'  = ~ and 
#/# '  = 0, 0.1, 0.5, 1, 2, 10, and ~. Figure 2 shows that when 
the surface layer is softer than the substrate, the energy de- 
creases with increasing distance c, and the point defect is at- 
tracted to the free surface. However, when the surface layer is 
stiffer than the substrate, the energy has a maximum where Fz 
= 0 at position c . . . .  i.e., the position of unstable equilibrium. 
The Cma~ value increases with decreasing #/# '  ratio and equals 
0.5h for a plate, i.e., # = 0. 

Table 1 Comparison of the values for the force on the 
point defect in the substrate for g'/kt = 2, v = 1/3 and v'  
= 1/4 with results obtained by Dundurs and Stippes (1966) 

Dundurs and 
c/h This study* Stippest Exact 

0.125 -944.63 -944.64 -944.63 
0.5 -3.4953 -3.4998 -3.4941 
1 -0.6212 -0.6241 -0.6204 
2 -0.0014 -0.0018 -0.0012 
3 0.0013 0.0012 0.0014 

* in units of 127r(1 - lJ)/zQ2h -4 
? in units of 67r(1 - / J ) # a 2 h - 4  

• 0 
, 0 . ,  s0 

: ,20 

-50 

-1~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

c / h  

Fig .  2 Variation of interaction energy W with c/h for the point defect in  
the surface layer for v = !.,, =~1 and different IZ/#' ratios 

4 Summary 
The elastic interaction of a point defect with a surface layer 

has been discussed in terms of the induced interaction energy 
and the force acting on the defect. The point defect is treated 
as a center of dilatation. The surface layer is perfectly bonded 
to a semi-infinite substrate, and both are isotropic elastic solids 
but with different elastic constants. The energy and force are 
obtained by the image method and the results are expressed in 
terms of convergent infinite series. The comparison of the re- 
sults obtained by the present method with those obtained by the 
method of Hankel transforms has been made for the case when 
the point defect is in the substrate. Numerical examples have 
been presented and discussed for the point defect in the surface 
layer and in the substrate. When the point defect is in the sub- 
strate and the surface layer is stiffer than the substrate, an equi- 
librium position exists and the point defect is attracted to this 
position, which is closer to the surface layer with decreasing 
stiffness of the layer or decreasing layer thickness. When the 
point defect is in the surface layer, no stable equilibrium posi- 
tion exists. The point defect is either attracted to the free surface 
or to the interface, depending on the ratio of the shear moduli 
of the two materials. These results should be prove of value 
for researchers concerned with point defect behavior in coated 
solids. 
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A P P E N D I X  
Some errors made in transposing equations for publication 

in an earlier study (Bacon, 1972) will be corrected here. All 
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notation and equation numbers used here are the same as those 
used in the reference (Bacon, 1972). Equation (16) should be 

G ( k ,  z)  = (A  + B z ) e  .k~ + ( C  + D z ) e  k~, for z -> 0 

and 

G ( k ,  z)  = ( A '  + B ' z ) e  kz + ( C '  + D ' z ) e  -k~, 

for - t - -< z --< O. 

For a center of dilatation in the surface layer at point (0, 0, 
- c), which corresponds to point (0, 0, c) in our text, the correct 
expressions for Eqs. (17e) and (17 f )  in the reference are 

ke-ktA ' + (2u' - k t ) e - k ' B  ' 

+ kek'C ' - (2u' + k t )ek 'D  ' = Fe  k', 

- k e - k ' A  ' + (1 - 2u' + k t ) e - k ' B  ' 

+ kektC ' + (1 - 2u' - k t )ek tD ' = Fe  k', 

respectively. Solving the six simultaneous Eqs. (17a) to (17 f )  
yields 

F 
A = B  = A '  = B' = D '  = 0, and C' = - - .  (a) 

k 

The elastic field obtained by using Eq. (a) is 

u ° = - u T ,  and u ° = - u T .  

The displacements in the layer given by Eqs. (22a) and (22b) 
are zero, which means that the method given by Bacon (1972) 
only gives a trivial solution for the elastic interaction of a point 
defect and a surface layer when the defect is in the surface 
layer. 
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Fig. 1 Yield loci for deep, single-face-cracked specimens under com- 
bined bending and tension. Equation 2 holds to the left of  the point x.  

After a brief review of existing slip line and upper bound 
fields, we provide a completely analytical formulation for Rice's 
least upper bound. Then we propose an improved approximate 
elliptical yield locus and compare it with finite element limit 
analyses of Lee and Parks (1993). 

Yield Locus in Deep, Single-Face- 
Cracked Specimens  Under Combined  
Bending and Tension 

Yun-Jae Kim, s'6 F. A. McClintock, s 
and D. M. ParksS'7 

Introduction 
For plates with deep, single face cracks, slip line fields are 

known under pure tension and under opening bending with 
compression or small tension (Shiratori and Miyoshi, 1980; 
Shiratori and Dodd, 1980). For such plates under opening bend- 
ing and large tension, Rice (1972) gave an analytical-graphical 
formulation for sliding along the circular arc giving the least 
upper bound to the limit load. He also proposed an approximate 
elliptical yield locus for all ranges of positive tensions and net- 
section moments, which has been widely used (e.g., Hu and 
Albrecht, 1991 ). 
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Opening Bending with Compression or Small Tension 
For pure opening bending, Green and Hundy (1956) found 

the slip line field. For sufficiently small tensile forces, slip line 
fields can be obtained by "shaving off"  some of the constant 
stress region. When the constant stress sector just vanishes, 
force and moment equilibrium lead to the following net section 
tension and bending moment, normalized in terms of an un- 
notched plate with the shear strength k and remaining liga- 
ment b: 

N,, -~ N , , / ( 2kb )  = 0.5512 and 

AI,, ~ M , / ( 2 k b 2 / 4 )  = 1.3232. (1) 

Note that the limiting field of ( 1 ) is likely to be only an upper 
bound: in complete solutions for shallow cracks in pure bending, 
Ewing (1968) found constant-state triangles at the ends of 
curved slip lines approaching a free surface. Slip line fields for 
N,, ~ 0 with M, -> 0 can be obtained by reducing the circular 
hinge radius and increasing the constant stress regions. The 
resulting yield locus from these slip line fields is 

"Ps = ll.l, + 0.7394N~ - 0.5212N,, - 1.2606 = 0 for 

- 1  --< .0,, < 0.5512, (2) 

as shown in Fig. 1, with the point (N, = 0.5512, a?/,, = 1.3232) 
denoted by " X " .  See Shiratori and Miyoshi (1980), and Shira- 
tori and Dodd (1980) for closed-form analytical expressions 
for the numerical coefficients in (1) and (2). 

Opening Bending with Large Tension 
^ Slip line fields are not known for large tension (0.5512 -< 

N,, < 1 ). A possible slip line field, motivated by the field for 
transverse shear of grooved plates (Mode II) (McClintock and 
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notation and equation numbers used here are the same as those 
used in the reference (Bacon, 1972). Equation (16) should be 
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respectively. Solving the six simultaneous Eqs. (17a) to (17 f )  
yields 
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The elastic field obtained by using Eq. (a) is 

u ° = - u T ,  and u ° = - u T .  

The displacements in the layer given by Eqs. (22a) and (22b) 
are zero, which means that the method given by Bacon (1972) 
only gives a trivial solution for the elastic interaction of a point 
defect and a surface layer when the defect is in the surface 
layer. 
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Fig. 1 Yield loci for deep, single-face-cracked specimens under com- 
bined bending and tension. Equation 2 holds to the left of  the point x.  

After a brief review of existing slip line and upper bound 
fields, we provide a completely analytical formulation for Rice's 
least upper bound. Then we propose an improved approximate 
elliptical yield locus and compare it with finite element limit 
analyses of Lee and Parks (1993). 
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For plates with deep, single face cracks, slip line fields are 

known under pure tension and under opening bending with 
compression or small tension (Shiratori and Miyoshi, 1980; 
Shiratori and Dodd, 1980). For such plates under opening bend- 
ing and large tension, Rice (1972) gave an analytical-graphical 
formulation for sliding along the circular arc giving the least 
upper bound to the limit load. He also proposed an approximate 
elliptical yield locus for all ranges of positive tensions and net- 
section moments, which has been widely used (e.g., Hu and 
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Opening Bending with Compression or Small Tension 
For pure opening bending, Green and Hundy (1956) found 

the slip line field. For sufficiently small tensile forces, slip line 
fields can be obtained by "shaving off"  some of the constant 
stress region. When the constant stress sector just vanishes, 
force and moment equilibrium lead to the following net section 
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notched plate with the shear strength k and remaining liga- 
ment b: 

N,, -~ N , , / ( 2kb )  = 0.5512 and 

AI,, ~ M , / ( 2 k b 2 / 4 )  = 1.3232. (1) 

Note that the limiting field of ( 1 ) is likely to be only an upper 
bound: in complete solutions for shallow cracks in pure bending, 
Ewing (1968) found constant-state triangles at the ends of 
curved slip lines approaching a free surface. Slip line fields for 
N,, ~ 0 with M, -> 0 can be obtained by reducing the circular 
hinge radius and increasing the constant stress regions. The 
resulting yield locus from these slip line fields is 
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tori and Dodd (1980) for closed-form analytical expressions 
for the numerical coefficients in (1) and (2). 

