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An exact solution is found for the problem of hydrostatic compression of an infinite
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body containing a spherical inclusion, with the elastic moduli varying with radius
outside of the inclusion. This may represent an interphase zone in a composite, or
the transition zone around an aggregate particle in concrete, for example. Both the
shear and the bulk moduli are assumed to be equal to a constant term plus a power-
law term that decays away from the inclusion. The method of Frobenius series is
used to generate an exact solution for the displacements and stresses. The solution

is then used to estimate the effective bulk modulus of a material containing a random
dispersion of these inclusions. The results demonstrate the manner in which a local-
ized interphase zone around an inclusion may markedly affect both the stress concen-
trations at the interface, and the overall bulk modulus of the material.

1 Introduction

The behavior of many composite materials is known to be
greatly affected by the interface between the matrix and the
inclusions. The earliest analyses of the mechanical behavior of
composites assumed that the two components are both homoge-
neous, and that the components are perfectly bonded across a
sharp and distinct interface (Eshelby, 1957; Hashin and Shtrik-
man, 1961). Later models considered the effect of sliding across
the interface (Aboudi, 1989; Jasiuk et al., 1992), debonding
between the inclusion and matrix (Benveniste, 1984 ), and other
effects. In some materials, the components are well bonded
to each other, but the interface is not sharp. In polymer-fiber
composites, for example, as well as in some metal-matrix com-
posites, diffusion of material between the matrix and fiber may
create an elastic moduli profile that smoothly varies from that
of the fiber to that of the matrix (Theocaris, 1992). In some
polymer composites, a binding agent is applied to the fibers to
promote adhesion between the fiber and the matrix (Drzal et
al., 1983). This binding agent may diffuse into the matrix during
the curing process, leading to a gradient in resin concentration.
This gradient, in turn, leads to a gradient in the elastic moduli.

In other cases, such as the transition zone around concrete
(Mehta and Monteiro, 1992), the moduli of the matrix varies
as the inclusion particle is approached, but the interface with
the inclusion is still distinct, since the inhomogeneous region is
restricted to the matrix phase. Nonuniformities in the hydration
process, caused by adhesion of water films to the aggregate
(inclusion) particles, leads to a “‘transition zone'’ that is charac-
terized by an increase in porosity near the inclusions, along with
other microstructural differences. Although little quantitative
analysis has been done to study the elastic moduli in this zone,
it seems clear that one effect will be to cause the elastic moduli
of the cement paste to decrease near the inclusions, as compared
to their values in pure cement paste.
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The types of materials described above cannot be adequately
modeled without accounting for the variation of elastic moduli
with radial distance from the center of the inclusion. This is
particularly true with regard to localized phenomena such as
stress concentrations. In this paper, we solve the problem of
hydrostatic compression of a body containing a spherical inclu-
sion, with a radially symmetric elastic moduli profile outside
of the inclusion. This solution is then used to estimate the effec-
tive bulk modulus of a body containing a random dispersion of
such inclusions.

2 Previous Models of Interphase Zones

Recognition of the importance of modeling the *‘interphase
zone'' in composite materials has existed for some time. Hashin
and Rosen (1964 ) developed a model for composites in which
a thin layer existed outside of each inclusion. The elastic moduli
were uniform within this layer, but different from those in the
matrix or inclusions. Use of this model for a material with an
inhomogeneous interphase will be problematic, however, as it
is not clear how one would choose a single pair of effective
elastic moduli to represent the entire interphase region. And
whereas this model may be useful in predicting the overall
moduli of a composite with an inhomogeneous interphase, it is
incapable of properly estimating the effect that the property
gradient has on stress concentrations (see Jayaraman and Reif-
snider, 1992, Fig. 5, for example).

A number of researchers have attempted to account for varia-
tions of the moduli within the interphase zone. Jayaraman and
Reifsnider (1992) considered a transition zone outside of a
cylindrical inclusion, and allowed the moduli to vary according
as r”, where § is some constant, As this variation would lead
to the moduli vanishing (or blowing up) far from the inclusion,
it was necessary to assume that the interphase zone terminated
at some specified distance from the inclusion, beyond which
lay the “‘undamaged’’ matrix material. In this approach, solu-
tions valid in the interphase region and exterior to the interphase
must be joined together by matching up the tractions and dis-
placements at the interphase/matrix boundary. This model is
more general than the three-shell model of Hashin and Rosen
(1964), in that it allows the moduli to vary within the interphase
zone. Our model is similar to that used by Jayaraman and Reif-
snider (1992), except that the moduli will vary continuously
throughout the entire region outside of the inclusion. Further-
more, we will be considering particulate composites with spheri-
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cal inclusions, rather than fiber composites with cylindrical in-
clusions,

3 Governing Equations for Radially Symmetric De-
formations

The derivation of the governing equation for radially symmet-
ric elastic deformation of a body whose moduli vary with radius
have been given by Herve and Zaoui (1993), Lutz and Ferrari
(1993), and others, and will be reviewed here briefly; an analo-
gous derivation for axisymmetric deformations in cylindrical
coordinates has been given by Kwon et al. (1994). The dis-
placement vector will have only one nonzero component, «,,
which will vary only with the r coordinate. Since there is only
one nonzero displacement component, the subscript r can be
dropped, and the displacement vector can be written as

u=[u(r, 8, ¢), ulr, 6, ¢), ug(r, 8, ¢)1 = [u(r), 0, 0].
(1)

The only nonzero components of the strain are (Sokolnikoff,
1956, p. 184):

_du
dr’

€ €= € =", (2)
r

where total derivatives can be used, since u does not depend

on & or ¢b. Two of the three equations of stress equilibrium are

identically satisfied; the third takes the form ( Sokolnikoff, 1956,

p. 184)

dry 2Ty — T — T
— 4 9,

dr r

(3)

The stress-strain equations take the usual form for an isotropic
material:

Tr = M€y + €gp + €4p) + 216, (4a)
Tao = M€, + €ap + €4g) + 2605, (4b)
Topg = A(G,r + €53 + 6@) + 2#6@5. (46‘)

These stress-strain relations remain valid even if the moduli
vary with position.

The stress-displacement relations are found by eliminating
the strains from Eqgs. (2) and (4):

ok 0 2N (5a)
dr r

di
=T = AT 20+ 0 2, (56)

Finally, we substitute the expressions for the stresses given by
Eq. (5) into the equilibrium Eq. (3), and allow the moduli A
and p to vary with r. This leads to the following equation that
governs radially symmetric deformations:

d du u dp | du u
Zlan+apZaonl| 2|2 _8lae 5
dr[(h #) dr % r] r [dr r] £
which can also be written as

2
o) + 2] G+ 2 - 2

dr* rdr r

+ NP+ 2 v avint=0, (7)
dr r

where the prime (') denotes differentiation with respect to r.
If both A and p were uniform, only the term inside the large
brackets would remain; this is the classical equation for radially
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Fig. 1 Schematic diagram of the moduli variation described by Eq. (8).
In this figure the Interphase zone Is a damage zone in which the moduli
are less than in the pure matrix material.

symmetric deformations that was solved by Lamé in 1859 (see
Rekach, 1979, pp. 50-51).

In the problem at hand, the moduli in the matrix vary
smoothly with radius, and approach those of the *‘pure matrix”’
component as r — . In general, the precise variation of the
moduli will not be known, although some measurements suggest
a power-law behavior (Theocaris, 1986, 1992). The main re-
quirements of the assumed modulus variation are that it decay
away from the interface, and asymptotically level off to some
constant value. Furthermore, we would like the values of the
moduli at the interface and at infinity to be controllable parame-
ters, and would also like to be able to control the extent of the
interphase zone. Finally, it will be convenient if the moduli
vary in such a way that the governing equation is of the form
that can be solved by the method of Frobenius, as done by Lutz
and Ferrari (1993 ) for the problem of a radially inhomogeneous
sphere. Bearing these factors in mind, we assume that the mod-
uli vary according to (see Fig. 1)

Mr) =N + Oy — W) (rla) ™7, (8a)
H(r) = pim + (i = pm)(r1@) ™7, (8b)

where « is the radius of the inclusion, the subscript m refers to
the pure matrix component, and the subscript if refers to the
interface with the inclusion. The parameter S controls the rate
at which the moduli decay away from the inclusion; larger
values of B correspond to interphase zones that are more local-
ized. It will be seen below that § must be an integer in order
for the Frobenius theory to apply. As the moduli variations are
never known precisely, restricting § to integer values poses no
serious limitation, in practice. Note that as { ., Ny, i, ty} are
all independently variable, the Poisson ratio of the interphase
zone is not restricted to be constant, as it has been in some
previous models. For notational convenience, we now rewrite

Eq. (8) as
AN(P) =N, + Xrf,
H(r) = pm + Br?,
where X = (\y — \y)a@?, and @ = (uy — pn)a’.

(9a)
(9b)

4 Solution of Governing Equation for an Inhomoge-
neous Matrix

An analytical solution to Eq. (7) can be found using the
classical method of Frobenius series. This method has pre-
viously been used by Lutz and Ferrari (1993) to solve the
problem of an inhomogeneous sphere under hydrostatic loading,
and by Mikata (1994) to find the thermal stresses in a fiber
composite with an inhomogeneous interphase zone. If we substi-
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tute Eq. (9) into Eq. (7), and then multiply through by r?, the
result is a second-order, linear ODE with variable coefficients,
which can be written in standard form (Boyce and DiPrima,
1969, p. 177) as

P(r)%w(r)%mum:m (10a)
P(r) = (N + 2@) + (N, + 2p,)7°, (10b6)
0(r) = 2P(Nr — R +2mr,  (100)

R(r)y = =2P(r)r? — 2pxr™% (10d)

For physically realistic values of the various moduli parameters,
this equation will have a regular singular point at r = 0, since
P(r) is analytic at the origin, Q(r) has a pole of order one,
and R(r) has a pole of order two. Hence, the equation could be
solved by a Frobenius series expansion about r = (. However, as
the matrix occupies the region r > a, it seems more natural to
expand the solution about r = o, which is also a regular singular
point of Eq. (10). By expanding about r = ce, a solution can
be found that is in a sense a perturbation of the known solution
for a homogeneous matrix.

We therefore first let ¢+ = 1/r, which has the effect of trans-
forming the singular point at » = % to the origin 7 = 0 (Codding-
ton, 1961, pp. 180—181). The coefficients P(r), Q(r), and
R(r) in Eq. (10) transform by simply replacing r with 1/1,
whereas the derivatives of u(r) transform according to the chain
rule, as follows:

du _ di di

—ldi . di

R e 1
dr dtdr r* dt dt (2

d’u , d , di L d . di

— =t | ==+ 22—, 12

dr? Y [ a Car dt (12)

where we distinguish between the two functions «(r) and 4(7)
= u(1/r). The resulting differential equation for 4(¢) is

d*i i

P(1) P i O(t) %I- FR(DA = 0, (13a)

P(t) = (N, + 2u) + (X + 28)1°, (13b)

O(1) = B(X + 2@, (13¢)

R(1) = =2(N\y + 2u)1 72 — 2[X(B + 1) + 2@1¢772, (13d)

If # is a non-negative integer, Eq. (13) will have a regular
singular point at + = 0, in which case we look for general
solutions of the form

a(r) = Y Ca"™, (14)

=i}

where the C, are constants, and m is a parameter that is a priori
unknown. We now substitute the series given by Eq. (14) into
Eq. (13), multiply out all the terms, and group together terms
that are multiplied by the same power of 7, to arrive at

z {)\m + zﬂm}[(ﬂ +m - 1)(” + m) - 2](:13”.“". ?

n=0
+ X (N +2m)(n+m—1)(n+m)
n=0
+ B(n+m)— 2] — 26N} Ct"" A =0, (15)

In order for a power series to sum to zero, the coefficient of
each power of r must vanish identically. Since 8 > 0, the
lowest-order term appearing anywhere in Eq. (15) is "2,

Journal of Applied Mechanics

which occurs in the first sum when n = 0. Setting the coefficient
of this term equal to zero leads to the indicial equation

(m—1ym—2=0, (16)

The two roots of the indicial equation are m; = —1 and m; =
2. Usually, each of the two roots leads to a different power
series solution. The case where the two roots differ by an inte-
ger, however, is a special case that usually causes one of the two
linearly independent solutions to have a logarithmic dependence
(see, for example, Mikata, 1994), However, it so happens that
our problem is a special subcase again, in which two indepen-
dent power-series solutions do exist. When this occurs (see
Butkov, 1968, p. 147), both solutions can be found by using
the smaller of the two indices, which is —1. It is difficult to
see a priori that this special subcase will occur, other than by
attempting to find the logarithmic solution, and determining that
it vanishes. In order to present the solutions in as succinct a
manner as possible, we will derive both solutions using the
index m, = —1.
With m = —1, Eq. (15) takes the form

z (}\m o zlu'm)n{.n - S)Cnt"_s

n=0

+ E {(X+2m)[n® = (3 + B)n + 28]

n=a
—28K}Copt™? =0, (17)

where we have rewritten the second sum in terms of "%, in
order for it to be of the same form as the first. We now set the
coefficient of each power of ¢ equal to zero, starting with the
lowest power, which occurs when n = 0. In order to avoid
discussing special cases, we now limit our treatment to values
of B8 > (m, — m;) = 3. This restriction causes no real loss of
generality, since relevant values of 3 are probably very large.
For example, Theocaris (1986) fitted power-law-type curves to
elastic moduli in an interphase zone in a set of E-glass fiber-
epoxy resin composites, and found values of S on the order of
100. Values of S = 3 would correspond to interphase zones
whose thicknesses are larger than the inclusion radius.

For all values of n from 0 to 8 — 1, only the first summation
contributes a "~ term. Because of the appearance of n(n — 3)
in the first summation, we see that Cy and C; can be arbitrary;
all other values of C,, for n = 8 — 1, must vanish. For n =
B, setting the coefficient of t"* equal to zero in Eq. (17) yields
a recursion relation between C, and C,_;:

C, = —{(N+ 2@ [n*— (3 + B)n+ 20] —ZﬁX}C,,_g’ (18)
?I(ﬂ - 3)(Rm + z}u'm)

which can also be written as

—{(X+2m)[n* + (B—3)n— B] - Zﬁi}c.._
(n + ﬁ)(ﬂ + )6 - 3)(?\»1' + 2”4\")

Equation ( 19) shows that the arbitrary constant Cy will generate
nonzero constants Cg, Cyg4, etc., whereas the arbitrary constant
C; generates Cp.s, Cagia, etc. Hence we have two linearly
independent solutions of the forms

Canﬁ: (Ig)

ﬁl(f) = r-l z Cnﬁf"ﬁ,
ne=0

(20)

L) =113, Cnﬁﬂfﬂﬂ”-
n=0

(21)

In order to simplify subsequent calculations, we note from Egs.
(9), (18) that since all the moduli with overbars actually con-
tain a factor a”, a factor of " can be factored out of each C,;
hence, we define I', = C,a ". Next, we revert back to the
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physical variable r, by substituting t = 1/r in Egs. (20), (21),
in which case the two independent solutions can be written as

wi(r) =r X Tylalr)™”,

n=0

u(r) = r 2, Tupslalr)™*3,
n=0

(22)

(23)

where the I', are found from the recursion formula (18), with
X replaced by Ay — \,,, & replaced by py — ., and Ty = T
= 1. The general solution outside of the inclusion is therefore
given by

u(r) = A (r) + Agup(r), (24)

where the two constants A, and A, will be chosen so as to satisfy
the boundary conditions. Before doing this, however, we briefly
discuss the convergence of the two series solutions.

5 Convergence of the Solutions

To test the convergence of the series solutions, the ratio test
can be applied to pairs of successive nonzero terms. For each
of the two solutions, Eqgs. (9), (18), (22), (23) can be used
to show that the limit of the absolute value of the ratio of two
successive nonzero terms is given by

rn+ﬁ(ﬂlr);x+m+,ﬂ

l.
im [‘ﬂ(a}r)n+m

]

s I(hl'f + 2}"‘4) — (M + 2p'm)|
[ Mw + 240

(alr)?. (25)

In order for the series to converge for all » = a, which is to
say for the entire region outside of the inclusion, we need

|(h{.f' + 2”’.!}'} S (‘\m + 2||u'm)|

[N + 24) |
But A + 2u = K + 4u/3, where K is the bulk modulus, and as
all stable solids have positive values of K and p, it is expected

that ,, + 2u,, > 0. Hence, Eq. (26) is equivalent to the condi-
tion

<L (26)

0 < (A + 28 < 2(\m + 2m). (27)

The combination M = \ 4+ 2 is the elastic modulus that governs
the velocity of compressional waves. The condition that M be
non-negative throughout a body is sufficient to guarantee the
existence of solutions to certain elastostatic boundary value
problems (Gurtin, 1972, pp. 102-110). Hence it is plausible
that a nonpositive value of the compressional wave modulus at
the interface between the matrix and the inclusion will prevent
the series solution from converging. However, as mentioned
above, it is expected that the condition Ay + 2p; > 0 will
always be satisfied. As all the moduli {\, y, K, M, etc.} are
assumed to have the same r~# dependence, we see that the
series will converge for all cases where the elastic moduli are
lower in the interphase zone than in the undisturbed matrix
material.

Equation (27) also implies, however, that the series will not
converge if the modulus My is more than twice as large as the
compressional wave modulus of the pure matrix. As there is
nothing physically unrealistic about having M; > 2M,,, we
would expect a solution to exist in these cases. The reason that
the series fail to converge is related to the fact that, for large
n, the series essentially behaves as power series in the parameter
(My — M,,)/M,,; this can be seen from Eq. (18). Since power
series always converge inside some disk in the complex plane,
and diverge outside of that disk, the existence of a physical
singularity at (M, — M,,)/M,, = —1 causes the series to diverge
when (My — M, )IM, > +1. A similar situation arose in the

858 / Vol. 63, DECEMBER 1996

solution of the problem of compression of a radially inhomoge-
neous sphere (Lutz and Ferrari, 1993). The difficulty can be
circumvented by subjecting the series solution to an Euler trans-
formation (Hinch, 1991; Lutz and Ferrari, 1993), which trans-
forms the divergent series into a convergent one. The method,
although cumbersome, is straightforward, and for computational
purposes is readily implemented on a computer. For illustrative
purposes, therefore, only cases for which M < 2M,, will be
considered, in which case the Euler transformation is not
needed.