Opening Bending with Large Tension 
^ Slip line fields are not known for large tension (0.5512 -< 

N,, < 1 ). A possible slip line field, motivated by the field for 
transverse shear of grooved plates (Mode II) (McClintock and 

Journal of Applied Mechanics DECEMBER 1996, Vol. 63 / 1045 

Copyright © 1996 by ASME
Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



. . . . .  0 

~ ,LjJ 

Fig. 2 Possible slip line field for combined bending with large tension 
(light dotted lines) and kinematically admissible upper bound fields (dark 
solid l ine), 

Clerico, 1980), is  suggested in Fig. 2. They showed that the 
bound to the limit load in shear is only two percent higher if 
their slip line field, with fan, arc, and constant stress sectors, is 
replaced by a single straight line. In Fig. 2, the suggested slip 
line field is replaced by a single arc of radius R and angular 
extent ( a  - / 3 ) ,  as proposed by Rice (1972). As L and R tend 
to ~ ,  both c~ and/3 approach ir/4, and the field approaches that 
for pure tension. 

From relative sliding along the circular arc, equilibrium about 
the point O gives 

(~)2(c~ 4N,(--L + ~ )  . (3) 
h},, = 2 - / 3 )  - \ b  

For a given ~ , ,  the least upper bound for/f/,  can be determined 
by minimizing the right hand side of (3),  subject to the two 
geometric relations from Fig. 2: 

L Rs in /3 ,  L + 1 R s i n a .  (4) 
b b b b 

Eliminating L/b and R/b from (3) using (4) and minimizing 
the right hand side of (3) with respect to a and/3 results in 
two equations in the two unknowns, a and/3: 

(c~ - / 3 )  cos c~ 

- (sin a - sin/3) (1_ 2 + N, sin/3 cos a)  = 0. (5) 

(c~ - / 3 )  cos/3 

- (sin a - sin/3) (½ + N, sin a cos/3) = 0. (6) 

For a given Nn, ce and/3 can be determined numerically fi'om 
(5) and (6).  Then M, is determined from (3) with (4) for 
R/b and L/b. The resulting upper bound to the yield locus is 
shown in Fig. 1. 

Rice (1972) assumed that L is given and minimized the right 
hand side of (3) with respect to/3, which leads to 

2 ( a  - /3) = tan a - tan/3. (7) 

(Note that eliminating N,, from (5) and (6) also gives (7) . )  
With (7) he performed a graphical minimization of M~ to obtain 
the same least upper bound as from (5) and (6).  

A p p r o x i m a t e  e l l ip t i ca l  y i e l d  loc i  

For the full range of positive tension (0 -< /Vn -< 1), Rice 
(1972) approximated the yield locus with an ellipse matched 
to the slip line solution for pure tension: 

1 (N,  _ 0 . 3 ) 2  .q_ 9 ^2  ^ ~ R = 0 ~  ~ M n - l = 0  for 0- -<N,-<I .  (8) 

As shown in Fig. 1, this approximate locus falls within the least 
upper bound locus by up to 9% radially. 

We here propose a better elliptical yield locus than (8),  
for 0.5512 -< N,, - 1: 

~ A = A ( M n - B )  2 + C ( N . - D )  2 -  1 = 0  for 

0.5512 -< N,, -< 1. (9) 

The four unknown coefficients A, B, C, and D are determined 
such that the ellipse smoothly matches the yield loci of the 
adjacent slip line solutions at the respective end points: 

0N,, 
M , = 0  and ~ = 0  at N, ,= 1. (10) 

A}n= 1.3232 and 0N,,_ - 1  at N,, = 0.5512. (11) 
0/lit, 0.2939 

The resulting approximate yield locus, shown in Fig. 1, is 

~a = 0.56415 a}2 + 3.9258(N,, - 0.4953) 2 - 1 = 0 for 

0.5512 -< N,, - 1. (12) 

The locus (12) lies within that of the least upper bound analysis 
by at most 4%. No appreciably better fit could be found with 
a rotated ellipse satisfying the same end conditions. 

Lee and Parks (1993) studied yield loci for various crack 
depths using finite elements. For a given crack depth and ten- 
sion-to-bending ratio, they found the limit tension and the limit 
moment. By comparing yield loci for various crack depths, they 
suggest that relative crack depths of a/t  greater than about 0.35 
would be "deep enough" to prevent shoulder deformation for 
all tension-to-bending ratios. (For pure extension, any crack 
depth is sufficient.) As shown with circles in Fig. 1, their results 
for relative crack depths of a/t  = 0.5 and 0.6 are consistent 
with the modified Green and Hundy solutions. Their results 
suggest that, for 0.6 -< F/,, _< 0.9, the least upper bound locus 
overestimates by up to 3%, and the Rice ellipse underestimates 
by up to 6%. Surprisingly, the ellipse (12) fits the finite element 
results within 1%, as shown in Fig. 1. For N, > 0.9, the agree- 
ment is still within 2%, the order of the self-consistency of the 
FEM calculations. 

Therefore for opening bending and compression or tension 
(2) and (12) provide complete plane strain general yield loci 
for plates with deep enough cracks and small flank angles. 

A c k n o w l e d g m e n t s  

This work was supported in part by the Office of Basic En- 
ergy Sciences, Department of Energy, under Grant DE-FG02- 
85ER13331 to M.I.T. and Contract DE-AS07-76ID01670 with 
the Idaho National Energy Laboratory. This sponsorship is 
deeply appreciated. 

R e f e r e n c e s  
Ewing, D. J. F., 1968, "Calculations on the Bending of Rigid/Plastic Notched 

Bars," Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 205-213. 
Green, A. P. and Hundy, B. B., 1956, "Initial Plastic Yielding in Notch Bend 

Tests," Journal of the Mechanics and Physics of Solids, Vol. 4, pp. 128-144. 
Hn, J. M. and Albrecht, P,  1991, "Limit Load Solution and Loading Behavior 

of C(T) Fracture Specimen," International Journal of Fracture, Vol. 52, pp. 
619-645. 

Lee, I-L and Parks, D. M., 1993, "Fully Plastic Analyses of Plane Strain Single 
Edge Cracked Specimens Subject to Combined Tension and Bending," Interna- 
tional Journal of Fracture, Vol. 63, pp. 329-349. 

McClintock, F.A., 1971, "Plasticity Aspects of Fracture," Fracture, Vol. 3, 
Liebowitz, H., ed., Academic Press, New York, pp. 47-225. See pp. 155-162. 

McClintock, F. A. and Clerico, M., 1980, "The Transverse Shearing of Singly- 
Grooved Specimens," Journal of the Mechanics and Physics of Solids, Vol. 28, 
pp. 1-16. 

Rice, J. R., 1972, "The Line Spring Model for Surface Flaws," The Su~ace 
Crack: Physical Problems and Computational Solutions, Swedlow, J.L., ed., 
American Society of Mechanical Engineers, New York, pp. 171-185. 

Shiratori, M. and Dodd, B., 1980, "Effect of Deep Wedge-Shaped Notches of 
Small Flank Angle on Plastic Failure," International Journal of Mechanical 
Sciences, Vol. 22, pp. 127-131. 

1046 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Shiratori, M. and Miyoshi, T., 1980, "Evaluation of Constraint Factor and J- 
integral for Single-Edge Notched Specimen", Proceedings of the Third Interna- 
tional Conference on the Mechanical Behavior of Materials, Vol. 3, Miller, K. J. 
and Smith, R. F., eds., Pergamon Press, New York, pp. 425-434. 

Non-Newtonian Creep Into a Two- 
Dimensional Cavity of Near- 
Rectangular Shape 

A. B o g o b o w i c z  8 

The plane-strain formulation for the steady-state closure of  a 
near-rectangular, single isolated opening in an indefinite visco- 
elastic medium is presented. A power creep law describes the 
creep behavior of the viscous medium. Because of the highly 
nonlinear nature of the creep, an analytic solution is not possi- 
ble for the proposed opening geometry, hence an approximation 
method based upon the minimum principle for velocities is used. 
The analytic function is used to describe the shape of  opening 
(circular, elliptical, and rectangular with rounded corners). 

1 Introduction 
The derivations in this paper result from saltrock creep re- 

search, but the solution is general enough to be used for any 
problem of steady-state viscous flow into a single isolated open- 
ing. The constraints are a power law creep formulation, an 
infinite isotropic viscous medium model, and hydrostatic load- 
ing at infinity. The formulation is strictly for steady-state creep, 
which implies constant creep rates due to uniform stress distri- 
bution in the viscous medium. Creep generally occurs in two 
stages: a transient stage, where creep rates are initially high 
and decrease monotonically with time as stresses are redistrib- 
uted within the medium and steady-state creep where a dynamic 
stress equilibrium is established and creep rates become con- 
stant. Transient creep response in saltrock is a result of many 
factors, changes in stress, temperature, moisture content, but 
primarily is a result of changes in the microstructure of the 
material itself (Senseny et al., 1992). A true steady-state condi- 
tion is never attained because of the slow relaxation of stresses 
as the opening closes. However, determining steady-state creep 
rates for the intermediate term (years to tens of years) is im- 
portant for salt mining and storage applications. As the change 
in creep rate is small the constant creep rates can be assumed. 
Also, the assumption of a hydrostatic virgin stress state is rea- 
sonable because the highly viscous nature of the material will 
not allow high stress differences to be maintained. 

It is generally accepted that steady-state creep at low stresses 
typical of mined structures is best described by a power law. 
Because of the highly nonlinear nature of creep, analytic solu- 
tions are only possible for two-dimensional problems such as 
the axisymmetric circular case. For steady-state power law 
creep, an analytical solution for circular openings (Hardy et 
al., 1983) and a semi-analytical solution for elliptical openings 
(Bogobowicz et al., 1991 ) exist. The focus of this paper is to 
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extend the work done by Bogobowicz et al. for elliptical open- 
ings to rectangular openings with rounded corners. 

2 Shape Function for the Opening 
Excavated openings in saltrock are usually rectangular. Fol- 

lowing excavation there is a rock around the opening that fails 
in a brittle manner because of the high stresses that accompany 
excavation. Further strain-rate dependent brittle failure can oc- 
cur over some period (generally several months) because of 
high creep rates. In deep mines (high stress conditions) an 
elliptical effective opening is formed. Shallow excavations (low 
stress conditions) exhibit a rectangular effective opening with 
rounded corners (Mraz and Dusseault, 1986). A general shape 
function representing a wide range of realistic effective opening 
shapes bounded by the described cases is now introduced. 

For the problem considered, an infinite saltrock medium, S, 
is bounded by one simple contour, L, the shape of the effective 
opening. The region S is transformed onto the infinite plane 
with a circular hole ( / ~ / >  1 ) by the function (Muskhelishvili, 
1954): 

( m k , ( 1 -  m) k 2 ( 1 -  m) ) 
z = ~(~) ~ + ~ + ~2 + ~3 + . . .  (1) 

where m is the eccentricity. 
The first two terms of Eq. ( 1 ) correspond to an ellipse with 

center at the origin (Muskhelishvili, 1954), and the fourth term 
forces a rounded corner onto the ellipse. A realistic effective 
opening geometry for the problem considered is 

x = p + cosO +~-5(1 - m) cos30 

y = p - sin 0 - ~-5 (1 - m) sin 30, (2) 

i,e., 

m K(1 - m) 
z = ~ + ~ + ~3 (3) 

Because the third term is dependent on 30, we must make I K] 
sufficiently small to prevent looping of the surface contour at 
the corner. Figure 1 illustrates that to prevent inward curvature 
of the contour the minimum value of K is approximately -~; 
as K ~ 0, an elliptical shape is reached. 
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The plane-strain formulation for the steady-state closure of  a 
near-rectangular, single isolated opening in an indefinite visco- 
elastic medium is presented. A power creep law describes the 
creep behavior of the viscous medium. Because of the highly 
nonlinear nature of the creep, an analytic solution is not possi- 
ble for the proposed opening geometry, hence an approximation 
method based upon the minimum principle for velocities is used. 
The analytic function is used to describe the shape of  opening 
(circular, elliptical, and rectangular with rounded corners). 

1 Introduction 
The derivations in this paper result from saltrock creep re- 

search, but the solution is general enough to be used for any 
problem of steady-state viscous flow into a single isolated open- 
ing. The constraints are a power law creep formulation, an 
infinite isotropic viscous medium model, and hydrostatic load- 
ing at infinity. The formulation is strictly for steady-state creep, 
which implies constant creep rates due to uniform stress distri- 
bution in the viscous medium. Creep generally occurs in two 
stages: a transient stage, where creep rates are initially high 
and decrease monotonically with time as stresses are redistrib- 
uted within the medium and steady-state creep where a dynamic 
stress equilibrium is established and creep rates become con- 
stant. Transient creep response in saltrock is a result of many 
factors, changes in stress, temperature, moisture content, but 
primarily is a result of changes in the microstructure of the 
material itself (Senseny et al., 1992). A true steady-state condi- 
tion is never attained because of the slow relaxation of stresses 
as the opening closes. However, determining steady-state creep 
rates for the intermediate term (years to tens of years) is im- 
portant for salt mining and storage applications. As the change 
in creep rate is small the constant creep rates can be assumed. 
Also, the assumption of a hydrostatic virgin stress state is rea- 
sonable because the highly viscous nature of the material will 
not allow high stress differences to be maintained. 

It is generally accepted that steady-state creep at low stresses 
typical of mined structures is best described by a power law. 
Because of the highly nonlinear nature of creep, analytic solu- 
tions are only possible for two-dimensional problems such as 
the axisymmetric circular case. For steady-state power law 
creep, an analytical solution for circular openings (Hardy et 
al., 1983) and a semi-analytical solution for elliptical openings 
(Bogobowicz et al., 1991 ) exist. The focus of this paper is to 
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extend the work done by Bogobowicz et al. for elliptical open- 
ings to rectangular openings with rounded corners. 

2 Shape Function for the Opening 
Excavated openings in saltrock are usually rectangular. Fol- 

lowing excavation there is a rock around the opening that fails 
in a brittle manner because of the high stresses that accompany 
excavation. Further strain-rate dependent brittle failure can oc- 
cur over some period (generally several months) because of 
high creep rates. In deep mines (high stress conditions) an 
elliptical effective opening is formed. Shallow excavations (low 
stress conditions) exhibit a rectangular effective opening with 
rounded corners (Mraz and Dusseault, 1986). A general shape 
function representing a wide range of realistic effective opening 
shapes bounded by the described cases is now introduced. 

For the problem considered, an infinite saltrock medium, S, 
is bounded by one simple contour, L, the shape of the effective 
opening. The region S is transformed onto the infinite plane 
with a circular hole ( / ~ / >  1 ) by the function (Muskhelishvili, 
1954): 

( m k , ( 1 -  m) k 2 ( 1 -  m) ) 
z = ~(~) ~ + ~ + ~2 + ~3 + . . .  (1) 

where m is the eccentricity. 
The first two terms of Eq. ( 1 ) correspond to an ellipse with 

center at the origin (Muskhelishvili, 1954), and the fourth term 
forces a rounded corner onto the ellipse. A realistic effective 
opening geometry for the problem considered is 

x = p + cosO +~-5(1 - m) cos30 

y = p - sin 0 - ~-5 (1 - m) sin 30, (2) 

i,e., 

m K(1 - m) 
z = ~ + ~ + ~3 (3) 

Because the third term is dependent on 30, we must make I K] 
sufficiently small to prevent looping of the surface contour at 
the corner. Figure 1 illustrates that to prevent inward curvature 
of the contour the minimum value of K is approximately -~; 
as K ~ 0, an elliptical shape is reached. 
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3 Curvilinear Orthogonal Coordinates 
It is more convenient to use a system of curvilinear coordi- 

nates by considering the transformation (3).  The curvilinear 
orthogonal system for the problem at hand can be derived from 
the general strain equations for elastic problems: 

1 6V; + Ve 6g (4) 
ep; g 6p pg2 60 

1 6Vo V; 6(pg) 
Leo - + (5) pg 60 pg2 6p 

2Go=pUp ~ + ;  (6) 

where g(p, O) is the function of length transformation between 
the effective opening and a unit circle: 

2m rn_2 
g = 1 - 7 c o s 2 0  + p4 

) - + - -  1 m) cos 20 cos 40 + 9K 2 (1 m)2'~ 1/2 
p 4  ( --  --  p 8  ] ' 

4 Nonlinear Viscoelastic Problem 
The kinematics of the general problem (Eqs. (4) to (6))  are 

solved in terms of the flow velocity fields; up and u0. Addition- 
ally, the kinematic constraint of incompressibility 

Gp + ~00+ Lz~=O, ~ = 0  (8) 

and steady-state equilibrium state are assumed: 

&ru = O. (9) 
6xj 

Using the notion of stress deviator, 

• 1 aq = o'ij -- ~ o'rq, (10) 

where rr is the sum of principal stresses, we define the constitu- 
tive power-law creep equation in the form 

3 au a e  
du = ~ e 0 - -  - -  . (11) 

cry: \ go / 

where N is the power-law exponent, ao, ~o are material constants 
and 

cr,f = ~/3J= (12) 
where 

' " " ( 1 3 )  J2  = ~ Cr/jO'/j • 

The inverted form of the power creep law has the following 
form (Bogobowicz et al., 1991): 

2 e 0 " ( ,ef ~ ''N 
au = ~ a 0  eel \ ~ ]  ' (14) 

where 

~ef = ~ cu%. (15) 

5 Variational Approach to Steady-State Solution 
Gilormini and Montheillet (1986) and Bogobowicz et al. 

(1991) applied the minimum principle for velocities proposed 

by Hill (1956) to non-Newtonian flow problems in elliptical 
coordinates. The former deal with the deformation of an ellip- 
tical inclusion in a viscous matrix, while the latter present the 
approximate solution for closure of an elliptical opening in a 
viscous medium. 