6 Spherical Inclusion in an Inhomogeneous Matrix

Using the general solution for the displacements in the matrix
region r > a, we now solve the problem of a homogeneous
spherical inclusion inside a radially inhomogeneous matrix
whose moduli vary according to Eq. (9), subjected to uniform
hydrostatic pressure of magnitude P at infinity. The subscript i
will be used to denote the elastic properties of the inclusion. In
the matrix region r > a, the solution will be of the form given
by Eq. (24), with appropriate choices for the constants A, and
A,. In the inclusion, the solution will have the form appropriate
for radially symmetric deformations of a homogeneous material
(Rekach, 1979):

u(r) = Byr + Byr2, (28)

Four boundary conditions are needed to determine the four
constants {A;, A;, B,, By }. These conditions are that 7,.(r) =
P as r— o, 7,(r) and u(r) must be continuous at r = 4, and
u(r) must be finite as r — 0.

The condition at » = 0 shows that B, = 0. To apply the
condition T,,(r) — P as r = =, we need expressions for the
stresses 7),.(r) and 72(r) that are associated with the displace-
ments «,(r) and u,(r). From Eq. (5a) and Egs. (22), (23),
we find

'r:,(f'} = [3%(?’) I 2#(?’)] E ]""ﬁ(a_,rr)uﬁ

n=0

= [N(r) + 2u(r)] X nBT.p(alr)™, (29)

n=0

T5(r) = [BN(r) + 2(r)] X, Topealalr)y™*?

n=i

— [A(r) + 2u(r)] X (nB + 3)Tupealalr)™*?,  (30)

n=0

where A(r) and p(r) are given by Eq. (9). Now as r = =, A(r)
= Ny and g = p,, so we see from Egs. (29), (30) that
TL(r) = (3N, + 2u,) = 3K,,, whereas 72(r) — 0. Hence we
must have 3K,,A, + 0A, = P, which implies

P

Al:ﬁ.

(31)

Now consider the continuity conditions at » = a. The dis-
placement field inside the inclusion is given by u(r) = Br, so
that in the inclusion, u(a) = B,a. Equating this value to the
displacement in the matrix at r = a, using Egs. (22)-(24),
(31), gives

P -« o
B1 = - z T,,ﬁ + Az z r‘,.5+3.

(32)
3Kﬂl n=0 n=0

The final equation needed in order to solve for the remaining
constant A, is found by considering continuity of the normal
traction 7,, at r = a. Equations (5a) and (28) show that inside
the inclusion, 7,.(a) = 3K, B,. Using Eqgs. (28)-(30) to find
T.(@) outside of the inclusion, and equating it to 7,.(a) inside
the inclusion, leads to the condition
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P . %
3K,B, = K [N + 2pp) X Top = (N + 2 X nfTp)

n=0 n=0

+ Al BNy + 21 X Topia

n=0

= (\p+ 2u) X (nB + 3)Tpis]. (33)

n=0
Simultaneous solution of Eqgs. (32), (33) yields

o 0

3(Ki—Kp) Z Top+ (N4 29 Z npTl
n=0

n=0

-P

A2=_ ™

3K, —Kp) S Tupas + Oy + 2 = (18 +3)Topas
n=0 n=0

(34)

This completes the solution, with the displacements given by
Egs. (22)~(24), (28), A, given by Eq. (31), A, given by Eq.
(34), B, given by Eq. (32), and B, = 0.

7 Stresses in the Matrix and Inclusion

To illustrate the effect that the interphase has on the stresses,
consider a composite for which g = \; = 5u,, = 5\,,, which
implies v; = v, = 0.25. As the variation in Poisson ratio is of
lesser importance than are the variations in the moduli them-
selves (cf., Jasiuk and Kouider, 1993), we will also take v =
0.25 throughout the interphase. (Note, however, that our solu-
tion is valid for arbitrary Poisson ratios, including cases where
v varies throughout the interphase zone). The parameter f§ is
taken to be 10, corresponding to an interphase zone whose
thickness is about 0.25a. The degree of inhomogeneity will be
quantified by a local damage parameter, defined by D = (M,
— My)/M,,. We will consider the cases in which the interface
is either 50 percent stiffer than, or 50 percent less stiff than,
the pure matrix component, i.e., D = *0.5. The radial stress
7.(r) is found from the linear combination A,7}(r) +
A,72.(r), where 7},.(r) are given in Egs. (29), (30), the A, are

20

0.5

NORMALIZED RADIAL STRESS, /P

0.0 T T T T
0.0 0.5 1.0 1.5 20 25 3.0

NORMALIZED RADIUS, r/a

Fig. 2 Radial stress 7, for the case of hydrostatic compression of a
body containing a single spherical inclusion surrounded by an interphase
zone. Positive values of D correspond to a damaged interphase zone,
as shown In Fig. 1, whereas negative values correspond to an interphase
that is stiffer than the pure matrix material. See text for the moduli values
used in the calculations.
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3 B2080,....
b
D = 0.00
‘5 -
" D=- .5_0
0.0 T T T T T
0.0 0.5 1.0 1.5 20 25 3.0

NORMALIZED RADIUS, r/a

Fig. 3 Hoop stresses 74 = 744 for the situation shown in Fig. 2. Note
that, unlike the radial stress, the hoop stress need not be continuous at
the interface between the inclusion and matrix.

given by Eqgs. (31), (34), and the moduli are given by Egs.
(8a, b). The hoop stresses are found from the same equations,
after replacing (A + 2u) by A, and replacing A by (A + ), as
indicated by Eq. (5). The radial stress, 7., and the hoop
stresses, T4y = Tgg, are shown in Figs. 2 and 3. Also shown in
each figure are the stresses that would be found in the absence
of an interphase zone, which corresponds to taking D = 0. The
altered moduli of the interphase zone are seen to alter the local
stresses both within the interphase zone and inside the inclusion.
The region outside of the inclusion in which the stresses are
perturbed is essentially confined to the interphase region, as can
be seen by comparing Figs. 2 and 3 to Fig. 1, which is drawn
to a scale that corresponds to the present case of 8 = 10.

8 Effective Bulk Modulus

The solution derived above for the stresses and displacements
is an exact solution to the problem of a single inclusion embed-
ded in an infinite matrix, with an interphase zone described by
a power-law variation in moduli. We will now use this solution
to estimate the effective bulk modulus of a material that contains
a dispersion of such inclusions. In general, effective moduli of
materials consisting of discrete inclusions in a matrix can be
found rigorously only to first order in the inclusion concentra-
tion. Although various approximate methods have been used to
estimate effective moduli at higher concentrations, there is as
yet no agreed-upon method for doing so; see Christensen
(1990), Zimmerman (1991), and Ferrari (1994) for critical
discussions of some of the existing methods. Nevertheless,
methods exist that are known to be reasonably accurate for
materials with isotropic spherical inclusions. With this in mind,
we will use a method for estimating the effective bulk modulus
that is correct to first order in concentration, and which, in the
case when the matrix becomes homogeneous, reduces to the
result found by Mori and Tanaka (1973), Christensen (1979),
Ferrari (1994) and others, which is known to be reasonably
accurate for moderate values of the inclusion concentration.

The effective bulk modulus K of an inhomogeneous body
can be found (Willis, 1981, pp. 7-13) by subjecting the body
to hydrostatic loading of magnitude P, and then comparing the
strain energy stored in the body to that which would be stored in
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an identically shaped homogeneous body. Consider a spherical
region of radius b, centered on a single inclusion. The strain
energy stored in this region can be computed from (Sokolnikoff,
1956, p. 86)

U=§fﬁu;dv+%f T, dA, (35)
1 a0

where §) is the spherical region r = b, 5} is the boundary » =
b, f; are the components of the body force vector, and T; are
the components of the surface traction vector. In the present
problem, the body force is zero, the only nonzero component
of the displacement vector on 91 is u,, and the traction vector
is 7,,. (For clarity, we henceforth will write u, instead of u.)
Due to the radial symmetry of the problem, both u, and 7,, are
uniform on 9€2. Hence,

U= %Ln Tty dA = Y 7,(b)u,(b)](47b?)

= 2wb*r,,.(b)u,(b). (36)
For the hypothetical homogeneous body, the radial displace-
ment would be given by u,(r) = 7,,(b)r/3Ky (Rekach, 1979),
50 that

Tn(B)b _ 27b?

(D)2
TERET S [7(£)]

U = 2nwb*r,(b)

37)

We now equate the strain energy stored in the actual inhomo-
geneous body, as given by Eq. (36), to that stored in the homo-
geneous body, as given by Eq. (37), and solve for

br(b) _ 7.(b)

anf = = B
3u,(b)  3u.(b)/b

(38)

where we move the b term to the denominator in order that
both numerator and denominator have finite values as b — oo,
In order to utilize the solution for a single inclusion in an infinite
body, we let b — =, in which case we arrive at

lim 7,,.(b)
b

) lim{ Tur(b) }: ‘ :
y | 34,(b)/b | 3 lim [4,(6)/b]
b

(39)

If we were to evaluate the limits in Eq. (39) by fixing @ and
letting b — o, the effect of the inhomogeneity would be lost.
Instead, we first recognize that (a/b)® = ¢, the volume fraction
of the inclusions, and then renormalize by putting (a/b)? = ¢
> () before taking the limit. Furthermore, we ignore all powers
higher than ¢ that appear; this is justified by noting that these
powers will be of the form ¢?2, ¢2”, etc., and we expect, as
mentioned above, that 4 = 1. Using Eqgs. (22)-(24) we find
that

lim [w,(b)/b] = A, + Azc, (40)
b
and using Eqgs. (24), (29), (30) we find that
lim 7,.(b) = 3K,,A, — 4u,Axc. (41)
B
Equations (39)—(41) can then be solved for
At
l + — fc
Ko = 3K 5 (42a)
K, 1 -fe
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Fig. 4 Effective bulk modulus of a material containing a volume fraction
c of inclusions, each surrounded by an interphase zone. The bulk modu-
lus is calculated from Eq. (42), using the moduli parameters that are
listed in the text.

where
_ A
A
3(!{, - Kar) z r,u; + (h'lf + 2,1'..&,}') z ﬂ.,@l—‘"ﬂ
- n=(0 n=0
3(Ki —Kp 2 Thpea + (N + 2u) 2 (0B + 3) 54
n=( ne=l

(42b)

In the limiting case where the interphase zone is homogeneous,
I'n=T5=1,allother ', = 0, K; = K,, etc., so f— 3(K, —
K.)/(3K; + 4u,), and Eq. (42) reduces precisely to the result
that has been found by Mori and Tanaka (1973), Christensen
(1979}, and others. As that expression is known to be accurate
for small to moderate values of ¢, it seems reasonable that
Eq. (42) will have similar accuracy when the interphase is
inhomogeneous; in any event, Eq. (42) is exact to first order
in c.

To study the effect that the inhomogeneous interphase zone
has on the overall effective bulk modulus, we again utilize the
local damage parameter D = (M,, — M;}/M,,. In order to focus
on the effect of the variation in stiffness, we again take v; =
vy = vy = 0.25, in which case D can also be expressed as (K,
— Kjp/K,. Figure 4 shows the effective bulk modulus as a
function of the inclusion concentration, for the case 8 = 10,
and various values of D. The curve for D = 0 coincides with the
Mori-Tanaka prediction, as well as with the Hashin-Shtrikman
lower bound (see Christensen, 1979). As the moduli at the
interface decrease, the damage parameter D increases, and the
effective moduli decrease, as expected. Negative values of D,
on the other hand, correspond to an interphase zone that is
stiffer than the pure matrix; this can occur in a metal-matrix
composite, for example, if the inclusion material diffuses into
the matrix. In these cases, the interphase zone causes an increase
in the effective bulk modulus.

9 Summary and Discussion

An exact closed-form solution has been found for the hydro-
static compression of a body containing a spherical inclusion
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that is surrounded by an inhomogeneous interphase zone. The
elastic moduli outside of the inclusion are assumed to be de-
scribed by a constant term, plus a term that decays like r=#,
where 8 is an integer greater than 3. This model is similar
to those used by Theocaris (1986), Jayaraman and Reifsnider
(1992), Jasiuk and Kouider (1993) and others, with the excep-
tion that the moduli are allowed to smoothly vary from the
interface out into the matrix. This may be advantageous for
applications to composites whose moduli vary continuously out-
side of the inclusions, as opposed to those in which the in-
terphase is a distinct region formed by, say, application of a
fiber coating. Furthermore, this smooth variation of the moduli
permits a closed-form solution to be found, without requiring
different solutions to be pieced together at the interphase/matrix
““‘interface’’. '

The presence of the interphase zone was found to have an
effect on the stress concentrations around and within the inclu-
sion. The stress within a stiff spherical inclusion is in general
greater than the applied far-field stress. This effect is mitigated
by the presence of a damage zone outside of the inclusion. One
way to see why this occurs is to realize that in the limiting case
as D — 1, the elastic moduli at the inclusion matrix boundary
will vanish, and the inclusion becomes ‘‘uncoupled’’ from the
matrix, in which case no stress can be transmitted to it.

The solution was then used to estimate the cffective bulk
modulus of a material that contains a random dispersion of such
inclusions. In the limiting case of a homogeneous matrix, the
expression found for the effective bulk modulus agrees with the
result found by Mori and Tanaka (1973), Christensen (1979),
Ferrari (1994), and others. The presence of a weakened in-
terphase zone leads to a lowering of the effective moduli,
whereas an interphase zone that is stiffer than the pure matrix
phase causes an increase in the effective bulk modulus.
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A least-squares-based pressure projection method is proposed for the nonlinear anal-
ysis of nearly incompressible hyperelastic materials. The strain energy density func-
tion is separated into distortional and dilatational parts by the use of Penn's invari-
ants such that the hydrostatic pressure is solely determined from the dilatational
strain energy density. The hydrostatic pressure and hydrostatic pressure increment
calculated from displacements are projected onto appropriate pressure fields through

the least-squares method. The method is applicable to lower and higher order ele-
ments and the projection procedures can be implemented into the displacement based
nonlinear finite element program. By the use of certain pressure interpolation func-
tions and reduced integration rules in the pressure projection equations, this method
can be degenerated to a nonlinear version of the selective reduced integration method.

1 Introduction

The use of rubber materials for engineering applications is
very broad, including engine mounts, bushings, building and
bridge bearings, vehicle door seals, tires, solid rocket motor
flexseals, o-rings, off-shore structure flexjoints, and gaskets.
These applications utilize the uniqueness of rubber being soft,
highly extensible, and highly elastic. To date, laboratory testing
and simple equations based on small strain theory are still the
primary methods used in the design of rubber products, The
main cause of this design process is due to the level of difficulty
in performing nonlinear finite element analysis of rubber com-
ponents which usually experience very large deformation under
normal service conditions. The nearly incompressible nature of
rubber also adds additional difficulties to the numerical treat-
ment of volume conservation. Therefore, an effective finite ele-
ment formulation that can handle material incompressibility un-
der large deformation is highly desirable for the analysis of
rubber components. Further, strain energy density functions ap-
plicable to highly nonlinear and complex deformation problems
are also essential to the success of finite element prediction.

Problems arising from the numerical treatment of the incom-
pressibility constraint were first addressed by Herrmann (1965).
Mixed formulations have been used successfully for incom-
pressible and nearly incompressible media. In linear elasticity,
the Herrmann principle (Herrmann, 1965) was the first effective
method to handle the incompressibility constraint and is re-
garded as a reduced form of the Hellinger-Reissner variational
principle. The extension to orthotropic materials was later made
by Taylor et al. (1968). A modified Hellinger-Reissner princi-
ple was proposed by Key (1969) for incompressible and nearly
incompressible anisotropic linear elasticity. Tong (1969),
Scharnhorst and Pian (1978), and Murakawa and Atluri (1979)
introduced hybrid stress formulations for nonlinear incompress-
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ible materials. Belytschko and Bachrach (1986) and Bachrach
and Belytschko (1986 ) used the Hu-Washizu variational princi-
ple in conjunction with the y-operator to develop a bending/
incompressible element. The extension to nonlinear incom-
pressible problems was later developed by Liu, Belytschko, and
Chen (1988). Perturbed Lagrange multiplier methods were used
by Cescotto et al. (1979), Bercovier (1978), Sussman and
Bathe (1987), Simo et al. (1985), and, recently by Chang and
Saleeb et al. (1991).

Alternatively, the penalty method in conjunction with the
reduced integration has been successfully used in incompress-
ible problems. Fried (1974 ) suggested that the selective reduced
integration can cure the failure of the displacement approach,
Oden and Kikuchi (1982) discussed the necessary conditions
on the order of reduced integration rules to produce stable and
convergent schemes. Hughes, Liu, and Brooks (1979) reviewed
penalty methods and selective reduced integration of incom-
pressible viscous flows. Malkus and Hughes (1978) and Malkus
(1980) proved and unified the equivalence of mixed formula-
tions and selective reduced integration techniques. The B-bar
method, generalized from the selective reduced integration
method, was later introduced by Hughes (1980). This B-bar
method can be treated as a projection method for linear elastic-
ity. Simo et al. (1985) showed that the B-bar method can be
derived from a Hu-Washizu principle and then developed a
nonlinear tangent matrix for this formulation. Other displace-
ment-based methods are hourglass control on under integrated
elements by Belytschko et al. (1984), an explicit incompress-
ible plane strain element using Taylor series expansion devel-
oped by Liu et al. (1986), and a volumetric strain projection
method for nonlinear hyperelasticity by Chen et al. (1994).