The velocity field for a nonlinear flow problem which results 
in an equilibrium stress field minimizes the rate of energy dissi- 
pation on a set of all possible incompressible fields: 

D(eu)= fv (f~i'~,jd~i~)dV- fBaunjv, dB. (16) 

The first term represents the rate of energy dissipation in an 
element of the volume, V, of the medium, and the second term 
is the power input of boundary tractions, crun j, where n is the 
outward normal to the boundary B surrounding V. The form of 
the dissipation equation for the nonlinear power law viscous 
case can be written as (Gilormini and Montheillet, 1986; Bogo- 
bowicz et al., 1991): 

Nao~o GS dV - -  o6njv i dB. (17) 
D(G:) = N +1  \ ~o / 

Application of the minimum potential energy principle results 
in the following steps of computing: 

(1) Assume an incompressible velocity field. 
(2) Calculate the effective strain rate. 
(3) Calculate stress from Eq. (14). 
(4) Calculate D by integration over the volume. 
(5) Try all possible fields until a minimum is found• 

Many authors utilize a sufficiently wide set of physically 
admissible velocity fields to solve the specific problems (Gilor- 
mini and Montheillet, 1986; Budiansky et al., 1982). Bogobo- 
wicz et al. (1991) approached the problem of creep into an 
elliptical opening in a similar manner. The authors found that 
fields of linear and nonlinear problems are substantially differ- 
ent for high exponents of power-law viscosity. Both analytical 
study and finite element method extensive computations suggest 
the following form of the radial velocity field for non-Newton- 
Jan flow: 

Up(p, O) = _ V o ( 1  + f, COSpg 20 + f2 COSp2g 2 0  

cos 2__..............._0+ . . . ~ .  + (18) p3g ) 

Recognizing the incompressibility constraint and that the ve- 
locity functions must be single-valued functions of 0 (Bogo- 
bowicz et al., 1991), the form of the velocity fields used to 
describe flow into an elliptical opening are 

v p = - v o [ l + c ° s 2 0 ( ~ g g  + p2g c--2-2 + C ~ g ) ] ;  (19) 

vo= -Vo[~sin20(--~2Zg+ 2c3~ p3g]] • (20) 

These trial velocity functions are used for the closure problem 
for the near-rectangular opening. 

6 Minimization Procedure 
The minimization of the energy dissipation function (17) is 

performed subject to hydrostatic stress at infinity (or u = p~ru). 
In this case the boundary tractions become 

P® I" vflB = 27rp~vo. (21) 
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For 1/N = n, the function can be written as 

D= cro~o f fGc]("+~)dV_27rp=vo ' (22) n+ 1 Jr" "\do~ 

where 

: 4 ,2 ,2 Gy (~(epp + %o). (23) 

The radial and shear strain rates are obtained by solving the 
strain-rate partial differential equations, Eqs. (4), (5), and (6) 
in terms of the conformal mapping function (Eq. (7)) and the 
trial velocity fields (Eqs. (19) and (20)). The resulting radial 
strain rate is 

• V0 I m 2 6K 
epp = ~2g4 1 p4 p4 (1 m) 2m - cos 20 - cos 40 

27K 2 ] Vo C ,  [ m 2 
p8 ( l - m ) 2  +p~g4 cos20 1 p4 

6K m / 2m ) 
- p---T(1 - ) ~ - 7 c o s 2 0 -  cos 40 

27K2 ] 
- /9-- ~ ( l  -- m) 2 

× cos 20 - - ~ - ( 3  + cos 40)~ 2p 2 J 

pag4 (l -- m) (1 + 3 cos 40) 

} I~oC3 (cos 20 - cos 60) + p4g-----'X 

X {(3+mZp4 9Ka ) -- 7 ( 1 -- m) 2 COS 20 

o } 
~-3(3 + cos 40) + p-~g4 (1 - m) 

× (1 - cos 40) - (3 cos 20 - cos 60) . 

The shear strain rate is 

= pzg4Sln - 7 ( 1  - m) 4 c o s 2 0 -  m 

2VoCl [ m 2 6K 
+ ~ sin 20 1 + )-7 + -)-7 (2 + cos 40) 

9K 2 l V o C z  { 2m 
+ - ~ - ( 1 - m )  2 +- -s in202p3g 4 7 - ~ - c o s 2 0  

+ m 3m 2 9K 2 
p4 p8 

"/ 
- -  (1 - m)2~ + voc__._.~2 sin 20 

J 2p3g 4 

(3m )} 
X 7 (1 - m )  8 -  7 c ° s 2 0  + 5 c o s 4 0 )  

2v0 c3 { 2m m 2 
+ ~ s i n 2 0  3 - - 7 c o s 2 0  + p--7 

_ 9K___22 } 2v0c3 
p8 (1 - rn) 2 + p-~g4 sin 20 

× (1 - m )  2 - ~ c o s 2 0  + c o s 4 0  . (25) 

Thus Eq. (23) can be written as 

Gi = v0 ~/34- [ ( G S  + (Go) 2] = POdef (26) 

and the rate of energy dissipation becomes 

(27) 
n +  1 Jo Jo " " \ do / 

This equation is further simplified to 

D = 2w°°4°In@l (v'-2Y'+~\4o/ 

where the integral I is defined by 

1 f27r YO (-g-ff~r)"+lpg2dpdO" (29) 
I = 2-~ ,/o 

Note that in Bogobowicz et al. ( 1991 ) this equation contains a 
typographical error; the g term must be g2 as above. 

Finding the minimum of Eq. (28) with respect to vo yields 
the mean closure velocity over the whole opening surface: 

= . ( 3 0 )  
\ 1  O'o,/ 

Finally, the integral I is minimized with respect to constants 
cl, c2, and c3 defining the trial velocity fields. Evaluation of 
the infinite integral is simplified by performing the following 
substitution: 

1 1 
; = ~ ; p a p  = - ~ d~. (31) 

Therefore the integral can be written as 

I = 4--~ ~ (~{; + 4 ~ 0 )  ~.-1.gZd~dO" (32) 

For a circular opening (m = 0, ci = c2 = c3 = 0), 1 can be 
calculated analytically: 

N { 2 y '  l = ~ \ ~ ]  (33) 

If I is normalized by this constant, and new I0 introduced, then 
the solution becomes 

Vo =-~- O'o] " (34) 

Now I0, in its simplest form, is as follows: 

y01 [ - -  -](n+l)/2 f2~ 1 4{0)] ;"-'g2d;dO (35) 
Io = 27rN do ~5 (4{; + 
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Fig. 2 C o m p a r i s o n  of X b e t w e e n  el l iptical  and  n e a r - r e c t a n g l e  solut ion 

where the strain rates are given by Eqs. (24) and (25) with 
v0 set to unity and the variable substitution from Eq. (31) is 
performed. 

The integral is evaluated numerically using 15-point Gauss- 
Legendre quadrature. Once minimum l o ( N ,  m ,  c~, c2, c3) is 
found for each power exponent and eccentricity, the steady- 
state closure solution for the rectangular opening with rounded 
corner is solved in terms of variables Vo, vp, vo and X using the 
appropriate equations. Note that the eccentricity m in the shape 
formula is replaced in the computations by a "dynamic eccen- 
tricity" X = (vh - Vo)/(Vh + V~), where vh--horizontal velocity, 
v~ = vertical velocity. 

Results 
Bogobowicz et al. ( 1991 ) use the conjugate gradient method 

with linear search based on parabolic approximation combined 
with logarithmic golden-ratio search which utilizes a special 
concept of dividing an interval c = a + b into two intervals, a 
and b. Golden-ratio of the division is given by the formula: 
(log a/ log b) = (log b/ log ( a - b ) )  (Gottfried, 1983). Skew 
testing was applied in a minimization procedure. However, it 
was recently found that for the elliptical opening, by using a 
shrinking molecule method, identical results to those presented 
by Bogobowicz et al. (1991) are obtained. The minimization 
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procedure applied in this paper uses a Seven-node shrinking 
molecule which moves through c~, c2, c3 space until a minimum 
is reached. Comparison of the results obtained for an elliptical 
and a near-rectangular opening is presented in Fig. 2 -4 .  Com- 
pare to the elliptical results, the coefficient cl associated with 
the linear term is about double for the near-rectangular case, 
whereas the coefficients associated with the quadratic and cubic 
terms, i.e., c2, c3 have a slightly smaller contribution to the 
velocity fields (Fig. 4). The correlation exists between the semi- 
analytical solution and the FEM solution for eccentricity less 
than 0.6 (Fig. 3). Poor correlation thereafter is associated with 
finite boundary assumed in the FEM solution, as the computa- 
tions with different extension of the domain indicated. 