In the B-bar formulation, the discrete gradient matrix B is
separated into deviatoric and dilatational parts, and the dilata-
tional B-matrix is projected onto a lower order space to resolve
volumetric locking. Our present work is motivated by the sim-
plicity and effectiveness of the B-bar formulation. In order to
introduce the projection method within the framework of hyper-
elasticity, we first separate the strain energy density into distor-
tional and dilatational parts and then project the hydrostatic
pressure, which is solely determined from dilatational strain
energy density, onto an appropriate pressure field. The projec-
tion is performed by imposing a constraint condition between
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displacement calculated hydrostatic pressure and hydrostatic
pressure obtained from pressure interpolation functions in a
least-squares sense. The hydrostatic pressure increment is also
projected in a consistent manner to preserve the consistency
between tangent stiffness and internal force. If particular projec-
tion procedures are carried out, this pressure projection method
also provides a nonlinear version of the selective reduced inte-
gration method. Although the proposed method is applicable to
lower and higher order elements, we employ linear pressure in
conjunction with biquadratic/triquadratic displacement fields
that satisfy Babuska-Brezi (Babuska, 1973, Brezzi, 1974) con-
ditions in numerical examples.

In the present approach, since hydrostatic pressure originally
calculated from displacements has been modified through the
projection procedures, this method is found to be restricted to
materials with a linear pressure-strain relation (constant bulk
modulus). This condition is equivalent to the ‘‘material re-
straint’” discussed by Sussman and Bathe (1987) where they
proved that a linear pressure-strain relation is required for the u/
p formulation. For nearly incompressible materials, volumetric
strain is expected to be small, and therefore a constant bulk
modulus material model is appropriate.

In the next section, the basic equations of hyperelasticity and
several rubber strain energy density functions are reviewed. In
this section, the Penn’s invariants are introduced to decompose
the distortional and dilatational deformations and the corre-
sponding strain energy density functions. The relation between
hydrostatic pressure and the dilatational strain energy density
is established. In Section 3, the decomposed variational princi-
ple and the associated finite element formulation is presented.
The projection of hydrostatic pressure and hydrostatic pressure
increment are introduced through the least-squares methods.
The stress, material response, and initial stress tensors are calcu-
lated according to the projected hydrostatic pressure. The deri-
vations of the internal force and tangent stiffness are also given.
The degeneration to volumetric strain projection method and the
nonlinear version of the selective reduced integration method is
discussed in Section 4. Further degeneration to selective reduced
integration in linear elasticity is provided in Appendix A.

2 Basic Equations

Consider a body which occupies a region £y at the initial
stage. The motion of the body can be described by a mapping
function ® such that the image of {2y at time 7 is denoted by
Q,, and the image of X € {2y is defined by x, i.e.,

x=0(X,nN=X+ulX, 1) (2.1)
where X is the material coordinate, x is the spatial coordinate,
u is displacement, and ¢ is time. Rubber is classified as a hyper-
elastic material in which the strain energy density function, W,
can be defined and the stress-strain relation is given by

ow
Sy =i (2.2)

where S, is the second Piola-Kirchhoff stress and Ej; is the
Green-Lagrangian strain which is defined as

Ey = 3(Gy — &), (2.3)
Gy = FyFy,, (2.4)
ax;
F.=— ;
i = ax (2.5)

where Fj; is the deformation gradient, G is the Green deforma-
tion tensor, and 6; is the Kronecker delta. The Cauchy stress
oy can be obtained by
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1
Oy = }Fasxrﬂh (2.6)
J = det (F). (2.7)

According to Mooney (1940) and later extended by Rivlin
(1956), the strain energy density function of elastic medium
can be expressed in terms of the three invariants of the Green
deformation tensor: /,, I, I3 such that

W(hL, b, I5)
= X Aw(h=3)"L-3)"(5-1" (28)

=

where
I =tr (G), L =3l(tr G)* - tr (G¥)],
I = det (G).

The second Piola-Kirchhoff stress can be obtained from W
by

(2.9)

5 o W ol
Y al, OE;
= 2[K,8; + Ko(1i8; — Gy) + K:LG']  (2.10)
where
aw
K, = . 2.11
al, ( )

If the behavior of the elastic medium is incompressible, then
I, = 1, and the power series strain energy density function
proposed by Rivlin (1956) reduces to

W, L)Y= % A, —3)"(L—3)". (2.12)

m+n=1

Rivlin’s strain energy density function expressed by an infi-
nite power series is normally truncated to neo-Hookean or Moo-
ney-Rivlin forms. However, the material constants in these two
functions obtained from tensile data are not adequate in other
deformation modes, in addition to the poor fitting in large strain,
Yeoh (1990) proposed a cubic strain energy density function:

W = Al = 3) + An(l) — 3)% + Ay(], — 3)%, (2.13)

and a modified cubic strain energy density function (Yeoh,
1993):

+ Ap(l — 3)* + A () — 3)%.

For incompressible materials, a volume conservation con-
straint needs to be imposed and therefore the strain energy
density is modified either by the use of the Lagrangian multiplier
method or a penalty method. Additional strain energy density
which is a function of (/; — 1) and/or hydrostatic pressure is
added to the incompressible strain energy density. For nearly
incompressible materials, this additional strain energy density
can be treated as the dilatational strain energy density resulting
from the small volume change of the material. The modified
strain energy density function for nearly incompressible materi-
als can be expressed as

WL, L, L) = W, L) + W(h).

Since I; = J* and J — 1 is a measure of volumetric deforma-
tion, W (/) represents the part of strain energy density due to
volume change. However, for nearly incompressible materials,
invariants 7, and [, are not measures of pure distortion (iso-

(2.14)

(2.15)
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choric). This can be easily understood by considering a pure

dilatational state with \; = Ay = Ay = A, then
I =30\, L =3\% (2.16)

and

W, L) = Y An3""(AF=1)"(\* = 1)"=+0.

mtn=1

(2.17)

In other words, W( I, I,) contains a certain amount of dilata-
tional energy. Penn (1970) proposed the following invariants
to separate the distortional and dilatational deformation:

I =LI'%?, L =LLI;*", (2.18)

Clearly, under pure dilation, 7, and I, are constants and W( T,
L) = 0 and this indicates that W(T,, I,) contains only distor-
tional energy. It was observed by Wood and Martin (1964 ) that
the compressibility of rubber is very small even under hundreds
of atmospheric pressure. Penn (1970) took a further step and
suggested that 9W/31L; might be independent of I and 7; so that
in any deformation W could be separated as a sum of two
functions

W(L, L, ) = W, ) + W(h). (2.19)
The hydrostatic pressure, defined as o,,.,/3, can be related to
W (I3) by using Eqgs. (2.2) and (2.6)
(aw oL, oW &J )

1
P = i =—0G
Trunl 3 “\ oI, OE, = 8] OEy

3J

n=1,2. (2.20)

As have been shown by Chang et al. (1991), Penn’s invari-
ants satisfy the following conditions:

or,

G, =0; =1, 2.21
*l O, R ( )
Equation (2.20) can be simplified to
oW oW
P="—"=2= 2.22
or  aJ ( )
and the second Piola-Kirchhoff stress becomes
Sy = 2[R I5'%(6; — 21,G")
+ K I57P(16; — Gy — 3L,Gi)] + PIG)' (2.23)
where
ow
K= 7 2.24
oL, ( )

It is worth noting that if W(l;) is expressed as the power
series of I, — 1, the first-order term must be eliminated to satisfy
the initial condition of P. The explicit expressions of K,'s for
various material models can be found in Chen et al. (1994).

3 Pressure Projection Method

3.1 Decomposed Variational Principle and Finite Ele-
ment Formulation. In the current study, the original configu-
ration is selected as the reference configuration, and the conju-
gate pair, the second Piola-Kirchhoff stress, Sy, and the Green-
Lagrangian strain, E;, are employed in the total Lagrangian
formulation

M= | W, L4+

2y 0y

W(L)dQ — W (3.1)
where TI1 is the potential energy, W is the external work, and
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Qy is the domain of the original configuration of the structure.
The equilibrium equation can be obtained from the stationary
condition of the potential energy, i.e., to satisfy

811 = f SE,S;dQ + | 6E,S,dQ — W= =0 (32)
0y

iy

where

AL 2[&1;'”(6& = %nca')

+ Ksz”(l.b,, -Gy — %.’ZG};')] , (33)

F: BW 3W aJ
i = PJG}". 34
= 8E, oI OE, u (34)
The linearization of Eq. (3.2) leads to
Am f = (Tdk.l + T{‘.“) _'_X_ dQ
dbu, Abu
[ (Fp, ox, + F, _SX,-’,) ](Cgﬂu + Cw)
1 dAu
—| F, 2] [d — AW (3.5
[2( wx, + P ax,,)] =
where
Ty = 6uSit, (3.6)
Tqﬂ = 5.‘&-5‘;;, (3.7)
~ O*w
gk = ] 3<8
™ BEUSE” ( )
5 9*W 5 %
= m = C.-!;u + Cf,—m (3.9)
and
¢ = 9UGH ,
ikt 6Ek;
= JP(G;'Gy' — G3'G' = Gi'G;iY), (3.10)
aP
C, = JG;! 3.11
ijkl — ij aEH ( J
O*W(I, L)
Hj= —— 3.12

For the purpose of introducing the pressure projection
method, it is more convenient to convert Eq. (3.5) to the follow-
ing form:

% 6.&5{*
0y aXJ dX,J

1 /(. Obu au\1, ~ A
’ J-“x [5 (}’m BXJP * Fu BXip)](Cm" + Ciu)
* [% (F”" a:;q + M”")]dn
ddu,

X,
1 ddu,
+]| (s Fast+ Pyt
J:]x [2( g 8XJ ” 6X, )]

X JIG ;' APdQY — ASW™,

AbI = (ﬂm :_.rid) dQ

(3.13)
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By introducing displacement shape functions and domain dis-
cretization, the equilibrium matrix equation can be obtained
from Eq. (3.2)

6l = 6d7‘[ BLZ + Z2)dQ — a7 =0, (3.14)
2y

and this leads to the equilibrium equation

gt = pex (3.15)
where
g = ) BHZ + Z)dQ =™ + f™,  (3.16)
= J' BIZdQ, (3.17)
e
= | BLZdQ, (3.18)

O

and Z and Z are vector forms of 5, and §;, respectively. Bxsd
is the matrix form of 6E;, and £™ and f* are internal and
external force vectors, respectively.

3.2 Pressure Projection. Many displacement-based fi-
nite element formulations derived from single field variational
principle failed in incompressible and nearly incompressibility
problems. In linear elasticity, Hughes (1980) proposed a B-
bar formulation to resolve locking for nearly incompressible
materials. The gradient B matrix was separated into deviatoric
and dilatational parts. The dilatational B matrix was then pro-
jected onto a trial space a priori and replaced the original dilata-
tional B matrix. This B-bar formulation was generalized from
the earlier work by Malkus and Hughes (1978) in which they
proved the equivalence between the mixed formulation and se-
lective reduced integration. In nonlinear hyperelasticity, separa-
tion of the B matrix is difficult. Instead, an alternative approach
is taken by the segregation of the strain energy density. In
Section 2, the strain energy density was separated into pure
distortional (isochoric) and pure dilatational parts and, conse-
quently, the hydrostatic pressure is only related to the dilata-
tional energy. To attain the accuracy of the mixed formulation,
we deliberately carry out the projection of the element hydro-
static pressure, P¢, and the element hydrostatic pressure incre-
ment, AP® (originally calculated from displacements), onto
selected pressure function space.

Consider a problem of approximating a square integrable
function P¢(x) at the element level, in a least-squares sense,
by a linear combination of a sequence of functions { Q(x),
Qy(x), ..., Qu,(x)} in Ly(Q%). That is, choose p* = [p], p3,

., pa]" to minimize

®(p°) = |IP* — Qp“liap (3.19)

where || *|l,ca5 is the L, norm in the element domain Q% and

Q(x) = [Q1(x), Qa(x), ..., Qu(X)]. (3.20)
The minimization of ®(p*) leads to
M*p* = F* (3.21)
where
M* = Q7Qd, (3.22)
0y
' . OW
¢ = ¥ Q:j T—dQ, 3.23
o L;, Qe a5 Q aJ ( )

Journal of Applied Mechanics

and the projected hydrostatic pressure, P¢*, is

P = Qp* = QM*'F". (3:24)
Consequently, the internal force vector is modified as
fint — Fint 4 il*'ml (325}
where
i — f BLZ*df) (3.26)
11

X

and F*™ and Z * are the modified vectors of f™ and Z , respec-
tively, due to the pressure projection.

In the present work, the selection of pressure interpolation
functions follows Babuska-Brezzi (BB) conditions in which a
linear pressure interpolation function is used for the nine-node
Lagrangian element

Q=[lLxy] (3.27)
and similarly for a three-dimensional 27-node element
Q=1[l,x,y,zl (3.28)

Obviously, there are other alternatives of selecting pressure in-
terpolation functions that do not satisfy the BB condition and
will be discussed in the next section.

3.3 Incremental Equation and Solution Procedures.
For the nonlinear analysis of rubber deformation, the incremen-
tal equation is employed for nonlinear iteration and therefore
the hydrostatic pressure increment needs to be calculated in a
consistent manner. Similarly, we consider a least-squares ap-
proximation of the hydrostatic pressure increment by a linear
combination of a sequence of functions {Q,(x), O»(x), ...,

0,(x)} in Ly(Q%). Determine p° = [p{, p35, ..., psl” to
minimize
T(p°) = AP — Qp|l7y (3.29)
where
2
AP* = %—ﬁ— JG'AEy, (3.30)
and
Q(x) = [0i(x), Ga(x), ..., Ou(x)]. (3.31)
The minimization of ¥({°) leads to
pe =M LeAd” (3.32)
where
Mc=| Q7Q4Q, (3.33)
a%
4
L= f W 7gB.d0, (3.34)
oy OJ

with g the row vector form of JG;' and B the gradient matrix
of Green-Lagrangian strain, The projected hydrostatic pressure
increment, AP¢*, is obtained by
AP = Qp° = QM* 'LeAd". (3.35)

The newly calculated hydrostatic pressure, P¢*, and hydrostatic
pressure increment, AP“*, will replace P and AP* respec-
tively, in the equilibrium and linearized equilibrium equations
(Egs. (3.5)-(3.13)).

By substituting Eq. (3.35) into Eq. (3.13) and introducing
shape functions and domain discretization, the tangent stiffness
can be obtained in the following form:
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AS[] = 6d"(K + K* + K**)Ad (3.36)

where the element matrices of K, K* and K*#*, denoted by
Ke, K, and K<**, are

Ke= E+Kih (3'37)
K™ = K& + Kz}, (3.38)
Ke** =f Big'QdaM- 'Ic (3.39)
%
with
R = f BITB:dQ, (3.40)
%
KL' = f BECB.@dQ, {3.41)
0%
e = BiT *Bdf), (3.42)
%
Ky = f BLC " B.d0. (3.43)
n%

The terms with subscript ““*’* contain the projected hydro-
static pressure and K*** results from projection of the hydro-
static pressure increment. The matrices T, T*, C, C'* and
Bpﬁd are the matrix forms of E;ks_}g', 65&--5‘;?;, Cm;, C[]’i:f. and éFij,
respectively, and 6,57 and Cly have been modified due to the
hydrostatic pressure projection. Equation (3.39) can be further
manipulated as

K =f Blg'QdaM < 'Le = R“M<'Le (3.44)
0%
where

R = f Q7gB.d . (3.45)
0y

As can be seen, Eq. (3.44) will lead to an asymmetric tangent
stiffness matrix unless the following condition is imposed:

-
%T‘f = k. (3.46)

Since W is a function of J, by integrating Eq. (3.46) in conjunc-
tion with Eq. (2.22) and imposing a pressure-free initial condi-
tion, one can obtain

W= g (J - 12 (3.47)
The physical interpretation of k is the bulk modulus and Eq.
(3.47) represents a linear hydrostatic pressure-volumetric strain
relation. Equation (3.47) is a necessary condition in this devel-
opment using the pressure projection method. This necessary
condition is consistent with the ‘‘material constraint condition”’
discussed by Sussman and Bathe (1987). They proved that a
linear pressure-volumetric strain relation must hold when a u/
p formulation is used for nearly incompressible materials, If
Eq. (3.47) is imposed, K*** becomes a symmetric matrix:

K" = iR'M* 'R (3.48)
The final incremental equilibrium equation is
(K + K#* + K**)2*1 Ad
= ()~ @+ P00 (3.49)

where 7 is the load step counter and v is the iteration counter.
Here, K and ' are related to the distortional energy. Matrices
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K* and f*™ are related to dilatational energy with hydrostatic
pressure calculated from the projection equation. K** arises
due to the projection of the hydrostatic pressure increment.

4 Degeneration to Some Existing Formulations

By the appropriate selection of pressure interpolation func-
tions and integration rules in the projection procedures, this
projection method can be degenerated to some existing formula-
tions. For example, choose Q to be

Q = [Nl(g)s N?.(g)v sy NNR(&}]

where VR is the number of reduced integration points and N, (&)
is the shape function defined at reduced integration point 7, i.e.,

Ni(&) = 6y (4.2)

and &, = (#,, §,, #,) is the natural coordinate at reduced integra-
tion point J,

For simplicity, the superscript ‘e’ for element matrices is
dropped in this section. By performing reduced integration on
M and F in the pressure projection equation, Eq. (3.24), one
can obtain

(4.1)

NE

M =3 Q"(&)Q&)J(&)w
f=]
j(gl}wl 0 0 ]
0 J&)w - 0
= . (43)
0 0 j(gﬂn)wmz_
P(&)J(&)w;
M e P(&)J(&)
F=3 Q(&)P(&)J(Z)w = > ,Ez "l e
I=1 :
P(&NR)f(gNR)WNR_I

where J = det (0X,/ 9¢;) and the projected hydrostatic pressure
is reduced to a simple form

P*(§) = QM™'F = Y, Ni(&)P(&).

I1=1

(4.5)

The internal force vector is formed based on this projected
hydrostatic pressure. Since hydrostatic pressure is proportional
to the volumetric strain, this reduced form is identical to the
volumetric strain projection method proposed by Chen et al.
(1994).