Conclusions 
Although it is difficult to assert with certainty that the trial 

velocity fields are ideal for the general case, from the computa- 
tions performed for elliptical and near-rectangular opening it 
appears that they are adequate. Some interesting properties were 
observed for the relative closure X introduced in the paper as 
"dynamic eccentricity." It was found that for all eccentricities 
and power exponents (both in elliptical and near-rectangular 
openings) the relative closure rates become constant after about 
three months, while the steady state is reached after about six 
years. It indicates that the rapid stress redistribution occurs early 
in the transient creep stage. We noted that the velocity field 
obtained from numerical calculations (FEM) along different 
lines bisecting the opening were linearly related. It is suggested 
(and it is a subject of further analysis) that it results from 
general properties of ellipses (Auerbach et al., 1935). 

Acknowledgment 
The author would like to thank Prof. Maurice B. Dusseault 

for his financial support and the MSc student, Pavel Vasak for 
his computations. The author is grateful to the referees for very 
careful reading of the manuscript and their suggestions. This 
manuscript has been submitted as a Brief Note but the author 
would like to inform that she considers finite boundary as an 
integral part of the computations in her research on boundary 
conditions influence and identification. 

References 
Aurebach, H., Mazur, S., Ulam, S., 1935, " S u r  une propriete caracteristique 

de l 'e l l ipsoide,"  Monatsheftefur Mathematik, Vol. 42, pp. 4 5 - 4 8 .  
Baar, C. A., 1977, Applied Salt Rock Mechanics, Elsevier, Amsterdam. 

1050 / Vol. 63, DECEMBER 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Bogobowicz, A.D. ,  Rothenburg, L., Dusseaultl M.B. ,  1991, "Solution For 
Non-Newtonian Flow Into Elliptical Opening," ASME JOURNAL OF APPLIED ME- 
CHANICS, Vol. 58, pp. 820-824.  

Budiansky, B., Hutchinson, J. W., and Slutsky, S., 1982, "Void Growth and 
Collapse in Viscous Solids," Mechanics of Solids, The Rodney Hill 60th Anniver- 
sary Volume, H. G. Hopkins and M.J.  Sewell, eds., Pergamon Press, Oxford, 
U.K., pp. 13-45.  

Gilormini, P., and Montheillet, F., 1986, "Deformation of an inclusion in a 
viscous matrix and induced stress concentration," Journal of Mechanics and 
Physics of Solids, Vol. 34, No. 1, pp. 97-122.  

Gottfried, B. S., and Weisman, J., 1973, Introduction to Optimization Theory, 
Prentice-Hall, Englewood Cliffs, NJ, pp. 80-83.  

Hardy, H. R., et al., 1983, "Laboratory and Theoretical studies relative to the 
design of salt caverns for the storage of natural gas ,"  VI Int. Symp. on Salt, Vol. 
1, Alexandria, VA, pp. 385-416.  

Mraz, D. Z., and Dusseault, M. B., 1986, "Effects of geometry on the bearing 
capacity of pillars in saltrock," CIM RMSCC Workshop, Saskatoon, Canada. 

Muskhelishvili, N. I., 1954, Some Basic problems of the Mathematical Theory 
of Elasticity, 4th ed., Noordhoff (1975), pp. 334-443.  

Senseny, P. E., Hansen, F. D., Russell, J. E., Carter, N. L., and Handin, J. W., 
1992, "Mechanical Behavior of Rock Salt: Phenomenology and Micromechan- 
isms," International Journal of Rock Mechanics and Mining Sciences & Geome- 
chanics Abstracts, Vol. 29, No. 4, pp. 363-378.  

Critical Angle of  Shear Wave 
Instability in a Film 9 

D. R. Woods 1°'~2 and S. P. Lin H'12 

The onset of instability in a liquid film flowing down an 
inclined plane may manifest itself as long surface waves (soft 
mode) (Benjamin, 1957; Yih, 1963) or short shear waves (hard 
mode) (Lin, 1967; DeBruin, 1974; Chin et al., 1986; Floryan 
et al., 1987), depending on the angle of inclination 0. Floryan, 
Davis, and Kelly (1987) showed that the change in the critical 
Reynolds number of the hard mode may not be monotonic as 
the angles of inclination 0 is reduced, or as the surface tension 
is increased. On the other hand the critical Reynolds number 
of the soft mode increases monotonically with reduction in 0 
for all surface tension. Hence, there exists a critical angle de- 
pending on the surface tension below which the film becomes 
unstable with respect to shear waves, and above which the 
film becomes unstable with respect to surface waves. Here, we 
confirm the finding of Floryan et al. by use of the Chebychev 
spectral method (Woods and Lin, 1995). Moreover, we obtain 
the upper bounds of the critical angle of inclination and the 
lower bound of the critical Reynolds number for all finite sur- 
face tension. 

Consider a uniform layer of liquid flowing down an inclined 
plane under the action of gravity. The basic flow which satisfies 
exactly the Navier-Stokes equations has a parabolic distribution 
of velocity ~(y) parallel to the incline (Benjamin, 1957; Yih, 
1963), where y is the distance measured perpendicularly to the 
flow direction from the middepth of the liquid layer in the unit 
of the half-layer thickness D. When such a parallel flow is 
perturbed by an arbitrary Fourier component of the two-dimen- 
sional disturbance, the amplitude of the velocity disturbance 
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must satisfy the Orr-Sommerfeld equation (Benjamin, 1957; 
Yih, 1963). 
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- i a  R e [ ( f f -  e)(~b" - az~b)  - ff"~b] = 0,  ( 1 )  

where ~b is the normal mode amplitude of the perturbation 
stream function 

qJ = ~b(y) exp[ia(x - et)]. (2) 

a is the wave number; x is the dimensionless distance measured 
in the flow direction; c is the complex wave speed; t is time; 
primes on ~b and ff denote differentiation with respect to y; and 
Re -= Reynolds number = U.D/u, U. and u being, respectively, 
the average velocity and the fluid kinematic viscosity. Upon 
substituting the Chebyshev series expansion of ~b(y) 

N 

qb(y) = Z a.T.(y) (3) 
n=O 

into the Orr-Sommerfeld equation and its boundary conditions, 
and demanding the coefficient of the nth order Chebychev poly- 
nomial T.(y) of the resulting equation to be zero (Woods and 
Lin, 1995), we have 
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[n2(n 2 - 1)/3 + a2]a.  + ff"(1)h = 0, (7) 
n=0 

N 
[n2(n 2 -  1)(n 2 - 4 ) / 1 5  

n=0 

- 3a2n 2 - ia Re(3/2 - c)n2]a,, 

- ia[(3 cot 0)/4 + a 2 ReWe]h = 0, (8) 

where Q = 3 Re/4, Re being the Reynolds number defined by 
Re = UaD/u, Co = 2, e,, = 1 (n > 0), We is the Weber number 
defined by We = S/pU2D, S being the surface tension, and h 
is the displacement of the free surface from its unperturbed 
position. Equation (4) corresponds to the Orr-Sommerfeld 
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The onset of instability in a liquid film flowing down an 
inclined plane may manifest itself as long surface waves (soft 
mode) (Benjamin, 1957; Yih, 1963) or short shear waves (hard 
mode) (Lin, 1967; DeBruin, 1974; Chin et al., 1986; Floryan 
et al., 1987), depending on the angle of inclination 0. Floryan, 
Davis, and Kelly (1987) showed that the change in the critical 
Reynolds number of the hard mode may not be monotonic as 
the angles of inclination 0 is reduced, or as the surface tension 
is increased. On the other hand the critical Reynolds number 
of the soft mode increases monotonically with reduction in 0 
for all surface tension. Hence, there exists a critical angle de- 
pending on the surface tension below which the film becomes 
unstable with respect to shear waves, and above which the 
film becomes unstable with respect to surface waves. Here, we 
confirm the finding of Floryan et al. by use of the Chebychev 
spectral method (Woods and Lin, 1995). Moreover, we obtain 
the upper bounds of the critical angle of inclination and the 
lower bound of the critical Reynolds number for all finite sur- 
face tension. 