Similarly, if Q = Q is chosen and reduced integration is used
in the projection of the hydrostatic pressure increment (Eq.
(3.35)), then

NR
R =2 Q"(&)e(&)B:(&)I(E)w,
I=1

j(gl}“h 0 0
B 0 J&)w 0
0 0 f{g:NRJWNR
g(ElJBE(gl]
2B (2
g(&) ' £(§2) (4.6)
2(&w)Be(&r)
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Using Eqgs. (3.35) and (3.30), one can obtain a reduced form
of the hydrostatic pressure increment

NR
APHE) = [ X N(&)g(&)Be(£)]1Ad
I=1

NR
= X N APE). 4.7)
I=1
Finally the tangent stiffness matrix is simplified to
K=| BYT+ T*)B:d)
34
+ f BL(C + C'*)BpdQ + kR™M 'R
0%
= f BT + T*)BpdQ + f BL(C + C'*)BdQ
iy 134
NR " < . - _—
+ k[ Y, (BE(E)ET(E)8(ENB(ENT(EDwi]. (4.8)
I=1

Equation (4.8) provides a nonlinear version of the selective
reduced integration method. Further reducing the problem to
linear elasticity, this tangent stiffness is identical to that of the
selectively reduced integration method and consequently, the
B-bar formulation. The detailed derivation is given in the Ap-
pendix,

5 Conclusions

This paper focuses on the treatment of hydrostatic pressure
for nearly incompressible materials. Although the emphasis is
on rubber, the proposed method is applicable to general nearly
incompressible hyperelastic materials. By the use of Penn’s
invariants, the strain energy density is decomposed into distor-
tional and dilatational parts. The hydrostatic pressure, which is
the key variable in incompressible problems, is then purely
related to the dilatational energy. Unlike the mixed formulation
where the hydrostatic pressure is introduced through a multifield
variational principle, this method projects the displacement cal-
culated hydrostatic pressure onto the pressure trial space
through a least-squares technique. Projection of hydrostatic
pressure onto a lower order space is, in concept, consistent with
the selective reduced integration method.

Since the projection equation is separatly constructed from
the variational equilibrium equation through least-squares
method, independent numerical treatment can be introduced to
the pressure projection equation to provide flexibility of degen-
erating this formulation to other forms. For example, as dis-
cussed in Section 4, selecting pressure interpolation functions
as the shape functions defined at the reduced integration points
and employing reduced integration rules in the calculation of
L, norm, the degenerated pressure projection equation is identi-
cal to the volumetric strain projection equation. Further, the
resulting tangent stiffness matrix possesses the form of ‘‘selec-
tive reduced integration.’’

The present method provides a straightforward approach for
the nonlinear analysis of nearly incompressible materials. The
implementation of this method into a displacement based non-
linear finite element program will be discussed together with
several numerical examples in the second part of this paper,
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APPENDIX

Degeneration to Linear Elasticity

In linear elasticity, T = T* = C'* = 0, B; = B and the
tangent stiffness matrix (Eq. (4.8)) degenerates to .

K = f B'CBAS
0%

+ k{:EI [B"(€)g"(€)e€NBENJ(Enwl). (A1)

Further, Cyy; and JGj' degenerate to
Ciu = XA + A)[3(8uby + 663) — 26,641 (A2)
IG;' = §;. (A3)

In linear elasticity, the shear modulus can be obtained by

ow oW
=2 — 4+ — =2(Ap + A A4
H (all 512) - (Ao o) )
and therefore Eq. (A.2) can be rewritten as
C_'w = M[(éikfsﬂ T ‘5:';5_u) = %5;]5::!] ' (A.5)

and the matrix forms of the linear Cy, and JG;;' are

868 / Vol. 63, DECEMBER 1996

2 -1 -1 00
-1 2 =10
-1 -1 2 0
2 0 0 0 g 0 0
C=Zu 2 (A6)
0 0 0 0 2 0
2
3
0 0 0 0 0 =
| 2
g=1(1,1,1,0,0,0]. (A7)

Taking the bulk modulus & = X + 2/3y, in conjunction with
Eq. (A.7), Eq. (A.1) can be simplified to

B'CBdQ

3
0%

K* =

NR
+ I+ 2T (bTE)bENI(EDw) (A8)

=1
where ;
b, = [Nl.,a Ny, NI,Z]- ’ (A.9)

Using the orthogonal condition between the deviatoric and
dilatational parts of the B matrix, it can be easily recognized
that Eq. (A.8) is identical to the selective reduced integration
method in linear elasticity.
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nonlinear analysis of structures made of nearly incompressible hyperelastic materials.
The main focus of the second part of the paper is to demonstrate the performance
of the present method and to address some of the issues related to the analysis of
engineering elastomers including the proper selection of strain energy density func-
tions. The numerical procedures and the implementation to nonlinear finite element
programs are presented. Mooney-Rivlin, Cubic, and Modified Cubic strain energy
density functions are used in the numerical examples. Several classical finite elasticity
problems as well as some practical engineering elastomer problems are analyzed.

The need to account for the slight compressibility of rubber ( finite bulk modulus ) in
the finite element formulation is demonstrated in the study of apparent Young’s
modulus of bonded thin rubber units. The combined shear-bending deformation that
commonly exists in rubber mounting systems is also analyzed and discussed.

1 Introduction

In most engineering elastomeric applications, rubber compo-
nents experience strains in the order of several hundred percent.
The amount of computation involved in the finite element analy-
sis is remendous and therefore an accurate and efficient finite
element formulation is highly desirable. In Part I of this paper, a
least-squares-based pressure projection method was introduced.
The formulation was developed in a general framework such
that it provides flexibility for the degeneration to other existing
formulations. As a result, the expression of the resulting tangent
stiffness matrix is rather complex. In this paper, condensed
numerical procedures for code implementation are presented so
that some of the separately integrated tangent stiffness matrices
and force vectors are formed at once to provide better computa-
tional efficiency.

In addition to a reliable finite element formulation, an appro-
priate strain energy density function capable of describing rub-
ber behavior under large strain is essential to the success of
nonlinear finite element analysis. Although Mooney-Rivlin
strain energy function has been widely used in many finite
element formulations such as those in Scharnhorst and Pian
(1978), Liu et al. (1988) and Chang et al. (1991), the study
by Tschoegl (1971) and James et al. (1975a, b) suggested that
the popular Mooney-Rivlin model is not adequate to describe
rubber behavior under very large and complex deformations.
Yeoh (1993) proposed a Cubic strain energy density function
as a correction of the Mooney-Rivlin function to capture the
nonlinear shear behavior of rubber at large strain. This function
was later modified by adding an additional exponential term
(Yeoh, 1993) to improve low strain accuracy.

In the applications to bridge/building bearings, solid rocket
motor flexseals and off-shore structure flexjoints, rubber compo-
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nents are highly confined and the deformation is essentially
bulk deformation. The work by Payne (1957), Gent and Lindley
(1959), and Gent and Meinecke ( 1970) indicated that the me-
chanical behavior of highly confined rubber components is
strongly affected by the magnitude of rubber bulk modulus, and
therefore the ‘‘nearly incompressible’’ nature of rubber plays
an important role in these applications. Finite element formula-
tion that can accurately account for bulk deformation is critical
to the analysis of this type of problems. Surely, pure incom-
pressible finite element formulation is not applicable. Rubber
under combined bending-shear deformation is also common in
rubber mounting systems such as engine mounts and bushings.
Varying the aspect ratio of rubber components changes the
relative contributions of shear and bending to the overall defor-
mation (Rivlin and Saunders, 1949) and thereby changes the
structural stiffness. In this paper, the applicability of the present
finite element method to these typical elastomeric problems is
verified.

In the following, the numerical procedures of the pressure
projection method are first presented in Section 2. The funda-
mental laboratory test problems, uniaxial tension-compression
and simple shear, are analyzed in Section 3. These analyses
also show how the Mooney-Rivlin model fails under large defa-
mation. Two more incompressible finite elasticity problems,
inflation and torsion problems, are analyzed in Section 4 to
further illustrate the effectiveness of the proposed method. Some
practical elastomeric applications such as bonded rubber units
under tension and compression, and combined shear-bending
example, together with an engine mount problem, are analyzed
and compared to approximate solutions in Section 5.

2 Numerical Procedures

The pressure projection procedures and the corresponding
nonlinear finite element formulation for nearly incompressible
rubber-like materials were discussed in Part I (Chen et al.,
1996). Recall the final incremental equilibrium equation

(R + K* + K*)iiAd = 3% — F™ + ™5, (21

where n and v are load step and iteration counters, respectively.
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The matrices K and T™ are associated with the distortional
energy density W(T,, I) and are independent of pressure projec-
tion. The matrices with superscript *“**°, K* and f*™, are
associated with the dilatational energy density W (/;) and there-
fore contain projected hydrostatic pressure quantity. The term
K#* is resulting from the projection of hydrostatic pressure
increment. The explicit expressions of the material response
stiffness and geometric response stiffness in each of K and K *
are given in Eqs. (3.40)—(3.43) in Part L.

Equation (2.1) is arranged for clarity and is computational
inefficient if those matrices are formed separately. More effi-
cient computational procedures are given below as follows:

1 Initialization.

2 Currently at the beginning of (n + 1)th load step and
(v + 1)th iteration: d},, is known.

3 Compute kinematic variables: (Fy)hsi, (Ep)sers (Gj')ioen,
TDners (B)srs ()i -

4 Compute the displacement calculated pressure 8W/aJ.

5 Form (M¢),,, and (F¢);., (Eqgs. (3.22) and (3.23) in
Part I, respectively ) and perform projection on hydrostatic pres-
sure to obtain (P"")f,“ (Eq. (3.24) in Part I).

6 Compute (S;)n. (Eq. (3.4) in Part T) by replacing the
displacement calculated hydrostatic pressure by (P**)%,,.

7 Compute (5;)h.; using Eq. (3.3) in Part I, and the total
second Piola-Kirchhoff stress is

(Sdher = (Snr + (Sidsr (2.2)
8 Form internal force vector (™)., by
(™) =f (BEZ);.1dQ2 (2.3)
0%

where (Z )., is the vector form of (§,)%,,.

9 Compute (Tyu)h+ and (Cly)e) (Eqgs. (3.7) and (3.9) in
Part I) using (S;)5., and the projected hydrostatic pressure
P NR),

10 Calculate (Ty)b.; and (Chu)is, by

(Tydner = (T:ykf):-r-r + (Tijﬂ):+lv

(C.Jljm):ﬂ = (C_.‘j‘k.‘):ﬂ + fé.»!m);n-
where the explicit expressions of (Tj)h.; and (Cyuy)?s are
given in Eqgs. (3.6) and (3.8) in Part I, respectively.

11 Form (R®)})., and (M*)2,, (Egs. (3.33) and (3.45) in
Part 1, respectively) and construct element stiffness matrix

(24)
(2.5)

(K )i =f (B;TBF]fx-r-idﬂ +j (BgCIBE)i-Hdﬂ
(134 2%

+ (R (M) (R (26)
12 Solve global incremental equation:

(K)pa Ad = (£, — (£™)5.,. 2N

13 Update displacement d’}} = d%,, + Ad.
14 Convergence check.

In the present study, linear pressure fields, Q = Q = [1, x,
yland Q = Q =1, x, y, z] are used in 9-node two-dimensional
and 27-node three-dimensional Lagrangian elements, respec-
tively. .

3 Fundamental Test Problems

Three rubber models are used in this section: Mooney-Rivlin,
Cubic, and Modified Cubic. The material constants fitted from
uniaxial tensile data (Yeoh, 1990) are
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(1) Mooney-Rivlin: A, =0.2599 Mpa, Ay = 0.1608 Mpa

(2) Cubic: A;p=0.373Mpa, Ay =—0.031Mpa,
Az = 0.005 Mpa
(3) Modified Cubic: A, =0.363 Mpa, Ay = —0,028 Mpa,
Az = 0.005 Mpa,
a=0.123Mpa, £=10.1.

For carbon black filled rubber, the bulk modulus to shear
modulus ratio is around 10* ~ 10° and therefore bulk modulus
k = 10° Mpa is used in each material model. Nine-node and
27-node elements are used in two-dimensional and three-dimen-
sional problems, respectively.

In this section, analyses and results are compared against
analytical solutions and experimental data obtained from ( Yeoh,
1990, 1993, 1994),

3.1 Uniaxial Tension-Compression. Since the stress-
strain relation of uniaxial tension-compression is independent
of cross-sectional geometry, a rubber block with dimension |
cm X 1 em X 4 cm is modeled by only one 27-node element
in this analysis, The analytical solution can be found in Rivlin
and Saunders (1951) as

t (oW
A—A2 ol

(3.1

1aw)
+--,.-.
A 61

where 1 is the axial force divided by undeformed cross-sectional
area, \ is the axial stretch ratio, and /(A — A™2) is called the
reduced stress. In this problem, the rubber block is stretched up
to 400 percent in axial tension and compressed down to 50
percent in axial compression. The finite element results calcu-
lated using different rubber models have excellent agreement
with analytical solutions as shown in Fig. 1.

By the comparison with experimental data, one can observe
that the Mooney-Rivlin model, which represents a linear relation
between reduced stress and A" in uniaxial deformation (as
described in Eq. (3.1)), is not capable of capturing the upturn
in the small strain region, and the nonlinearity beyond ~200
percent tension and ~20 percent compression. The finite ele-
ment results obtained using the Cubic strain energy density
function, on the other hand, agree quite well with experimental
data in both large tension and compression but misses a certain
amount of accuracy in the small strain region. The Modified
Cubic function with an additional exponential term further im-
proves small strain accuracy as shown in Fig. 1.

3.2 Shear of Rubber Component. A double-sandwich
shear test problem is described in Fig. 2. When the width-to-
thickness ratio (w/h) of the test specimen approaches infinity,
rubber deforms in simple shear. The specimen used (Yeoh,
1990) has a width to thickness ratio of 4 and therefore only
generates a “‘nearly’’ simple shear deformation. The analytical
solution of simple shear can be found in Rivlin (1956) as

1=2(_@+QI-_V_)Y (3.2)

al, ol

where ¢ is shear stress and vy is shear strain. Note that Eq. (3.2)
only provides an appropriate solution for this problem, Figure
2 indicates that the Mooney-Rivlin model, which contains only
leading terms in [, and I,, represents a linear shear stress-strain
behavior as described in Eq. (3.2). The higher order models,
such as the Cubic and Modified Cubic models, are more capable
of characterizing the nonlinear shear stress-strain relation as
shown in Fig. 2. Similar to the uniaxial deformation, the Modi-
fied Cubic strain energy density function further enhances the
small strain accuracy when compared against experimental data.
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Fig. 1 Rubber block under uniaxial tension-compression: comparison of Mooney-Riv-
lin, Cubic, and modified Cubic strain energy density functions

The deformed shape at 200 percent shear strain is also plotted  p(p) = (A + Aa)[Hi(p, az) — Hi(p, a1)]
in Fig. 2. Due to the geometry of the test specimen, some small
amount of bending deformation is observed near the edges. + AxlHz(p, @2) — Ha(p, a1)]
+ AxlHi(p, @;) — Hi(p, a))] (4.1)

: where
4 Rubber Elasticity Problems 2
. . N : o Hi(p,a) =1In = g Bl (42)

Since Modified Cubic strain energy density function differs BV a® + K(p) a® + K(p) ’
from Cubic function simply at low strain as discussed in Section
3, only Mooney-Rivlin and Cubic strain energy density func- Hy(p, a) o1 a? )

: Aol ,a)==2In|———
tions are used in this study. 2\pP a + K(p)

4.1 Inflation of a Rubber Tube. Inflation is a good test K(p) 2 K(p)
problem for ( nearly ) incompressible finite element formulations ( Z ) = — (4.3)
because the pressure-displacement behavior is highly nonlinear a” + K(p) 4
and the hydrostatic pressure plays a significant role in this prob- 2 K(p) o
lem. Hn(P-a)-ﬁln(z )~(2 L )

As described in Fig. 3, an infinitely long rubber cylinder, a®+ K(p) a®+ K(p)
with inner radius of 6 ¢m and outer radius of 8 c¢m, is subjected . 5
to an internal pressure, p. The analytical solution of this problem 3 K(p) _ 3 [ K(p) P K(p) (4.4)
can be derived from Rivlin (1949). For convenience, the analyt- 2 \a® + K(p) 2.\ & a’ ’
ical solution (considering only Mooney-Rivlin and Cubic strain
energy density functions) is summarized as follows: K(p) = p* — a3 (4.5)

2.0
1.6 I /K i X Mooney—Riviin
I b o
—_ 1 Mooney—Riviin
g (analytical)
1.2} Cubic
@ i éFEM}
] + === Cubic
& - /1 (analytical)
b i O Modified Cubic
g 0.8 - (FEM)
& i — Modified Cubic
(analytical)
! O  Experiment
0.4 |
0.0 r; PO S W NN TN TN TN W Y WY N TN SN N T T T
0.0 0.4 0.8 1.2 1.6 2.0
Shear Strain
Fig. 2 Rubber block under simple shear deformation: comparison of Mooney-Rivlin,
Cubic, and modified Cubic strain energy density functions
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Fig. 3 Rubber cylinder subjected to internal pressure: comparison of
load-displacement response using Mooney-Rivlin and Cubic models

and a, and a, are the outer and inner radius of the undeformed
cylinder, respectively, p is the inner radius of the deformed
cylinder, and p is the internal pressure.

This problem is modeled by four axisymmetric 9-node ele-
ments with restraints in the axial direction to reflect the plane-
strain condition in the axial direction, as shown in Fig. 3. As
described in Egs. (4.1)-(4.5), a limit pressure exists if the
Mooney-Rivlin model is used, i.e.,

P(p)|pme = 2(A1g + Agt) In ff = 0.2405 Mpa. (4.6)
|

Displacement control is used in this analysis and a total of
ten steps are used to inflate the inner radius of the tube from
6 cm to 21 cm. The finite element and analytical pressure-
displacement curves obtained using a Mooney-Rivlin material
are compared in Fig. 3. The corresponding internal pressure at
the final deformed stage is 0.23919 Mpa which is equivalent to
99.5 percent of the limit pressure. The error of finite element
solution is 0.014 percent at the final deformed stage. The Cubic
material model, compared to Mooney-Rivlin, demonstrates a
different load-deflection characteristic, as shown in Fig. 3, due
to the contribution of the higher order terms in the strain energy
density function. In this analysis, 0.3 percent error is generated
by the present finite element solution at the final deformed stage.
The hydrostatic pressure distributions at various deformation

states are plotted in Fig. 4 and results are satisfactory.

4.2 Simple Torsion of a Solid Rubber Cylinder. A sim-
ple torsion is generated by rotating the two end surfaces of a
solid cylinder in their own planes about the axis of the cylinder
without axial motion. This problem discusses the amount of
axial force needed to be applied to the twisted rubber cylinder
in order to maintain it in simple torsion. The solution of this
problem has been discussed by Rivlin (1949) where the re-
sulting force N acting along the axis of the cylinder is given by

N = mﬁzf 21‘3(—8—‘?— + 2?—‘!-)413'
4]

4.7
31. (’))(2 ( )

where ¢ is the amount of torsional angle per unit length and a
is the radius of the cylinder. The dimension of this problem is
described in Fig. 5. Since the twisted angle per unit axial length
in simple torsion is constant, only one layer of elements is used

872 / Vol. 63, DECEMBER 1996
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Fig. 4 Rubber cylinder subjected to internal pressure: compatrison of
hydrostatic pressure calculated from finite element and analytical solu-
tion using Cubic rubber model

in the axial direction. A total of 48 27-node elements, as shown
in Fig. 5, are used in this problem.

The axial forces calculated by finite element using Mooney-
Rivlin and Cubic strain energy density functions are compared
against analytical solutions in Fig. 5. The agreement between
finite element and analytical solutions is good. The axial stress
distributions at various deformed states calculated using the
Cubic model are plotted in Fig. 6 and the results are satisfactory.
In this problem, as can be understood from Eq. (4.7), that the
initial slope of the N — f curve is proportional to Cyp + 2Cy,.
Hence, the Mooney-Rivlin model demonstrates a stiffer re-
sponse compared to that of the Cubic model, as shown in
Fig. 5.

60
O Mooney-Riviin(FEM) :E)
- I. === Mooney-Riviin{Analytical) ‘é
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P SR Cublc{Analytical) '{)
£
4o0f
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Il 3 nl-
<
b~
(7]
g 20}
0
£
iop

Twisted Angle (degree)
Fig.5 Rubber solid cylinder subjected to simple torsion: comparison of

induced axial force versus twisted angle using Mooney-Rivlin and Cubic
models
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Fig. 6 Rubber solid cylinder subjected to simple torsion: comparison
of axial stress distribution calculated from finite element and analytical
solution using Cubic model

5 Application to Engineering Elastomers

The study in Section 3 indicates that the Cubic strain energy
density is more appropriate for large and complex deformation
problems. Only Cubic strain energy density function is consid-
ered in problems 5.1 and 5.2. The problem definition of example
5.3 is taken from Tseng et al. (1987) where material constants
were characterized using the Mooney-Rivlin model.

5.1 Bulk Deformation of Bonded Rubber. The mechan-
ical behavior of bonded rubber under compression has been
studied since the 1950s by Payne (1957), Gent and Lindley
(1959), Gent and Meinecke (1970), and others by using the
concept of ‘‘apparent Young's modulus.’”’ In their work, the
apparent Young's modulus for a bonded rubber unit was esti-
mated from the Young’s modulus of an unbonded rubber unit in
conjunction with the shape effect. Based on small deformation
assumption, the force-displacement relation of a bonded rubber
unit can be described by

F = EApe (5.1)
100000
v
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=
o
Z
o
ERERTTYY! T F_,I
.3 2a
=
PO Gent(K=1.E5 MPa)
il e
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u o FEM(K=1.E4 MPa)
g ........... Gent(K=1.E3 MPa)
& 10 [n] FEM{K=1.E3 MPa) /
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[ ™
1 i " . : - AT
by o iy 1 10 100 1000 10000
2alh

Fig. 7 Axisymmetric bonded rubber unit under compression: effect of
width/height ratio on the apparent Young's modulus
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Fig. 8 Plane-strain bonded rubber unit under compression: effect of
width/height ratio on the apparent Young's modulus

and
E, = Er.-(l + ﬁsz)

where A4, is the undeformed cross sectional area, e is the com-
pressive (tensile) axial strain, # = 2 for axisymmetric case and
B =1 for plane-strain case, § is the shape factor defined by the
ratio of loaded area to unloaded area, E, is called the apparent
Young's modulus and E, is the Young’s modulus of unbonded
rubber components:

l=l=3

( ow oW
E,=a|l —+
ol oL

where & = 6 for axisymmetric case and & = 8 for plane-strain
case with X' dropped. Gent also mentioned that rubber is not
fully incompressible and the bulk modulus, k, should be consid-
ered in the deformation of rubber, especially when the rubber
unit is very thin and bonded. The apparent Young’s modulus
E, in Eq. (5.1) should be replaced by E,. in the following form:

1 1 1
=—+—, 54
E{I N k‘:r k ( ]

(52)

(5.3)

The finite element method is used to study this problem. For

Fig. 9 Deformed geometries of axisymmetric bonded rubber unit under
compression
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Fig. 10 Deformed geometries of axisymmetric bonded rubber unit under
tension
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Fig. 11(a) Load-deflection curve of axisymmetric rubber unit under
compression: comparison of finite element solution and Gent's linear
approximation
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sion: comparison of finite element solution and Gent’s linear approxima-
tion
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Fig. 12 Plane-strain rubber component under shear and bending defor-
mation: effect of structural geometry on the apparent shear modulus

the comparison with Gent’s approximation, linear analysis is
first performed. In this problem, rubber behavior is described
by the Cubic strain energy density function and a mesh of 4 X
4 nine-node elements, as shown in Fig. 7, are used in the finite
element analysis. Three arbitrarily selected bulk moduli, 1 X
10%, 1 X 10*, 1 X 10° Mpa (representing bulk modulus to
shear modulus ratios of 1,34 X 10°, 1.34 x 10", 1.34 X 107,
respectively) are used to study the effect of bulk modulus on
the structural stiffness. In this study, the width/height ratio of
the rubber units varies from 0.01 to 1000. The finite element
results are compared against Gent’s approximation in Figs. 7-
8 for axisymmetric and plane-strain cases, respectively, and
very good agreement is observed. In the small width/height
range, the apparent Young’s modulus approaches that of the
unbonded case. As the width/height ratio becomes very large,
the apparent Young’s modulus approaches to bulk modulus and
this deformation is called bulk compression (tension).

Large deformation analysis of bonded rubber with k = 10*
Mpa under tension and compression are also performed. An
axisymmetric rubber unit with diameter to height ratio of 10 is
used in the analysis. Five and 20 elements in the axial and radial
directions, respectively, are used to model one quarter of the
structure. In the compression analysis, rubber squeezes out at
the edges as shown in Fig. 9 and the analysis terminated when
the rubber is compressed more than 30 percent of the original
thickness, due to excessive mesh entanglement. In the tension
analysis, rubber is stretched up to five times the original thick-
ness and the deformed geometries are plotted in Fig. 10. The
nonlinear finite element load-displacement curves are also com-
pared against Gent's linear approximate solution in Figs. 11(a)
and 11(b) for compression and tension, respectively. The
highly nonlinearities predicted by finite element suggested that
Gent’s solution is applicable only at around 50 percent strain
in tension and around 15 percent strain in compression in this
problem.

This problem also demonstrates the need of using a nearly
incompressible formulation for rubber that is not purely incom-
pressible. As indicated in Figs. 7-8, the magnitude of bulk
modulus determines the structural stiffness in bonded thin rub-
ber components. The finite element formulation that can accu-
rately captures bulk deformation is essential to the success in
the analysis of highly confined engineering elastomers. The
present formulation decouples the distortional and dilatational
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Fig. 13 Load-deflection curves of plane strain rubber component under
shear and bending deformation: comparison of finite element solution
and linear approximation by Riviin and Saunders

strain energy and therefore performs quite well in this analysis
as shown in Figs. 7-8.

5.2 Combined Shear and Bending of Rubber Compo-
nents. Rivlin and Saunders (1951) considered the deforma-
tion to result from the sum of a simple shear deformation and
a bending deformation based on small deformation theory, and
proposed an apparent shear modulus given by

2
G = 1+ 5.
" G'{( 36K2) (5:5)
aw oW
G=2|—+— (5.6)
( ol 3"2) Iy=hy=3
@

®)

80
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60
— A
E
2
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]
]
e 4o
x
2
=
E
]
5 Linear Soluti
20 O  FEMp)
A FEM(down)
0 i i L, L
0.0 0.3 0.6 0.9 1.2 1.6

Deflection (cm)

Fig. 15 Load-deflection characteristics of engine mount under vertical
load: comparison of finite element results and linear approximation

where K is the radius of gyration, G is the shear modulus, and
h is defined in Fig. 12 where the problem definition is given.
The finite element nodes on the left end are totally fixed and
those on the right end are restrained in the horizontal direction
and are forced to move with the same amount of vertical dis-
placement. Plane-strain rubber components with w/h ranging
from 0.01 to 1000 (w is fixed as 1 ¢cm) are included in the
analysis. Total of 20 X 6 9-node elements are used in the
analysis. The finite element apparent shear modulus is calcu-
lated by

Gier Ad

= (F,/A)/(d./h) (5.7)

where F, and d, are defined in Fig. 12 and A is the rubber
cross-sectional area. The finite element results agree well with

©

Fig. 14 Undeformed and deformed geometries of engine mount under vertical upward and

downward loading

Journal of Applied Mechanics

DECEMBER 1998, Vol. 63 / 875

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



solutions provided by Rivlin and Saunders shown in Fig, 12.
When w/h is small, the deformation is primarily in bending
and therefore the apparent shear modulus is low. On the other
hand, a thin rubber unit with very high w/h value deforms
essentially in shear and hence the apparent shear modulus ap-
proaches to the shear modulus of rubber.

The nonlinear shear-bending behavior of the rubber unit with
w = 1 cm and w/h equal to 0.1, 1, 10 is also studied. The
nonlinear load-deflection curves predicted by finite element are
compared against the linear approximation obtained from Eq.
(5.5) in Fig. 13. As indicated in Fig. 13, when deflection is
small, rubber unit with w/h = 0.1 deforms primarily in bending
and the corresponding apparent shear modulus is much lower
than that of the other two units. While at large deflection, due
to the boundary conditions imposed on the right end of the
structure, all three rubber units deform primarily in shear and
therefore exhibit similar apparent shear moduli at large strain.

5.3 Analysis of Engine Mount. This engine mount prob-
lem is taken from Tseng et al. (1987) (shown in Fig. 14(a))
where rubber was characterized using the Mooney-Rivlin model
with A;, = 0.145 Mpa and Ay, = 0.062 Mpa. Since only limited
raw stress-strain data were provided, we did not to recharacter-
ize rubber properties using the Cubic model.

The outer metal box of the engine mount is connected to the
car body, therefore the outer metal/rubber interface is totally
fixed in the finite element model. The inner metal piece is
attached to the engine and, hence, the external load is applied
to the inner metal. In this example, the vertical load-deflection
characteristic of the engine mount is analyzed.

When vertical load is applied to the inner metal, only half of
the structure is modeled, due to symmetry. With a longer travel
distance in the downward motion than in the upward motion, the
lower rubber leg is expected to undergo large and complicated
deformation; and, therefore, a finer mesh is used to model the
lower rubber leg. Figure 14 shows that the rubber legs are under
a combination of compression (tension), shear and bending
deformation. Some localized buckling occurs near the lower
right corner of the lower rubber leg. The finite element load-
deflection curves are compared against the linear solution ob-
tained from Egs. (5.1)-(5.7) in Fig. 15. The finite element
solution correlates well with the linear approximation at small
deformations. The nonlinear load-defiection behavior is due to
the severe bending and shear in the rubber components as have
discussed in the previous examples.

6 Conclusions

The purpose of this paper is to demonstrate the performance
of the present method and to study some of the typical structural
characteristics of engineering elastomers using the present
method in conjunction with several strain energy density func-
tions. Numerical procedures of the projection method that can
be implemented into displacement based finite element pro-
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grams is presented. A series of numerical examples demonstrate
the performance of the present method.

The comparison of finite element analysis results with experi-
mental data in tension-compression and shear suggests that the
higher order strain energy density functions are required to
capture stress-strain nonlinearities. In the problems with strong
boundary constraints, the structural stiffness is largely de-
pending on the magnitude of rubber bulk modulus. This type
of analysis requires a finite element formulation that is capable
of capturing the bulk deformation of rubber. With the decompo-
sition of the strain energy density function and the use of pres-
sure projection method, the present formulation performs effec-
tively in these classical finite elasticity problems as well as bulk
deformation problems.
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of a spherical inclusion with an imperfectly bonded interface. Both tangential and
normal discontinuities at the interface are considered and a linear interfacial condi-
tion, which assumes that the tangential and the normal displacement jumps are
proportional to the associated tractions, is adopted. The solution to the corresponding
eigenstrain problem is obtained by combining Eshelby’s solution for a perfectly
bonded inclusion with Volterra's solution for an equivalent Somigliana dislocation
field which models the interfacial sliding and normal separation. For isotropic materi-

als, the Burger’s vector of the equivalent Somigliana dislocation is exactly deter-
mined; the solution is explicitly presented and its uniqueness demonstrated. It is
found that the stresses inside the inclusion are not uniform, except for some special

cases.

1 Introduction

Since Eshelby (1957) published his celebrated paper on the
transformation of ellipsoidal inclusion, eigenstrain problems of
inclusion have been successfully employed in predicting the
mechanical behavior of heterogeneous materials, such as com-
posites and polycrystals. The importance of eigenstrain is mani-
fested by its presence in broad applications encompassing real
nonelastic strains, such as thermal expansion strains, phase
transformation strains, initial strains, plastic strains, and misfit
strains. Alternatively, equivalent imaginary eigenstrains can
also be introduced to model the inhomogeneities of heteroge-
neous materials.

In view of the above, the inclusion problem has received
considerable attention; as evidenced by the work of Willis
(1964, 1965), Walpole (1967), Asaro and Barnett (1975),
Mura (1987, 1988), Nemat-Nasser and Hori (1993), and oth-
ers. However, most of the available solutions concerning the
inclusion problem assume perfect bonding at the interface be-
tween the matrix and the inclusion; i.e., the displacement and
the interfacial traction are continuous across the interface. This
condition is sometimes violated and consequently, the resulting
formulations become inadequate in describing the mechanical
behavior of the inclusion problem for situations involving the
debonding of fibers in composites and the grain boundary slid-
ing in polycrystalline materials.

The imperfect bonding of the interface has an important in-
fluence on the mechanical behavior of composite solids. But the
interfacial region is so complex that some simplified interfacial
conditions must be introduced to enable the formulation of the
problem. One of the most useful interfacial conditions is the
assumption that the normal and the tangential displacement dis-
continuities at the interface are directly proportional to the corre-
sponding traction components which are continuous for reason
of equilibrium. This kind of linear interfacial condition has
been employed by many researchers (e.g., Ghahremani, 1980;
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Benveniste, 1985; Achenbach and Zhu, 1989; Gosz et al., 1991;
Hashin, 1991; Qu, 1993). Hashin (1991) gave a physical expla-
nation of it and correlated the interface parameters to the in-
terphase elastic moduli.

For the eigenstrain problem of inclusion with an imperfectly
bonded interface, Mura and his collaborators obtained several
pioneering results (e.g., Mura and Furuhashi, 1984; Mura et al.,
1985; Jasiuk et al., 1987). However, they only considered the
free sliding interfacial conditions, with vanishing normal dis-
placement discontinuity and shear traction at the interface. For
more realistic interfacial conditions, no conclusive results have
been reported, except for that of Huang et al. (1993 ) who treated
the interfacial sliding condition in an average sense and that of
Qu (1993) who approximated the solution using the first term
of a series expansion.

In the present paper, both normal and tangential interfacial
displacement discontinuities are considered. The basic equa-
tions are obtained for the eigenstrain problem of a spherical
inclusion with an imperfectly bonded interface described by a
linear interfacial condition. The solution is decomposed into
two parts: Eshelby’s solution for a perfectly bonded inclusion
and Volterra's solution for an equivalent Somigliana dislocation
field which models the interfacial sliding and normal separation.
For elastically isotropic materials, the Burger's vector of the
equivalent Somigliana dislocation is exactly determined and the
solution is explicitly presented.

2 Problem Formulation

Consider an infinitely extended elastic medium D containing
a uniform eigenstrain ¢ in a spherical inclusion  with an
imperfectly bonded interface (2, as depicted in Fig. 1.

If we consider infinitesimal deformation, the total strain ¢;
can then be written as the sum of the elastic strain €j; and the
eigenstrain €],

€ =€h+ el (1)
Since the total strain must be compatible, then
€ = (u;; + u )2 (2)

where u; ; = Ou,;/0x;, u; is the displacement and x; the Cartesian
coordinate of point x. The stress o;; is related to the strain ¢;
by Hooke's law, such that
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Fig. 1 A schematic of the spherical Inclusion problem

ikt (Ex — 52;) in Q (3)
in D-10 4)

where Cy, is the elastic modulus tensor, and the repeated indices
imply summation. The equations of equilibrium for stress are

in D, (5)

For an imperfectly bonded interface, the interfacial traction
remains continuous, while both the normal and the tangential
displacements experience a jump across the interface. Accord-
ingly, the interfacial conditions can be written as

Ty =

Oy = C.;,J.ufn

Typ = 0

[oiln; =0 (6)
[u; 1065 — mimy) =f(T;) (N
[w; 1nn, = g(Ny) (8)

where [+] = (out)—(in), n; is the outward unit normal on the
interface, and 7} = ayn;(8y — nyn) and N; = oymayn; represent
the shear and the normal traction at the interface, respectively,
b, denotes the Kronecker 8, fand g are functions, If we consider
the case of elastic isotropy and assume that f and g are linear
functions such that the tangential and normal displacement dis-
continuities at the interface are directly proportional to their
corresponding interfacial tractions, then the interfacial condi-
tions (7) and (8) reduce to

[4:1(6u — mime) = aTy (9)
[w;Jmn, = BN, (10)

where « and 8 denote the compliance in the tangential and the
normal directions of the interface, respectively. According to
our definition of [1;], @ and 8 should be positive. It can be
" seen that e and B characterize the interfacial behavior, For
example, the case where @ = 0 and § = 0 corresponds to a
perfectly bonded interface. When 8 = 0 and a # 0, only interfa-
cial sliding takes place with normal contact remaining intact.
Furthermore, the case where S = 0 and a —  represents the
free sliding interface. This kind of linear interfacial condition,
in essence, corresponds to modeling the imperfectly bonded
interface by a linear spring-layer of vanishing thickness.