Consider a uniform layer of liquid flowing down an inclined 
plane under the action of gravity. The basic flow which satisfies 
exactly the Navier-Stokes equations has a parabolic distribution 
of velocity ~(y) parallel to the incline (Benjamin, 1957; Yih, 
1963), where y is the distance measured perpendicularly to the 
flow direction from the middepth of the liquid layer in the unit 
of the half-layer thickness D. When such a parallel flow is 
perturbed by an arbitrary Fourier component of the two-dimen- 
sional disturbance, the amplitude of the velocity disturbance 
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must satisfy the Orr-Sommerfeld equation (Benjamin, 1957; 
Yih, 1963). 
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where ~b is the normal mode amplitude of the perturbation 
stream function 

qJ = ~b(y) exp[ia(x - et)]. (2) 

a is the wave number; x is the dimensionless distance measured 
in the flow direction; c is the complex wave speed; t is time; 
primes on ~b and ff denote differentiation with respect to y; and 
Re -= Reynolds number = U.D/u, U. and u being, respectively, 
the average velocity and the fluid kinematic viscosity. Upon 
substituting the Chebyshev series expansion of ~b(y) 
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qb(y) = Z a.T.(y) (3) 
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into the Orr-Sommerfeld equation and its boundary conditions, 
and demanding the coefficient of the nth order Chebychev poly- 
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where Q = 3 Re/4, Re being the Reynolds number defined by 
Re = UaD/u, Co = 2, e,, = 1 (n > 0), We is the Weber number 
defined by We = S/pU2D, S being the surface tension, and h 
is the displacement of the free surface from its unperturbed 
position. Equation (4) corresponds to the Orr-Sommerfeld 
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equation. Equations (5), (6), (7), and (8) arise, respectively, 
from the no-slip condition at the incline, the kinematic condition 
at the free surface, the tangential force balance at the free sur- 
face, and the normal force balance at the free surface. Equations 
(4) to (8) can be obtained from the related work of Woods and 
Lin (1995) by putting the amplitude of vibration of the incline 
to zero in their corresponding equations, i.e., from their Eqs. 
( 2 7 ) -  (32). The derivation is lengthy and will not be repeated 
here. However, the typographical errors in the coefficients of 
a, and d in their Eqs. (29) and (32) are corrected here. It should 
be pointed out that Q in their Eqs. (27) is equal to Re 2 Fr sin 0, 
except that the reference velocity used there is different from here. 

For a given set of parameters (Re, We, ~, 0), the homoge- 
neous system of Eqs. (4) to (8) constitute a Lanczos' (Orszag, 
1971 ) eigenvalue problem. IMSL subroutine DGVCCG is used 
to obtain the eigenvalue c. Cr gives the wave speed, and c~ gives 
the temporal growth rate of disturbances, if it is positive. The 
flow is stable if ci < 0. The flow is neutral if c~ = 0. The 
possible numerical inaccuracy, programing and syntax errors 
are tested according to the method described in the work of 
Woods and Lin ( 1995 ). The results to be presented are accurate 
up to the third decimal point. 

Figure 1 gives the neutral stability curves ci = 0 for the soft 
as well as hard modes for several small angles of inclination, 
and We = 0. The soft mode neutral curves for 0 = 0.6' and 
0.5' are not included because they are too close to the Re-axis 
to make the comparison of two modes sufficiently clear with 
the same length scale. However, the critical Reynolds numbers 
corresponding to these two cases are given in Table 1. In this 
table the critical Reynolds numbers for the hard modes are 
listed together with that given by DeBruin and Floryan et al. 
DeBruin's results are given in the first, and that of Floryan are 
given in the second parantheses. For the soft mode our results 
agree with that of Floryan et al., and DeBruin's results are given 
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Fig. 1 Effect of plane inclination on neutral curves 

Table 1 Critical Reynolds numbers 

H a r d  
Rc  

0 Sof t  p resen t  (DeBruin)  (F lo ryan  et al.) 

60' 72 (72) 5602 (5600) (5602) 
3' 1432 (1430) 3711 (3700) (3711) 
1' 4297 (4300) 5391 (5400) (5363) 
0.6' 7162 (--)  7392 (--)  (--)  
0.56' 7673 (--)  7981 (--)  (--)  
0.5' 8594 (8600) 8373 (8500) (8369) 

in parantheses. It should be pointed out that while the length 
and velocity are scaled, respectively, with D and Ua in this 
work, they are scaled with 2D and 3U,/2 in the works of 
DeBruin and Florryan et al. Therefore the critical Reynolds num- 
bers, Rc, including those indicated in Fig. 1 are multiplied by 
three before entering in Table 1. The Rc for 0 = 60' and 3'  
agree with that of Floryan et al. For 0 = 1' and 0.5' our Rc 
are slightly larger than that of theirs. Our results are much closer 
to that of Floyan et al. than that of DeBruin. Indeed, the critical 
Reynolds number of the hard mode first decreases with decreas- 
ing 0 but increases when 0 is further decreased below 3 '. The 
critical Reynolds number for the soft mode increases monotoni- 
cally with the decreasing 0. The critical Reynolds number for 
the soft mode remains smaller than that for the hard mode until 
0.56'. Below this angle the hard mode becomes more unstable 
than the soft mode. Thus, in a deep open channel flow along a 
gentle slope, one may observe tile growth of short shear waves 
under a relatively quiescent surface. At this critical angle both 
the hard and soft modes become unstable simultaneously at Rc 
= 7673. We found numerically, as Floryan et al. did, that the 
surface tension slightly stabilizes the hard mode at 0 < 4' .  
Therefore, the critical angle we found for zero surface tension 
provides the upper bound for the angle of inclination below 
which the hard mode is more unstable in a film with finite 
surface tension. Moreover, Rc = 7673 for the zero surface 
tension case offers the lower bound of Rc for the case of finite 
surface tension. 
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A General Formulation of the Theory of 
Wire Ropes ~ 

C. Jol ieoeur)  This paper presents an elegant way to extend 
a strand model into a wire rope model. The present writer has 
appreciated very much the basic principle of this work which 
consists in the replacement of the individual wires by structures 
that have a more complex behavior than wires and that need 
an increased number of parameters to describe this behavior in 
the rope. This is an approach that is related to the homogeniza- 
tion methods. 

The author used Costello's model (1990) as a starting point, 
and has extended it to incorporate the added parameters. He 
could probably have used another model, but this choice is a 
reasonable one since Costello's model has proven very reliable 
for strand modeling (Jolicoeur and Cardou, 1991 ). The equa- 
tions provided in the paper for the case of a linear strand should 
then give identical results with Costello's model. This was not 
demonstrated in the paper and the present writer has attempted 
to verify this. In so doing, some flaws have appeared in the 
formulation of the equations, hence the present discussion. 

The main problem identified is in the use of the term 
x/1 + k 2 (where k = tan a )  in Eqs. (39) and (53). As formu- 
lated, when doing the summation for as, for example, the terms 
corresponding to layers that have a left-hand lay (i.e., a > 90) 
take a negative value, leading to an incorrect result for a~. In 
other models, use is rather made of sin a and cos a and, in 
fact, the following identity 

1 
c o s a  = ~/1 + tan 2 a  

is valid for a < 90 deg. When a > 90 deg, a sign error occurs, 
leading to the aforementioned problem. To correct the error, it 
is recommended to replace ~/1 + k~ by 1/cos at in Eqs. (39) 
and (53). For the case of a linear strand, Eqs. (53) would be 
rewritten as 

a., = 7rEoRo 2 + ~ miEiRi4TiKi COS O/i 
,=1 [1 

X l+v-----'~ + v ,  R , K , ]  _] 
n 

b~ = - .= ~ miE iR i ' r iK i  cos a, 

[ ' i - - ~  ( l - v '  + k ~  4 ) ] 
× v, k, rt + 1 + b', RTK~ I/Z' 

t By W. Jiang and published in the Sept. 1995 issue of the ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 62, pp. 747-755.  

2 Department of Mechanical Engineering, Universite Laval, Quebec G 1K 7P4, 
Canada. 

i=1  

( 4)1 + l+k , :  l + v ,  RTK~ X, 

[/ d~ = 4(1 + v0) + ~ m, EiR~Ki cos 3 ol, 1 + 2k~ 
, =  1 4)] 

+ 1 + v-----~ 1 + v, R~K-""'~ 2 #' ' 

In addition to this, a typing error has been found in the second 
of Eqs. (57) where the term k,-1 should be replaced by ~ H .  

Results obtained with the modified equations have proven 
identical (to the fifth significative digit or better) with results 
obtained using Costello's (1990) model for two selected multi- 
layered strands, namely the Drake 26•7 ACSR and the Rail 45/ 
7 ACSR, which are referenced to in Jolicoeur and Cardou 
(1991, 1996). 
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A General Formulation of the Theory of 
Wire Ropes 3 

S. Sathikh 4, Jayakumar 4, and C. Jebaraj s. The author 
deserves congratulations for his significant contribution to the 
rope mechanics through this general formulation. The writers 
have two points for discussion. First, the question of symmetry 
of the response of a linear elastic strand or rope structure is not 
ensured in Eqs. (38) and (52) since b ~ c in Eqs. (39) and 
(53). Jolicoeur and Cardou (1991) have dealt with this subject 
of lack of symmetry in several earlier formulations, including 
the five references of Costello's team in this paper. They showed 
that the lack of symmetry does not significantly affect the re- 
sponses. The work of Kumar and Cochran (1987) is worth 
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4 Department of Mechanical Engineering, Crescent Engineering College, Ma- 
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mention since the formulation of the linearized problem is al- 
most similar to that of the present paper, though lacking symme- 
try. Only the symmetry of the problem and response would 
guarantee the correctness of the theory and the soundness of the 
method used. Incidently, in a complex rope structure symmetry 
could help simplify the computation, since b = c. Recently the 
team of the senior writer (Sathikh et al., 1996a) has identified 
the origin of the lack of symmetry and formulated the symmetric 
problem and its solution. 

This could be achieved only if the formulation follows Wempner 
(1973) and Ramsey (1990) by considering the wire stretch ~ as an 
independent parameter in the definition of the constitutive equations 
for H and G. Though the author has improved the formulation by 
considering ~, but only for H, this partial treatment does not guaran- 
tee symmetry and correctness. Hence, Eq. (8) for G also should 
include a term with ~ as Eq. (7) for H so that 

/4,. = ci~i + d,,A~-i (7) 

Gi = AiAKi + Bill. (D1) 

In order to explain this, the simplest example of a resting-lay 
strand with a rigid core and single layer of m helical wires and 
its linearized responses are considered neglecting the Poisson's 
effect. For this case it can be shown that 

= c s i n  2 a  + r t a n a 4 5 c o s  2 a  (D2) 

da = sin a cos a (e  - r tan a ~ )  (D3) 

AK = --sin 2ada 

= - s i n  2a sin a cos a(E - r tan aqS) 

AT = cos 2ada = cos 2a sin a cos a(e  - r tan cetb) 

where 

H = GJ(A~- + ~-~) 

G = EI(A~c + K~) 

(D4) 

(D5) 

(D6) 

(D7) 

GJ/EI = 1/(1 + u)  and I = 7rR4/4. (D8) 

It can be noted that from Eqs. (7) ,  (D1),  (D6) ,  and (D7) that 
the stiffness coefficients are 

Zi =EI; (B~i  ) = K ; ( c ~ j )  =~-;dl =GJ .  (D9) 

Substituting ~, £x~-, and Ax  in terms of e and gb, G and H in 
Eq. (1) for N, and in turn in Eq. (15) for F and M, it can be 
shown that in Eq. (52) b = c, and the new values are 

i f= ao + m{EA sin 3 a + [GJ cos 2 a 

+ E1 sin 2 a] cos 4 a sin a / r  2} (D10) 

= e-= m{EAr sin 2 a cos a + [GJ sin 2 a 

- El(1 + sin 2 a ) ]  sin 2 a cos 3 a/r}  ( D l l )  

d = d o +  m{EAr z s i n a c o s  2 a  + GJsin 7 a  

+ E l s i n a c o s 2 a ( 1  + s i n 2 a )  2} (D12) 

whereas the corresponding values of the paper from Eq. (53) 
a r e  

a = ff (D13) 

b = re{EAr sin 2 a cos a 

- [ E l s i n 2 a  + G J c o s 2 a ]  s i n 2 a c o s 3 a / r }  (D14) 

c = re{EAr sin 2 a cos a 

- [2Elcos 2 a  + GJsin 2a]  sin 2 a c o s a / r }  (DI5 )  
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d = do + m{EAr 2 sin a cos 2 a 

+ 2Els in  3 a c o s  2 a  + GJsin 5o~}. (D16) 

For the general formulation of the paper, this concePt could be 
readily extended to both resting-lay and closed-pack cases. 

Secondly, it is about the limitations of the use of Eqs. (43) 
and (59).  This expression was originally derived by Timo- 
shenko (1956).  This is for a case of uncored spring, though 
this fact is not explicitly visible. In fact, for a strand with no 
core-wire friction for the resting-lay case, what is derived by 
LeClair and Costello (1988) for a case with friction is appro- 
priate. However, the factor 2k ~-1 + k2)/(2 + • + 2k 2) = 2 
sin a / ( 2  + u cos / a )  in Eqs. (43) and (59),  for the practical 
range of a = 90 deg to 70 deg, is nearly unity and hence does 
not affect the results very much for frictionless contacts. A 
numerical comparison shows that the bending stiffness for a 
low friction typical (~-) strand has a factor 1.026 (LeClair Cos- 
tello Model 5 in Sathikh et al., 1996b) and 0.927 for a friction- 
less cored spring-like (4) strand (Model 5 in Sathikh et al., 
1996b) against 0.9234 for the uncored spring-like (~) strand of 
the paper (Eqs. (43) and (59)) .  

In fact, in a cored strand X :~ 0 and this warrants wire radial 
force to be nonzero, whereas Eqs. (43) and (59) assume X = 
0, as for an uncored spring. An elaborate study of the bending 
of a strand has been recently carried out by the senior writer's 
team (Sathikh et al., 1996b) which explains the importance of 
X ~ 0 .  
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Author ' s  Closure ~ 

Dr. Jolicoeur correctly points out that the use of the expres- 
sion, ~ + k 2, will cause a sign error in the case of a left-hand 
lay and suggests to replace it by 1/cos a. Alternatively, the 
author suggests to use the negative value of the ~/1 + k 2 in 
such a case to avoid altering the published expressions. From 
the mathematic point of view, a square root does have two 
signs. Dr. Jolicoeur also correctly points out that there is a 
typing error in Eq. (57). The author then notices a similar 
typing error in the second of Eq. (55), where hi-1 should also 
be replaced by/-zi-t. 

Dr. Sathikh et al. emphasize the importance of the symmetry 
of the linear force-strain relationships, Eqs. (38) and (52), and 
suggest to include a term with ~ into the G expression. The lack 
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of symmetry is very common in cable-wirerope analysis. The 
difference between b and c, however, is insignificant, as is already 
well known. It should be noted that while the satisfaction of the 
Maxwell-Betti reciprocal theorem does make the solution sound 
and consistent, a slight deviation from that theorem does not make 
the solution incorrect, because the Maxwell-Betti theorem was 
established on the linear theory, which is an approximation of the 
nonlinear theory with small terms being neglected. A fact is that 
the nonlinear solution is much more accurate, where there is no 
place for the Maxwell-Betti theorem. Of course, the symmetry of 
the problem and response would make the theory and method 
more ideal. The problem is thus whether any modifications are 
reasonable and can actually improve the accuracy. 

The author would like to suggest that Dr. Sathikh et al. further 
substantiate their modifications. First of all, the correctness of 
their Eqs. (D6) and (D7) needs to be proved, and how the axial 
strain ( can induce moments H and G in a wire should be 
explained. Note that Eq. (7) is justified in the wire rope analysis 
because of the well-known coupled extensional-torsional behav- 
ior of the cable structure. Note also that in the case of a wire 
such a coupled behavior is not considered in the paper (c = 0). 
Secondly, the use of Eqs. (D6) and (D7) only results in a slight 
change of Eq. (53), 

" miTfEiR~TiKi 
a ,=TrEoR~+ Z 4~/1 + g  

i=l 

[( ) ( - -  1 + k~ - -~-:5 Xi 1 + ~ - 1 + v~ X 1 + v~ KiKi / J 

b~ = - i mifrEiRi4r~Ki 
• i=l 4x/1 + k/2 

4 X [ ui kiri+ ( 1 
L 1 + vi 1 + vi 

miTr EiRi4 K i 

cs = - 4(1 + ki2) 3/2 
i=l 

X 1 + 1 + 2Uik~ ~ _  k~ + 1 + 2Vik~ + i 
1 + vi 1 + u~ 

- 7rE°R°4 + 4(1 + k~) 3/2 1 + 2k~ + k,r, 
dr 4(1+Uo) i=1 1 

+ k~ + 1 + 2V~k~ + #e (53) '  
l + l ) i  

and the symmetry can only be reached, as Dr. Sathikh et al. 
demonstrate, for a very special case of a single resting lay with 
a rigid core with no Poisson's effect, because at that time ki 
and #l assume very special values, 

X I - i  + / d  

klrl 

#l = 1 +k~" 

In general, ki, and #i are much more complex as are shown in 
the paper, and the symmetry still cannot be achieved. Note also 
that the difference between Eqs. (D10)-(D12) and Eqs. (D13)- 
(D16) is insignificant (of the order of R2/r2). 

Dr. Sathikh et al. then discuss the limitation of Eqs. (43) and 
(59), and indicate that "an elaborate study of the bending of a 
strand has been recently carried out." The details, however, are 
not given. The author would like to congratulate them on such 
an accomplishment. 