The solution of Egs. (2)-(6), (9), (10) completely deter-
mines the eigenstrain problem of an inclusion with a linear
imperfectly bonded interface.

Let we now examine the uniqueness of the solution of the
current problem. Assume that there are two solutions for dis-
placements, u/ and uf, with o }; and o} being the corresponding
stresses. Assuming that Aw; = u; — u} and Aoy = o} — o3,
then

Ag;; =0 in D
Aoy = CyjyAw, in D
[Acgln; =0 on 99
[Au 16y — mimy) = a(AT,) on 892

(11)
(12)
(13)
(14)
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[Au;Jmn, = B(AN,) on 9Q (15)

and Ay; = 0 at infinity. Let us introduce a positive-definite
quantity such that

I=f Aa,}-Au,Jdv+f AcyDu;dV =0 (16)
1 D—§}

If I is transformed using Gauss’ theorem to surface integrals
together with Eqgs. (14) and (15), we can show that

I's —f [a(AT;)(AT;) + B(AN;)(AN;)1dS =0 (17)
a0

since @« = 0 and 8 = 0. Combining (16) and (17), we have I
= 0, and conclude that ¢}, = ¢}. Moreover, if the impotent
terms related to the rigid-body translation and rotation are ex-
cluded, we also have u} = u?.

3 Solution

The solution of the above problem can be divided into two
main parts:

(1) The solution of the eigenstrain problem of inclusion
with perfectly bonded interface. This is the well-known Eshel-
by’s solution, which has the following general form for the
displacement, strain, and stress fields,

uiE{x) = _J.n Cmnkffﬁ(x)Gime(x = x’)dV' (18)

fg(x} == %J‘Q Cmuﬂfﬁ(x'][ciul,rlj{x - x!)

+ Gui(X — X")1dV' (19)

0'5(7‘} = _C{;'nurI:L Cpqidez'(xt)

Gupgn(X — x")dV' + eﬁn(x)] (20)

where dV' = dx}dxjdx}, and Gy(x) is the Green’s function
of elasticity for infinite medium.

(2) The displacement field caused by the interfacial sliding
and normal separation can be modeled by an equivalent Somig-
liana dislocation field whose Burger’s vector is defined as

(21)

This dislocation field is given by Volterra’s solution as being

b = —[u].

uf(x) = fm Gt (X" )1 (X" ) G (X — x")dS". (22)

1
Following Asaro (1975), b, is extended to the interior of
and we can express (22) in another form using Gauss' theorem;

ie.,

ul(x) = —f Conui€t (X" )Ginn(X — X')dV' + by (x) (23)
Q

em™ = —(byy + big)/2 (24)

where b; (x) is only defined for x inside ; if X is outside €,
b, (x) is taken as zero.
The corresponding strains and stresses are

ef(x) = - %J; Conia€i™ (X Y[ Gimnj(x = X")
+ Gjmni(x — X")1dV' — €5 (x) (25)
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O’:} = —CU,,,"I:J; CM{ME:;*(K')
Gupn(X — x')dV' + e:;“(x)] (26)

where ¢ *(x) is taken as zero except when x is inside (2.

Therefore, the solution of the eigenstrain problem of a spheri-
cal inclusion with the linear interfacial condition can be ex-
pressed as

w = uf + ul 27
(28)

(29)

sl v
GH—EU+EJJ
Y v
Ty = 0y + ay.

The interfacial traction continuity condition (6) is satisfied auto-
matically, since it is satisfied by Eshelby’s solution and Vol-
terra’s solution respectively, whereas the Burgers’ vector &,
needs to satisfy the interfacial conditions (9) and (10).

The exact solution for this problem has not been obtained
before, except for the free sliding case (o = « and § = 0)
solved originally by Mura and Furuhashi (1984) and corrected
later by Furuhashi et al. (1991). In this case, Eshelby’s solution
(1957) for the uniform eigenstrain problem of spherical inclu-
sion with a perfectly bonded interface gives

.
45(1 — v)
for point x m%lde Q, where p is the shear modulus, v Poisson’s
ratio, and e} is the deviatoric part of €. Accordingly, the shear

and the normal tractions at the interface resulting from Eshel-
by’s solution can be expressed as

2u(7 —

[10(1 + v)ef 8y + 3(7 — 5v)ef1 (30)

E
o=

TE = T(I_T):(a e,) X — e?ﬁx*x;x,-) (31)
: 4u(l + v) 2u(7 = 5v)
NE = — 51 = )a X — meﬁxsxrx: (32)

where « is the radius of the spherical inclusion 2 defined by
xx; = a® for which n; = x;/a.
The Burgers’ vector can be assumed to have the form

(33)

where \ is a scalar, A; and By are symmetric deviatoric tensors
with the requirement that A, = B; = 0. \, Ay, and By need to
be determined using (9) and (10). Hence, the tangential and
the normal displacement discontinuities at the interface can be
written as

b = a®\x; + a’Ayx; + Buxixx

Lo (6 —

[u lmn, = —a*hx, — (Ay + By)xi Xxi.

(34)
(35)

The stress inside the inclusion caused by Somigliana disloca-
tion (detailed derivation of the stress field inside and outside
the inclusion is provided in the Appendix) is

ﬂiﬂk) = —aQA;,x,- + A;,-x;x;xk

#Y e 4u(l +v) v 2u(7 — 5v) ’
3(1 —v) 15(1 — v)
24y . 4y
—_— R, = ————
S(1 = ) DumRdi™ se

X [2(7 — 4v)By| x|* + 12vByxx; + 1208;xx;

— 2(7 = 10v)Byxixiby i (a= V)HZB i1. (36)

In this case, the shear and the normal tractions at the interface
corresponding to Volterra’s solution are

Journal of Applied Mechanics

v _ 2u(7 — 5v)

" T15(1 - v)a (a*Ayx; = Auxexix;)
4u(7 + 19v)
T 1) (g~ Byrnn) (3T
PRt Y) gy TS
3(] —-V) 15(1 -—V)ﬂ
4u(35 + 11v)
Vil i SRR O el i (38
0501 —~ 30 P O8)

Therefore, the total shear and normal tractions at the interface
are

T,=TE+ T/ (39)

N, = NF + N/. (40)

Substituting (31), (32), (34), (35), and (37)-(40) into
(9) and (10), and comparing the corresponding terms of the
polynomial, one can deduce that

_ Bk _)
: 3(1+ﬁok.>(a2 “h
Ay
ﬂk‘l + aoﬂukz(h + k4) (eli) (42)
! + ag(ks + ks) + Boks + afBoka(ky + k4)
By
(Bo — an)ky (8,_;) (43)
l + ag(ks + k) + Boks + cofokz(ka + ki)
with
_be o _ W0
Qg = 2 ﬂo = i
4(1 + v) 2(7 — 5v)
ky = R
3(1 — ) 15(1 — v)
T 4G5 + 1)
PTI05(1—v) ¢ 105(1 —v)

It is noted that A,; and By satisfy the requirement that Ay = By
= 0, since ejf = 0. Onl::e \, Ay, and By are determined, the
displacement, strain, and stress fields inside and outside the
inclusion can be calculated using (27)-(29).

Although the interfacial tractions at the imperfectly bonded
interface remain continuous, as in the perfectly bonded case,
the stress discontinuity across the interface is not the same.
This discontinuity at the interface can be obtained by a slight
modification of the methods developed earlier by Hill (1961)
and Walpole (1978) as summarized below.

The displacement gradient u; ; has a jump across the interface
which can be expressed as

—b;; + cny

[wig] = (44)
such that it satisfies the relation
[w;;ldx; = —b; ;dx; (45)

where dx; is a line element on the interface and ¢; is an unknown
vector to be determined. The stress discontinuity can be written
as
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(o] = Cyulurs] — [eii])

where [€4] = € (out) — € (in), €fi(out) = 0 and € (in) =
—e4. By means of (48) and (50) we obtain

(46)

[oyln = Cyl(—byy + ey + €)n; = 0 (47)

where n; is the outward unit normal on the interface. The solu-
tion for ¢; can thus be obtained such that

¢i = Citmn(bup — € )mNy(n)/D(n) (48)

where N;(n) and D(n) are the respective co-factor and determi-
nant of the matrix Cy;nny (known as the acoustical tensor for
the direction n). For isotropic materials,

D(n) = g2(\ + 2u)n
Nj(m) = pn®[(N + 2u)é;n° — (N + pynn;]

(49)
(50)

where \ and g are Lamé constants, and n = (n;n; )", Thus,
the stress discontinuity at the interface can be expressed as

[UU] = C{fﬂ[q:qnm('bm.u = E:ﬁn)nqanh:(n)/D(n)
= (b = €i)]. (51)

The above expression has been derived earlier by Huang et al.
(1993) for the case of pure sliding without normal separation.
Let us now examine the elastic strain energy stored in body
D which contains an imperfectly bonded inclusion §2. In this
case, the total elastic strain energy W can be described as

W=wE+ wY (52)
with

WE= - %fn afefdv (33)
and

WY = _%Lg;e;‘dv. (54)

In the above expressions, W represents the elastic strain energy
for the perfectly bonded inclusion model of Eshelby, while W"
is the elastic strain energy induced by the imperfectly bonded
interface. When ¢} is uniform inside Q, W% and W" can be
simplified to

WE = —3Volelk

(55)

WY = —3vole) (56)
where o { is the uniform stress inside the perfectly bonded inclu-
sion given by (30), 7} is the average of the stress o} over the
inclusion €2, and V is the volume of §2.

4 Discussion

Let us now examine some aspects of the solution. When «
= f = 0, we have A = A; = B; = 0 which means that there
exist no displacement discontinuities at the interface, and the
solution reduces to Eshelby’s solution for spherical inclusion
with a perfectly bonded interface. For the case of pure sliding
without normal separation across the interface, we have 8 = 0,
leading to A = 0, and

ack, ey
Ay=—Bj=——22_ |70
! Yl + aglks + k) (az)
e *
_ 14a,(7 - 5v) (e_j) S
6ay(21 + v) + 105(1 — v) \a
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Fig. 2 Variation of the normal stress oy;/{—2ue}y) versus x,/a (x; = x;
= 0) in the case of pure sliding (8, = 0) with only ef; + 0

Furthermore,

-5 *
py= = 1T =) (e}
3(21 + v) \a
for the case where a — oo, which corresponds to the free sliding
interface. This solution is identical to the result of Furuhashi et

al. (1991).If @ = 0 and 8 # 0, only normal separation without
sliding occurs at the interface. In this case, A; = 0 and

(58)

Gk (e
A 3(1 + Boky) (az) (59).
- ()

B 1+ﬁuf¢.(a2 ‘ %)

If ef = 0 and ¢ + 0, then according to Eqgs. (41)-(43),
we have A; = By = 0 and A # 0. This means that volumetric-
type eigenstrains only cause normal separation (no sliding) and
the stress inside the inclusion is uniform. Nevertheless, if ¢jf =
0 and at least one component of ¢ is not vanishing, say e #
0, accordingly, A;; #= 0, B;; = 0, A = 0, which implies that
the deviatoric component of the eigenstrain results in normal
separation as well as sliding at the interface.

Unlike the perfectly bonded interface, our solution indicates
that the stresses inside the inclusion of an imperfectly bonded
interface are not uniform, except for two special cases. The first
case is that where e} = 0 and €jj # 0, which has already been
discussed. In the second case where & = 8 # 0, we can find
that uniform stresses do appear inside the inclusion, since B;
= 0,

Figure 2 shows the variation of the normal stress o,/
(— 2uel)) along the x-axis (0 = x/a = 1, x, = x3 = 0),
when ef, # 0 and other components of the eigenstrain are
nonexistent. In this case, we set 8, = 0 (pure sliding) and «,
is allowed to vary from 0 to «, with » = 0.3. This figure
demonstrates the nonuniform distribution of the stress inside
the inclusion. Only for the case where ay = 0 (Eshelby’s solu-
tion) does the stress distribution become uniform. The figure
also shows the case where a — o, which corresponds to the
earlier attempt made by Furuhashi et al. (1991). The results
reveal that the nonuniformity of the stress o, increases with
the increase of ay.
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Fig. 3 Variation of the shear stress o1,/ (—2uef) versus x,/a (xz = X3 =
0) in the case of pure sliding (B, = 0) with only ef; # 0

Figure 3 shows the variation of the shear stress o,/
(—2ue’;) along the x,-axis when e # 0 and other components
of the eigenstrain are zero. In this case, when the interface is
perfectly bonded (ap = 0), no variation in the shear stress
o12/(—2pe ) distribution along x,/a is observed. However, for
a, > 0, the shear stress decreases with an increase in x,/a.
When a, approaches ¢, this decrease in the shear stress becomes
rather rapid, indicative of the large variation in the stress field
in the inclusion,

Figure 4 gives the variation of the elastic strain energy W/
WE versus the interfacial sliding compliance ag, when ey} # 0
and other components of the eigenstrain are nonexistent, with
By = 0 and v = 0.3. The results indicate that the elastic strain
energy decreases rapidly with an increase in e, for small values
of ap (g = 1). For greater values of oy, W/W¥ decreases
asymptotically to approach the free sliding interface case
(g — ).

5 Concluding Remarks

A new solution is obtained for the eigenstrain problem of
spherical inclusion with an imperfectly bonded interface. The
interface is modeled by a linear spring-layer of vanishing thick-
ness. Both the tangential and the normal displacement disconti-

10 ==

08

whn®

08

07 e :
0 2 4 6 8 10

oy

Fig. 4 Variation of the elastic strain energy W/W© versus the interfacial
compliance ay
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nuities are taken into account. The formulations are obtained
using Eshelby’s solution of the eigenstrain problem for perfectly
bonded inclusion and Volterra’s solution for an equivalent So-
migliana dislocation field to model the interfacial sliding and
normal separation. For isotropic materials, the Burger's vector
of the equivalent Somigliana dislocation is determined exactly
and the resulting solution is explicitly presented. Unlike the
case of a perfectly bonded interface, the stresses inside the
imperfectly bonded inclusion are not uniform, except for some
special cases.
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APPENDIX
Derivation of ;" and o)
Substituting Green’s function for isotropic elastic medium
Gi(x — x')
_ by 1 a?
 dmwp|x - x| a l6mu(1l — v) Ox; Ox;
into (23), we have

[x — x'|
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|
u?=m[¢uﬂi — 2uy; — 4(1 — v)dyl + b (A2)
Ex r r
by = f M (A3)
a |x—x']
¢U=Lf§}‘*(x’)|x~x’|dl" (Ad)

where b; is given by (33) for point x inside 2 and b; = 0
for point x outside (2, and €} * is given in (24).
Substituting (33) into (24) leads to

E;r* = _ﬂ'z()\tﬁ;j + A,J) = Bux,x_,- = B;,JI.II; == BMI;‘X;&U. (AS)
Introducing the following integrals
av'’
I = — (A6)
alx—x'|
Jy zf |x — x'|dV’ (A7)
0
x{x/dV'
L= | —— - (AR)
o |x —x'|
J;,-zf xixj|x —x'|dV’, (A9)
n
we obtain the following expressions for ¢b; and ifs;:

b, = —a*( }\61_; + A-‘;)fl — Byly — Byl — Bk.-fﬂé.{f (A10)
¢;j = —az(l\é,-‘,- + A,]-).L = B"Ju - Bj;JH = B”Jk]ajj- (All)
IF 2 is a spherical domain, it can be shown that

2
L= 21\'(02 = i’;' ) (A12)
2w (3a* [x|*
ALl S LR
1= ( 5 ta [ x| 0 (A13)
|x]4 2a2|xr2 ad
!‘.. = —_— + —_— 6|"
y '”( 35 TN
x|* a°
- Zﬂ( I ?l - ?)x;x, (Al4)
27 [ |x]®  3a?|x|*  3a*|x|?
Ji=—|——=—- + + a® |6,
9 ( 105 35 5 4 )%
_(IxI* 2a%x|* e
:-r( B 35 + 15 xx; (Al5)
for point x inside 2, and
4ma’
Fri=
L= k] (Al6)
4za’ a’
I = TN e A
4ma’ [ 1 a’ dna’
=== = o | by + ——=— 1
0 (lxl 7|xl3) vt asixp e (ALB)
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4ra’® 2a® a’ )
By = ome [ T + = 2 VG
105( X1+ 157~ o)
4ra’ 1 a’
- 5o (m st 4

for point x outside (2.
In this case, u} can be obtained by using (A2)-(AS5),
(A10)-(A19),

v_20=2) .  1-5
U; ———3(] 20 a“hx; +~—----——15(I = i})a Aux;
41100
35{‘ —-]’/] T S ]
(40 =4, 265-w) L]
[35(1 = X 15a _U)a]g.,x, (A20}

for point x inside 2, and

" 3(1—-w») x| 6(1 - w)

l
Z
3a Amxkx,ax,- b ——

Ix|”

6a’ 1

1
= 3Auxixx; —= — Auxy m

IxI° 5

1
= 2{1 == 2U)A”x, W]

a’ 30va? 1 1
= B o 6B, y —
3001 — ») [ 7 KX X)X, Ix|? kXXX, ME
12va® 1 1
- Byxy —— + 4(1 — 2v)Byx; — A21
7 X1 Ix]° ( v)Byx leg] ( )

for point x outside €.
The stress caused by Somigliana dislocation can be obtained
using o} = Cyay,, such that

v 4u(l +v) 2u(7 — Sv) ,

i e L B (e s L L 2P T

=300 T s G
24uv 4u
s o B
S~ u) e T e - )

X [2(? — 4u)By| x|* + 12vByxx; + 120B;xx,

~ 2(7 — 10v)Byxy 6 — % (5 - I/)(IZB,-}] (A22)

for point x inside {2, and

v Zp(l-l-v}ajh( 5, 3x,.x,.)