D i s c u s s i o n  

P. R. Heyliger 7. Two papers have recently appeared on 
the free vibration of elastic solids with traction-free faces (Liew, 
Hung and Lira, 1995; Young and Dickinson 1995). Several 
important related studies were not cited in either paper. These 
include the work of Demarest ( 1971 ), Ohno (1976), and Mind- 
lin (1986), who studied the rectangular parallelepiped, and 
Visscher and co-workers ( 1991 ), who examined a wide variety 
of shapes including spheres, cylinders, parallelepipeds, ellip- 
soids, pyramids, and cones. 
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The authors are indebted to Dr. Heyliger for his comment 
concerning their paper "Free Vibration of a Class of Homoge- 
neous Isotropic Solids" (Young and Dickinson, 1995) and for 
listing some additional important works on elastic solids with 
traction-free faces which were not cited in the paper. Particu- 
larly of interest is the comprehensive work by Visscher, Migli- 
ori, Bell, and Reinert (1991), of which the present writers were 
not aware, having overlooked it in the literature! It may be 
noted that two approaches are essentially the same since both 
seek solutions for which the Lagrangian is stationary and em- 
ploy the same simple polynomial basis functions. 
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of symmetry is very common in cable-wirerope analysis. The 
difference between b and c, however, is insignificant, as is already 
well known. It should be noted that while the satisfaction of the 
Maxwell-Betti reciprocal theorem does make the solution sound 
and consistent, a slight deviation from that theorem does not make 
the solution incorrect, because the Maxwell-Betti theorem was 
established on the linear theory, which is an approximation of the 
nonlinear theory with small terms being neglected. A fact is that 
the nonlinear solution is much more accurate, where there is no 
place for the Maxwell-Betti theorem. Of course, the symmetry of 
the problem and response would make the theory and method 
more ideal. The problem is thus whether any modifications are 
reasonable and can actually improve the accuracy. 

The author would like to suggest that Dr. Sathikh et al. further 
substantiate their modifications. First of all, the correctness of 
their Eqs. (D6) and (D7) needs to be proved, and how the axial 
strain ( can induce moments H and G in a wire should be 
explained. Note that Eq. (7) is justified in the wire rope analysis 
because of the well-known coupled extensional-torsional behav- 
ior of the cable structure. Note also that in the case of a wire 
such a coupled behavior is not considered in the paper (c = 0). 
Secondly, the use of Eqs. (D6) and (D7) only results in a slight 
change of Eq. (53), 

" miTfEiR~TiKi 
a ,=TrEoR~+ Z 4~/1 + g  

i=l 

[( ) ( - -  1 + k~ - -~-:5 Xi 1 + ~ - 1 + v~ X 1 + v~ KiKi / J 

b~ = - i mifrEiRi4r~Ki 
• i=l 4x/1 + k/2 

4 X [ ui kiri+ ( 1 
L 1 + vi 1 + vi 

miTr EiRi4 K i 

cs = - 4(1 + ki2) 3/2 
i=l 

X 1 + 1 + 2Uik~ ~ _  k~ + 1 + 2Vik~ + i 
1 + vi 1 + u~ 

- 7rE°R°4 + 4(1 + k~) 3/2 1 + 2k~ + k,r, 
dr 4(1+Uo) i=1 1 

+ k~ + 1 + 2V~k~ + #e (53) '  
l + l ) i  

and the symmetry can only be reached, as Dr. Sathikh et al. 
demonstrate, for a very special case of a single resting lay with 
a rigid core with no Poisson's effect, because at that time ki 
and #l assume very special values, 

X I - i  + / d  

klrl 

#l = 1 +k~" 

In general, ki, and #i are much more complex as are shown in 
the paper, and the symmetry still cannot be achieved. Note also 
that the difference between Eqs. (D10)-(D12) and Eqs. (D13)- 
(D16) is insignificant (of the order of R2/r2). 

Dr. Sathikh et al. then discuss the limitation of Eqs. (43) and 
(59), and indicate that "an elaborate study of the bending of a 
strand has been recently carried out." The details, however, are 
not given. The author would like to congratulate them on such 
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B o o k  Reviews  

Anisotropic Elasticity: Theory and Applications (Oxford En- 
gineering Science Series, Vol. 45), by T. C. T. Ting. Oxford 
University Press, New York, NY 1996. 570 pages. Price: 
$85.00. l 

R E V I E W E D  B Y  C. O. H O R G A N  2 

The author states in the preface to this book that, in the 
early 1980s, motivated by the upsurge in research on composite 
materials, he embarked on anisotropic elasticity research "with 
little background on isotropic elasticity" and "reluctant and 
apprehensive in venturing into anisotropic elasticity." He need 
not have worried. The book under review is a masterly account 
of the fundamental theory of linear anisotropic elasticity and 
its applications, with emphasis on the two-dimensional theory. 

The book consists of 15 chapters. Following a brief 30-page 
introductory chapter on a summary of relevant results from 
Matrix Algebra, Chapter 2 presents the basic stress-strain laws 
for general anisotropic elastic materials, including classification 
of materials according to the number of symmetry planes. Chap- 
ter 3 is concerned with the basic theory and applications of anti- 
plane shear deformations. It is refreshing to see this topic treated 
in a linear elasticity book before embarking on the considerably 
more-complicated plane problems. Chapter 3 discusses some 
very recent developments from the research literature on the 
anti-plane shear theory. The remainder of the book, except for 
the final Chapter 15, is concerned with the two-dimensional 
plane theory of elasticity. The well-known Lekhniskii formula- 
tion, involving a fourth-order partial differential equation for 
an Airy stress function, is briefly summarized in Chapter 4 ( 15 
PP). 

The remaining chapters form the core of this book. The author 
is one of the pioneers in the use of the Stroh formalism as 
an alternative to the Lekhnitskii approach, and this method is 
described in detail in Chapters 5 - 7  (108 pp).  As the author 
points out in the preface, this algebraic method was first devel- 
oped by A.N.  Stroh in 1958 and 1962; it has been widely 
used by the physics, materials science, and applied mathematics 
communities. The present account is the first to appear in book 
form, and the author clearly hopes to persuade solid mechanics 
researchers of its utility. A nice personal touch is provided at 
the end of Chapter 5, where a brief historical account, including 
a biography of Stroh (1926-1962),  is given. 

Applications of the Stroh formalism to special subjects are 
presented in Chapters 8-12,  whose contents may be surmised 
from the chapter headings. Topics covered include Green's 
functions for infinite space, half-space, and composite space; 
particular solutions, stress singularities, and stress decay; aniso- 
tropic materials with an elliptic boundary; anisotropic media 
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with a crack or a rigid line inclusion; and steady state motion 
and surface waves. The concluding three chapters are entitled 
"Degenerate or near degenerate materials," of which the iso- 
tropic materials are a special case; "Generalization of the Stroh 
formalism," which treats more general boundary conditions and 
extension to thermoelasticity and piezoelectric materials; and 
"Three-dimensional deformations." An extensive reference 
list, together with an author and subject index completes the 
book. 

In the preface, the author express the hope "that this book 
will be useful for the beginners as well as the more advanced 
researchers who are interested in anisotropic elasticity." This 
reviewer believes that this will certainly be the case. This is a 
carefully written account of the fundamental mathematics and 
mechanics of anisotropic linearly elastic solids by a leading 
researcher in the field. While the Stroh formalism dominates 
the treatment in the book (and is clearly the author's preference 
over the methods of Lekhnitskii), Anisotropic Elasticity: The- 
ory and Applications is a self-contained exposition of aniso- 
tropic linear elasticity that will undoubtedly become one of the 
classic reference books on the subject. 

The Stone Skeleton: Structural Engineering of Masonry Ar- 
chitecture, by Jacques Heyman. Cambridge University Press, 
New York, 1995. 160 pages. Price: $59.59. 

R E V I E W E D  B Y  J. H.  L I E N H A R D  3 

Jacques Heyman looks at ancient buildings in his book, The 
Stone Skeleton. Then he tells how the nature of structural design 
changed 400 years ago. The change began right after 1638 
when Galileo wrote a crude theory for calculating stresses in a 
cantilever beam in his Two New Sciences. Ever since then, 
structural engineers have focused on stress analysis. They have 
asked, in greater and greater detail, what loads cause beams to 
crack or arches to collapse. Ever since Galileo, new kinds of 
mathematics have steadily given us better means for answering 
those questions. 

Ancient and medieval design was another matter entirely. 
The old masons did not study the theorems and proofs of Euclid. 
Rather, they used their squares and compasses to form marvel- 
ous geometric shapes in stone. Masons found natural shapes 
that would remain in static equil ibrium--even when they were 
disturbed. As long as you do not subject stone to tension or 
shear forces that have the effect of sliding one stone on another, 
masonry stands up. The old cathedrals have repeatedly survived 
earthquakes and bombing raids that have leveled the cities 
around them. 

In 1675, a generation after Galileo, Robert Hooke made a 
point that dramatizes the way the old masons built with stone. 
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