! 30-v) \Ix* |x/*
na’ XX 1
+ ']-_—V A;d‘lx—l?' by + (Apxix; + Ajxx;) '—xr-;
X X1 X; X; pa’ XXy
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SBu x| 35(1 — v)

1 5 1
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for point x outside (2.
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stochastic stability criteria of the structure equilibrium are derived using the Liapunov
direct method. The energy-like functional and the generalized Itd lemma are used to
derive the sufficient stability conditions of the equilibrium state, A symmetrically

laminated cross-ply plate subjected to the wide-band Gaussian temperature distribu-
tion and a laminated beam subjected to local short-time heatings are analysed in

detail.

1 Introduction

Thermal buckling problems of laminated structures have been
considered in the literature for the last ten years. Most papers
were concerned with time-independent temperature field in the
structure and a static approach was applied (cf., Boley and
Weiner, 1960; Chen and Chen, 1987; Tauchert, 1987a). More
recently, the problem of thermally induced vibrations of plates
was investigated by Tauchert (1987b). Based on the dynamic
equation of laminated plates some more general thermally in-
duced vibration problem can be solved. The temperature in the
plate is treated as a time and space-dependent stochastic field.
It can be decomposed into a sum of two terms of which the
first is constant in time and the second is time dependent. The
temperature variations have a significant effect on the dynamic
behavior and the static component of buckling load. As a result,
the time-dependent components of temperature field can desta-
bilize the unperturbed state of the structure,

The present paper examines thermal buckling of thin laml—
nated plates due to a nonuniform, time and space-dependent
stochastic temperature field. The structures are described by
partial differential equations including transverse inertia
terms, a dissipation of energy, and both force and moment
thermal resultants. The study is based on the reformulation
of stochastic stability problems as a stability of Ito-type equa-
tions in some appropriate Hilbert space and is adopted for
stability problems of structures governed by partial differen-
tial equations with time and space-dependent stochastic coef-
ficients. The uniform stochastic stability criteria of the struc-
ture equilibrium are derived using the Liapunov direct
method. The method is applied without earlier finite dimen-
sional or modal approximations, The energy-like functional
is proposed; its positiveness is equivalent to the condition in
which static buckling does not occur. To estimate deviations
of solutions from the equilibrium state (the distance between
a solution with nontrivial initial conditions and the trivial
solution ) a scalar measure of distance equal to the square root
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of the functional is introduced. The generalized It6 lemma is
used to show a supermartingale property of the functional
and, in consequence, to derive sufficient stability conditions
of the equilibrium state. From the mathematical point of view
the temperature fields are described by a wide-band Gaussian
process with an arbitrary space correlation function and a
sequence of local rapid increments randomly distributed over
the length of the beam, having independent increments and
arriving in time according to the Poisson probability distribu-
tion.

Two particular problems are analyzed in detail. The first is
devoted to stability analysis of a symmetrically cross-ply lami-
nated rectangular plate subjected to a space and time-dependent
Gaussian wide-band temperature field. Assuming the symmetric
temperature distribution, the thermal moment resultants vanish
and there exists the undeflected state of equilibrium. For the
statistically homogeneous temperature field the uniform stabil-
ity condition is reduced to the static thermal buckling problem
with modified plate bending stiffnesses.

The second example is devoted to a laminated beam subjected
to local short-time heatings described by the Poisson measure.
The explicit criterion for the uniform stochastic stability is ex-
pressed in terms of the damping coefficient, the mean arrival
rate of thermal pulses, the mean square value of temperature
changes, and the beam parameters.

2 Assumptions, Definitions, and Basic Equations

Consider a thin rectangular plate a by b of constant thickness
h composed of layers of the same thickness of orthotropic mate-
rials bonded together. It is assumed that each layer is orthotropic
and elastic. The plate thickness is small compared to its length
and width, The Kirchhoff hypothesis on nondeformable normal
element to the middle surface is used and the rotary and cou-
pling inertias are neglected. The energy of general three-dimen-
sional motion is dissipated only in the transverse motion by
viscous damping with a constant proportionality coefficient 3.
Temperature variations change expansional strains in the plate
according to the Duhamel-Neumann equation. An elastic-ther-
mal coupling is neglected and the thermal stresses approach is
used, The temperature field in the plate is assumed to be known
and it can be decomposed into a time-independent and time and
space-dependent components.

With the stated assumptions, thermal force and thermal mo-
ment resultants in the laminated plate are given in the form
(Whitney, 1987)
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where g,, &, & are thermal expansional strains, and J; are in-
plane reduced stiffnesses of lamina.

The laminate constitutive relations, from which in-plane
force N, Ni, N, and moment resultants M, M, M’, can
be calculated, are given by

N;:c Ay A As By B B Gil-
N, Ap An Ayx B Bn By EE
Ni\v e Ais Axw Ass Bis By Bes €xy
M,r By, By By Dn Dy Dy Ky
M;- By, By By D Dn Dy Ky
Ml—,- By By By Dig Dy Des Kay
Ny
NT
NT
e M',-{‘: (3)
My
M,

where Ay, B;, Dy are extensional, coupling, and bending stiff-
nesses, respectively. Using constitutive relations (3) and ex-
pressing the strains by the displacement state w the linear equa-
tion of motion can be derived with the trivial solution w = w,
= 0 corresponding to the plane (undisturbed) state.

The main purpose of the paper is to examine a uniform sto-
chastic stability of the equilibrium state. The trivial solution
is called uniformly stochastically stable if the following logic
sentence is true:

ANV IWD=sr= Puplw,t)l=e=656 (4)

e=0 f=0 r=0 =0
where [w(., #)|| is a measure of disturbed solution w from the
equilibrium state. In the present analysis the direct Liapunov
method is proposed to establish criteria for the uniform stability.
The crucial point of the method is a construction of a suitable
Liapunov functional (Tylikowski, 1986), which is positive for
any motion of the analyzed system. It follows that the measure
of distance can be chosen as the square root of Liapunov func-
tional [w(., )| = V"2,

3 Symmetrical Cross-ply Laminated Rectangular
Plate due to a Space and Time-Dependent Gaussian
Wide-Band Temperature Field

Consider a thin elastic cross-ply symmetrically laminated
plate consisting of an odd number of orthotropic layers. Due to
the geometrical and thermal orthotropy of layers the thermal
expansional strains are given by

(273

M|
o ol

T(x,y,2, 1) (5)

.
=g

where «; and ay are linear coefficients of thermal expansion
parallel and transverse to the principal material axis, and T(x,
y, z, t) is a temperature field. Therefore, from the material
symmetry follows that B; = 0, Ajs = Ay = 0.

Assume that the temperature distribution has a product form
and is symmetric with respect to z = 0,

T(x,y,z, 1) = T*x,y, )T \(2) = T*(x, y, DT\ (~2). (6)
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Due to the cross-ply arrangement of layers the thermal forces
can be calculated from Eqs. (1) and (5),

N?
NY
NI,
/2 Q1@ 0 oy
=T*(x,y, 1) Qn0» 0 ar | Ti(z)dz. (7)
-l 2 0 0 Qﬂﬁ 0

The thermal forces are assumed to be stochastic fields propor-
tional to T#(x, vy, )

Nz 2 Ona + Qpayr
N_; =T*(x,y, 1) Qe + Quar | Ti(2)dz
NT —hi2 0
k.r
=T*x,y,1)| k (8)
0

Due to the thermal, material, and geometrical symmetry the
thermal moments are equal to zero M! = M| = M!, = 0.

Assuming that the plate in a prebuckling state is unde-
formed, i.e., k, = k, = k,, = 0, and using Eq. (3), we notice
that the in-plane moment resultants are also equal to zero
M, = M, = M., = 0. Relations between in-plane force
resultants and thermal force resultants can be found since
for the simply supported edges the midplane strains vanish.
Therefore, substituting €? = ¢ = ¢, = 0 into the first three
rows of Eq. (3) the in-plane force resultants are equal to the
negatives of the thermal forces

N NT
Ny | =-| & )
N 0

The plate is heated, and it is assumed that a time and space-
dependent temperature field with known statistic characteristics
can be calculated. With these conditions, the dynamic equation of
transverse plate motion is given in the form (cf., Whitney, 1987)

D“W‘n_‘, + 2(i)l‘.?. + ZDM}W.A:\'»- + D!zw.y_v_\:n-
+ Niw + Nyw,, + phw, + 2phfw, = 0

(x,y) € Q= (0,a) X (0,b). (10)
Consider a simply supported plate with its edges immovable
in the plane of the plate, i.e.,

w=0, M,=0 for x=0,a

(1)

w=0 M=0 for y=0,5b. (12)
Let us divide the dynamic Eq. (10) by ph, denote d; = D/
ph, n = N/ph, and introduce the notations

Ow = dllw..u.u T 2(d12 <h Zdﬁﬁ)w.x.ryy + d‘z‘zwdyyy (13]

Aaw = nlgw o + njow,, Aw = kw + kw,,. (14)

Assuming that the temperature is equal to the sum of a mean
time-independent component T, and a variable component
T*(x, v, t) equal to the difference of temperature from the
mean. For a temporarily wide-band Gaussian process with an
arbitrary space correlation function Qr(x,, X2, ¥;, ¥2), We can
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rewrite the dynamic Eq. (10) as the It6 differential equation in
Hilbert space X with the inner product (., .) over a probability

space
dw = w,dt

dw, = —[Ow + Aw + 20w, 1dt + AwdW

(15)
(16)

with (x, y) € Q. Here, W is a Wiener process with values in
Hilbert space ¥ with a mean zero and a nuclear covariance
operator Q, A:X D D(A) = X, B:X - £(¥, X). The operator
O corresponds to the biharmonic operator for isotropic plates.
Introducing the operator notation we describe the plate vibra-
tions as an equation in Hilbert space X

di = Aildr + [Bl]ldW (17)

where ¥ = col (w, w,)

0 1 0 0
t=|ola 2] 2=[a o] 0@

In order to examine the uniform stochastic stability of the
plate equilibrium (the trivial solution % = 0) we choose the
Liapunov functional in the form

V= f GCU Uy, U )dQ (19)
a

where the integrand function § is given by
§=wl+ 4Bww + 48?2 + dywk + 2dwow,,
+ Addegw?, + dpw?, — nlowk — nlow?. (20)

According to the generalized Ité6 lemma in infinite dimen-
sional spaces (cf,, Curtain and Falb, 1970) the differential of
functional V is equal to

dV = (V! Allyds + 3Tr([BU)*V [ BU) Q)dt

+(V i, [BUldW) (21)

where Tr(.) denotes the trace of the operator, and V | and
V ', denote the first and the second Frechet derivatives of func-

tional V, respectively,
40
o 22
2] (22)

oy [4ﬂw_, + Sﬁzw]
Substituting the operator A in the first part of differential (21),

o _[86°
U 2w, + 40w
and integrating by parts, we have

o | 4p

(V1, All) = —4ﬁf [diw?, + 2daw oW,
a

+ 4d56w_2,,, + dnw‘z”. = HEoW:zx = n;{,wﬁ.]dﬂ (23)

By definition, the trace part (in Eq. (21)) is given by the for-
mula

dVy =3 X N{[BUle;, Vi, [Bille,)dt

(24)

where { ¢, } is an orthonormal basis in the space ¥. Substituting
the operator B and the Hessian matrix of § we obtain the trace

part of the functional differential in the form
dVr = Qr(x, x, 5, ) Aiw. (25)

Proceeding similarly as in the proof of the Chebyshev in-
equality we may show that the equilibrium state of the plate
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with the time and space-dependent temperature field is uni-
formly stochastically stable if the following inequality is
valid

'B = J. [4,8(d||w_2n + 2d|2wlnww + 4df,.;w_zx,
1]

2 T 2 T 2
+ d;_zw‘”, — RpaW — ﬂyan)

= Or(x, %, ¥, Y) (kW o + kw,,)?1dQ = 0. (26)

As inequality (26) depends on all parameters of the plate and
the temperature field the sufficient stability condition (26) de-
scribes the balance between the energy added to the plate by
the changing temperature field and the energy extracted from
the system by the damping.

The inequality (26) holds for every function w satisfying the
boundary conditions (11)—(12). The functional ‘8 is quadratic
and can be rewritten in the form

B = fn [(dn = Qr(x, x, y, YIK/4B) W

iR 2(dlz - QT(x; X, ¥, y)kxkyf‘l'ﬁ)w.uww
+ (dZ‘Z - Q’l"{xs X, }'. y)k§;4ﬁ)w2,yy
+ ddegw?, — nlywk — njow? ldxdy (27)

It constitutes the variational problem 6B = 0. Using the
theorem on the minimum of a quadratic functional
(Rektorys, 1975) the functional ‘8 assumes its minimum
value for function satisfying the associated partial differen-
tial equation

O#*w + nfow. + nlow,, = 0 (28)
where the operator [J* is defined in the following way
O*w = [(dy — Qr(x, x, ¥, YIKI/4B)W ] e
+ [(dia = Or(x, x, ¥, Y)kk/4B8)IW 5] 0
+ [(dia — Orlx, x, y, ) hky/4B)W ],y
+ [(dn — Qr(x, X, ¥, Y)KS14B)IW,, 1,
+ 4degW ey (29)

The problem is self-adjoint as for every pair of elements « and
w satisfying the boundary conditions (11)-(12) we have

Il b
‘rr w *udxdy = f J‘ u 0 *wdxdy
0 0 o (1]

Therefore the sufficient dynamic stability condition for the
thermally induced vibration is reduced to the self-adjoint
eigenvalue problem described by the fourth-order partial
differential operator [1* with the space-dependent coeffi-
cients.

Equations (26) and (28) represent the main results of this
section. They allow to perform specific calculations.

(30)

Example. Consider a square plate composed of a large
number of orthotropic layers with a thermal field having the
same properties in x and y direction, i.e., nly = nly, k, = k,.
The temperature distribution has the space correlation function
of the form

Qr(x, x,y,y) = 0r sin 2= sin =2 (31)
a a

Due to the thermal symmetry, Eq. (26) reduces to

O*w + Aw = 0. (32)
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The estimation of the first eigenvalue is obtained by means of
the Schwartz iterative method (Collatz, 1963). Assuming the
first-order approximation in the form

w; = sin X sin 22 (33)
a a

the zero-order approximation given by the equation Aw, =
—[J*w, has the form

2 Ty

W, = Y, sin Banld - ¥, sin? I Sin (34)
a a a a
where
\? m\?
Yi= (') dinl, Y2 = Qrkz (_) f2ﬂnfn (35)
a a
d = (d“ + 2(d12 o Zdﬁ) + dzz)lz (36)
The Schwartz constants (Collatz, 1963) are equal to
il b
2 =f J. wﬂ{_Aqu)dxdy
0 0
2
= % [(y, — 64y,/97%)* + 0.2308v3] (37)
]
a = J“J. wl(_Anwu)dxdy
0 (1]
=22y, /4 - 16'y2f9ﬂ'2) (38)
o 1]
a = f f wi (—=Aw )dxdy = m°/2 (39)
(1] V]

Using the Schwartz constants we calculate the Schwartz ratios
4y and p;,

ay
==
a
= —-ﬁ + 0230873 ——@i ) (40)
=T o2 Y2 . Y2 Yi On? Y2
L, _ &
= & Y1 On? Y2- (41)

In order to obtain the two-sided estimate of the first eigenvalue
A1, the lower estimate of the second eigenvalue A, is needed.
It can be found by comparison of the considered eigenvalue
problem with some simpler problem and by application of the
minimax principle. This simpler problem can be defined, by
substituting the minimal values of coefficients in functional
(27).

%= f [(dy ~ QK2 /4B) Wi
0

+ 2(d12 - QT‘ki ’!416)wnw,yy
+ (dn — Qrk2140)W3,
+ 4dggw?, — nlo(w? + wi)ldxdy = 0 (42)

Thus the lower estimate of the second eigenvalue is given by
L=4(y — v2).

If I, < u, the estimate g, — (i — )/ (L/pp — 1) =N =
12 holds and if I, = y, the lower estimate of the first eigenvalue
is calculated for the simplified problem (42)

Journal of Applied Mechanics

)\,a-ylmax{ —E,

"1

2
t =gz 2 =308y } . (43)
Yi 3 - 3.2872.""}’|

Therefore, the constant inplane force n!, corresponding to the
constant temperature (7)., cannot be greater than the lower
estimation of the first eigenvalue \,

Tog'[(Qu + On)a, + (@ + On)ar]l =\, (44)

Finally, the dynamic thermal buckling condition obtained from
Eq. (44), determining the critical value of constant temperature
component (7,),,, has the form

2
am(Tﬂ)cr (%)

1 +2 v F Gy, _ 0r(0, O)kf
2
Z%(F+l) F+1 (F+ 1)E, 28Dy, ph
Z 4+ vpF) + FE (U + vy)
m am

3 2

X max 3 | —%, 1 —O.TZQ—Tk"

28d 20d

_ 2kz\ /[ 5 _
0.2308 (Zﬁd ) / [3

Equation (45) describes the line bounding stability region. In
Eq. (45) F is the ratio of principal lamina stiffnesses (F = E,/
E,), where E, and E, are Young’s moduli in longitudinal and
transverse directions, respectively, G, denotes the shear modu-
lus of the lamina, and v, is the Poisson’s ratio for transverse
strain in direction 2 when the stress is applied in direction 1.
In addition, e, stands for the linear thermal expansion coeffi-
cient of the lamina matrix. Stability domains calculated for the
glass-epoxy, the graphite-epoxy and aluminum plate according
to Eq. (45) are shown in Fig. 1. The Schwartz iterative method
has increased the stability domains in comparison with those
obtained for the simplified problem (42). The stability domains
in the simplified approach are bounded by straight lines, shown
in part as dotted lines. The areas between the continuous lines
and dotted lines represent the increase of the stability domains.
The mechanical properties of those materials are given in Ta-
ble 1.

3.28 Q—’kz]} . (45)
2pd

4 Laminated Beam due to Local Short-Time Heat-
ings

In numerous applications, for example in electronic elements,
aircraft panels (e.g., White, 1985) and in thin-walled aerospace
structures, intense short-time local heatings often occur. They
may destabilize initially plane shape of elements. In order to
evaluate the effect of such phenomena and calculate critical
temperature we consider a laminated beam of rectangular cross
section of the length [, width g, and total thickness /. Equations
of symmetrically laminated beams may be derived by consider-
ing the beam as a special case of a laminated plate. Beams have
a high length-to-width ratio. Therefore, the transverse displace-
ment is a function of the variable x only, w = w(x). The
symmetry of laminate and stress-free conditions for lateral sur-
faces imply
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Fig. 1 Dynamic thermal buckling regions

0.5

Mi=M., =0, N,=N.=0. (46)

The only one nonzero moment may be expressed by the trans-
verse displacement in the classic form

___8
M, D0y (47)

In the case of beam compressed by an axial force, equation
of the plane motion has the form

'l

pA-w.rr + sznGwJ =+ + W i + gN; W = “gM;‘xx
(D7)

x € (0, 1) (48)

where N. is the inplane force resultant.
The beam is assumed to be simply supported,

w(t,0)=w(t, 1) =0, w,(t,0)=w.(,1)=0,

and with immovable ends €.(0) = ¢,(/) = 0.

For the beam geometry in the absence of axial motion we
have €2 = 0.

Substituting ¢! into the first three rows of Eq. (3) and elimi-
nating ¢%, and ¢ we can write the axial force in the form

_ ApNT — ApNT
AIZ

(49)

N: = (50)
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Dividing Eq. (48) by pA, substituting e = 1/[(D"")1ph],
no = No/ph, n(t) = N(t)/ ph, and assuming the uniform temper-
ature distribution over the beam cross section T(x, y, z, t) =
T(x, t), the thermal moment in Eq. (48) vanishes and we have
the following homogeneous equation of motion:

Wa + 28w, + eW e + (n° + n(1)w = 0,

xe€(0,0) (51)

where n° and n(t) are constant and time-dependent components
of the inplane force resultant n', respectively,

Since the axial motion is neglected, the axial forces n° and
n(t) are substituted by their mean values calculated over the
beam length

l |
(7o, 71(2)) = ?f (n°, n(1))dg. (52)
1]
To calculate n° and n(t) we may observe that for an angle-ply
symmetrically laminated beam thermal force resultants calcu-
lated from Eq. (1) are expressed in the following way:

NI
1] s

o cos® @ + aysin? ®
a, sin? @ + a;cos? O | dz
(a;, — ay) sin (28)

hi2 Qll QIZ QI5
# f [Q.z 0 QM]
(53)

where O is the lamination angle. Integration of Eq. (53) leads
to the expression for the thermal force resultants in the shortened
form

(NI, Ny) = (L, L)T*(x, 1) = hQuan(S:, §,)

where S, and S, are known dimensionless constants.
Finally, the components of axial forces have the form

(34)

I
(a°, (1)) = C'J; (To(&), (T(& 1) — To(£)))dE (55)

where Ty(x) is the time mean value of the temperature field
and C = (Azz[x Lo An[y)fphMgz.
The force discontinuity is related to the temperature increa-
ment d7 in the following way (similar to Eq. (55)):
!
dn = Cf dT (&, t)d&. (56)
0
If the beam is subjected to a sequence of random heatings
causing temperature variations randomly distributed over the
beam, having independent increments and arriving in time ac-
cording to the Poisson distribution, the equation of motion (51)
can be rewritten as the Ité partial differential equation of the

form
dw = vdt (57)

dv = —(20v + ew yuy + HoWo ) dl

- cw‘nJ' uv(du, dt), x € (0,1) (58)

Table 1 Mechanical properties of single orthotropic lamina

glass-epoxy | graphite-epoxy | aluminum
F 0.22 0.0458 1
Gi/E; | 0,08 0.0271 0.4
2 0.26 0.26 0.25
apfom | 0.088 -0.013 0.375
arfom | 0.5 0.76 0.375
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where € is a constant containing information on the space distri-

bution f(x) of the temperature field € = C [, f(£)dé, and the
Poisson measure v(dt, S) denotes a random number of tempera-
ture changes belonging to the domain § in the time interval (r,
t + dt); its distribution has the known form

P{V([rls IZIi S) = H}

1 1y i 45
=E(-[1 M’I(dr,S)) exp(‘[ m(d:,S))- (39)

The mean value of the Poisson measure v equals to the ordinary
measure I1 of (dt, §) multiplied by a mean arrival rate \ of the
temperature pulses

Ev(dt, §) = NM)I1(dt, S). (60)

In the steady-state condition the mean arrival rate A is constant
and
Ev(dt, S) = A1(S)dt. (61)

We introduce an energy-like Liapunov functional of the form
!

V= f (v + 48vw + 48%° + ew?l, — ngwl)dx. (62)
0

The functional is positive definite if a constant component ng
of axial temperature force satisfies the classic buckling condi-
tion. Then we can choose a measure of motion disturbances as
a square root of functional |jw|| = V', In order to calculate
the differential of functional it is necessary to apply the general-
ized Itd formula (Gikhman and Dorogovtsev, 1965), which
yields

!

dVv = J‘ [2vdv + 48wdv + 4Bvdw + 86 wdw
0
+ 2ew ndw o — 2ngw dw dx

!
+ f -r [(v + uew,)* + 4B8w(v + uew,,)
1] —e

—v? — 4pwu]u(dr, du)dx. (63)

Substituting dw from Eq. (57) and dv from Eq. (58), integrat-
ing by parts, and using boundary conditions, we obtain

!
v = - f (48w’ — 4Bngw’ = Ne’E(AT?)w?, |dxdt
i3

+ —f (2v + 408w)ew . dx qu uvide, du) (64)
1] —o0

where E(AT?) is a mean square value of the temperature incre-
ments. Applying the Gikhman and Skorokhod (1972) stability
theorem we can write the uniform stability condition in the
form

!
f [4Bew?, — 4Bngw?, — Ne2BE(AT?)wi,]dx > 0 (65)
]

As functions satisfying boundary conditions (49) satisfy the
following inequality,

{ 2 !
[ wade = (1) [ was,
0 ) 0

we can rewrite the stability condition (65) in the form

(66)
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Fig. 2 Dynamic thermal buckling regions for a beam

! 2
f [(4ﬁe - ;\ezE(&T’])(%) - 4;3n0] widx > 0. (67)

Therefore, the beam subjected to a sequence of local short-
term heatings is uniformly stochastically stable if the following
condition imposed on the beam parameters and the temperature
fields is satisfied:

AE(AT?)e? - [e . (1)2
443 N7 '

Using the inverse matrix D' and the relation between the axial
force ny and the constant mean temperature T Eq. (68) can be
written in the form
W’ 0 [ 1+ zplzplapzo(t'z{fm) - Pzzpz:'e‘f’z(LN) = Pﬂspfzjl
1
12ph P2pss — Pre®’(Ln)

(68)

s ‘:; Qi (S — SyQIZ’QﬂZ)Tﬂ(E)

_ AE(AT?)é?
_4,6 >0 (69)
_ 9
=00
3L -3
d(Ly) = ;7%

Finally, the thermal buckling condition in dimensionless vari-
ables has the form

2
a,,.(Tu)"(é) p— (70)

where k, is a known coefficient depending on the material and
geometrical parameters and the number of layers Ly
2

="
12
% [ 1+ 2P|2P|6P26¢2(LN) = PzzP%ﬁQ&Z(LN) = PmP?z]/
PnPss — Pied” (L)

(S. — 8,01/ 0n) (71)
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and the independent variable 7 in Eq. (70) depends on the
thermal characteristics of temperature field and the dissipative
properties of the beam

o AE(AT)*ayn*Qn

4B8ph*
i 2
X (%J;f(f)dﬁ) (S.r = y_gg) - (72)

Stability domains for graphite-epoxy and glass-epoxy beams
with the lamination angle 8§ = /4 and for various numbers of
layers are shown in Fig. 2. As anticipated, because of the nega-
tive value of «,/a,,, the graphite-epoxy composites (upper right
lines) exhibit increased stability domains compared to those of
glass-epoxy laminate (lower left lines) which display positive
thermal expansion coefficients.

Stability boundaries are seen to tend to a limit with an increas-
ing number of layers. The limit case Ly — < corresponding to
the specially orthotropic plates (as D5 = Dy — 0) overestimates
the critical value of a,,(T5)..(I/h)*. The presence of bending-
torsional coupling terms (Ds, D) decreases the stability do-
mains for both the glass-epoxy and the graphite-epoxy beams.

5 Conclusions

A method has been presented for analyzing the thermally
induced instability of elastic laminated plates subjected to time
and space-varying temperature fields. The major conclusion is
that the Liapunov method is an effective tool of solving the
stability problem of laminated plates. The explicit criteria devel-
oped in the paper define stability regions in terms of the intensity
of excitation process and the physical characteristics of the
plate. The analytical formulas defining the stability regions are

890 / Vol. 63, DECEMBER 1996

derived using the calculus of variations. Stability regions depend
essentially on the constant temperature and the plate material.
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An Integral-Equation Formulation
for Anisotropic Elastostatics

In this paper a conceptually simple integral-equation formulation for homogeneous
anisotropic linear elastostatics is presented. The basic idea of the approach proposed
here is to rewrite the system of differential equations of the anisotropic problem to
enable the use of the isotropic fundamental solution. This procedure leads to an
extended form of Somigliana’s identity where a domain term occurs as a result of
the anisotropy of the material. A supplementary integral equation is then established
to cope with the resulting domain unknowns. Although the solution of these integral
equations requires discretization of the contour of the structural component into
boundary elements and its domain into internal cells, the numerical scheme presented
here depends only on the boundary variables of the problem. Once the boundary
solution is obtained it is possible to compute the unknowns within the domain, if
required. The main objective of the present work is to develop an alternative integral-
equation formulation that could be used to reduce the time needed to compute three-
dimensional solutions for linear homogeneous anisotropic problems. Another possible
advantage of the proposed formulation is its generality, which enables its direct
extension to include dynamic and plastic effects in the analysis. Encouraging results
are presented for four examples where structural elements are submitted to tension
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and shear effects.

1 Introduction

To solve current technological problems that occur in indus-
try, the use of composite materials or directionally solidified
alloys is sometimes essential, Further, as plastic deformation is
physically anisotropic (Fung, 1965), many fabrication pro-
cesses such as cold-pressing, forging, or spinning, usually de-
stroy any initial isotropy which may have been present, leaving
as a result an anisotropic material.

As the treatment of anisotropic problems is generally re-
garded as difficult, the increasing number of industrial applica-
tions of anisotropic materials has attracted the attention of many
researchers concerned with computational modeling. However,
despite the importance that computational modeling has as-
sumed in providing answers to realistic industrial problems, it
seems that the progress achieved in the analysis of orthotropic
and anisotropic problems has been relatively slow, when com-
pared with the significant developments in numerical modeling
made in the last decades.

This paper is concerned with the development of an alterna-
tive integral-equation formulation for the numerical analysis of
homogeneous anisotropic linear elastic problems. The approach
presented here consists of rewriting the generalized form of
Hooke's law in a slightly different way to enable the use of
Kelvin's fundamental solutions for elastostatics. This procedure
leads to an extended form of Somigliana’s identity which in-
cludes a domain term that accounts for the anisotropy of the
material, The first primary integral equation of the method is
obtained by taking the limiting form of this equation as the
interior point approaches the boundary. In order to cope with
the domain unknowns arising from this formulation, a supple-
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Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS.

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS .

Manuscript received by the ASME Applied Mechanics Division, Nov. 10, 1993;
final revision, Aug. 19, 1996. Associate Technical Editor: L. T. Wheeler.

Journal of Applied Mechanics

Copyright © 1996 by ASME

mentary integral equation is derived from the extended form of
Somigliana’s identity. This supplementary integral equation is
then regarded as the second primary integral equation of the
proposed method.

To solve the system formed by the two integral equations it
is necessary to discretize the contour of the mechanical or struc-
tural element under consideration into boundary elements and
its interior into domain cells. Two coupled systems of linear
algebraic equations are then obtained. The solution of these
simultaneous systems of linear equations is done using a tech-
nique equivalent to the FEM condensation of internal degrees
of freedom (Desai and Abel, 1972), leading to a final solution
that is dependent exclusively on the boundary variables of the
problem.

The purpose of the present work is to investigate whether the
use of the isotropic fundamental solutions for linear elastostatics
constitutes or not a reliable alternative for the analysis of aniso-
tropic problems. Once the formulation proposed here is verified
for two-dimensional problems there are no conceptual difficul-
ties in including dynamic and nonlinear (e.g., elastoplasticity)
effects in the formulation. Most importantly, it can be directly
extended to obtain a general integral equation formulation for
three-dimensional homogeneous anisotropic problems.

As regards BEM, Rizzo and Shippy (1970) (and Benjumea
and Sikarskie, 1972) used the two-dimensional anisotropic fun-
damental solution presented by Green (1943) in a real-variable
direct boundary integral equation formulation. One year later,
Cruse and Swedlow (1971) issued a report where a complex-
variable anisotropic fundamental solution was used for plane
elasticity. A more recent complex-variable approach for two-
dimensional anisotropic elastic problems was presented by Lee
and Mal (1990), where the integral equations are discretized
in the complex plane.

It is important to mention that although two-dimensional
complex fundamental solutions for anisotropic elasticity present
no particular difficulty in their implementation (see, for in-
stance, Cruse and Swedlow, 1971), the evaluation of the con-
tour integrals for the three-dimensional case is regarded compli-
cated, especially for the fundamental tractions (Vogel and
Rizzo, 1973), and too time-consuming for routine numerical
use by Wilson and Cruse (1978). An alternative approach to
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the problem has been presented by Mura and Kinoshita (1971).
However, the need to compute series expansions for the funda-
mental displacements and tractions at each integration point
makes this formulation also unsuitable for extensive computa-
tion.

Barnett (1972) developed a simple numerical scheme for
evaluating the derivatives of the anisotropic elastic Green’s
function for three-dimensional problems by using Fourier trans-
form method. This procedure was reviewed by Mura (1987),
together with other analytical and approximate expressions for
the three-dimensional anisotropic Green’s function. Recently,
Voorhees et al. (1992) presented a boundary integral technique
for a system with cubic elastic anisotropy which requires inte-
grating the derivatives of the three-dimensional Green's func-
tion. In this approach an analytical form for the Green’s function
described in the review paper of Bacon et al. (1979) was used.

The inspiration for the formulation proposed here was drawn
from the tentative approach proposed by Brebbia and Domin-
guez (1989) for anisotropic elasticity; from the work of Shi
(1990), where a supplementary integral equation for the solu-
tion of bending and eigenvalue problems of anisotropic plates
was derived from the integral equation for the displacements
within the domain; and from the work of Telles and Brebbia
(1979), where the complete integral formulation for plasticity
was first presented. Moreover, the method proposed here is a
direct extension of the formulation proposed by Perez and Wro-
bel (1992, 1993) for the analysis of homogeneous anisotropic
problems in potential theory.

2 Integral-Equation Formulation

The governing differential equation for linear anisotropic
elasticity—Navier equation—is expressed by (Bala§ et al.,
1989):

Dyuyj + b = 0 (1)

where Dy, represents the fourth-order tensor of elastic proper-
ties; u, denotes the components of the displacement vector,
and b; is the body force vector. This equation is sufficient to
completely describe the elastic behavior of the material once
boundary conditions are defined. As only homogeneous materi-
als are considered in this paper, the components of the elasticity
tensor are regarded as constant throughout the domain.

To enable the use of isotropic fundamental solutions, the
elasticity tensor was divided into two components, namely:

Dy = Djy + Dyy. (2)

In this equation, D}y stands for an isotropic reference tensor
while D;y; denotes the difference between the actual tensor of
elastic constants of the anisotropic material and the isotropic
reference tensor. This reference isotropic tensor is defined by
averaging the elastic constants of the anisotropic material (Breb-
bia and Dominguez, 1989).

Taking Eq. (2) into consideration, the weighted residual
statement to the anisotropic problem analysed here can then be
written as

_[! u (&, X)) (Dm + DYt (X )dAx)
+ L uif (& x)b(x)dQUx)

= f u (& 0P (x) — PI(x)1dT(x)

Iy
+ J; P ) m(x) — ui(x)1dT(x) (3)

where £ and x are the load and field points, respectively;
u¥(€, x) denotes the isotropic fundamental displacements;
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P (&, x) denotes the fundamental tractions; #;(x) and p;(x)
stand for displacements and tractions, respectively, while the
superimposed bar denotes prescribed values (@(x) on I'; and
Pi(x) on I',); Ty + T, = I constitutes the boundary of the
structural component being analyzed, and ) denotes the region
enclosed by I'.

The appropriate expressions for the reference isotropic funda-
mental displacements and tractions for two-dimensional plane-
strain problems are given (Brebbia et al., 1984) by

=]
uF(& x) = 81l = 1)C [(3 = 4v)In(r)é; — rur,] (4)

e — 26, 597
P& x) = Tl - oor {[(l 20)6y + 2ryry] on

— (1 = 2v)(rym — r.,-n.)} (5)

where & is the Kronecker delta; G is the shear modulus; v is
the Poisson’s ratio; r = r(&, x) denotes the distance between
£ and x; r,; represents the derivatives of r with respect to the
coordinates of the field point, i.e., r,; = 9r/0x;(x) = rilr; n
is the outward unit vector normal to the boundary at y, while
n; denotes its direction cosines. The case of plane stress can be
analyzed through the use of an effective Poisson’s ratio (Breb-
bia and Dominguez, 1989).

Integrating by parts the first term on the left-hand side of Eq.
(3) yields

= J:] fﬁ:(f- X)(D_?Mm # D_mm)fm(}()dﬂ(X)
+ fn u (& x)b(x)dUx)
= J.r uf (& x)pi(x)dl(x) — fr uF (€ 0p(x)dT(x)

+ f PECE xLm(x) — u(x)1dT(x) (6)

r

where €} (£, x ) represents the isotropic fundamental strain ten-
sor and ¢, (x) the actual strain field. The fundamental strains
€} at any point ¥, due to a unit point load applied at £ in the
direction i, can be written as (Brebbia et al., 1984):

-1
87(1 - v)Gr

X [(I - 21/)(?',;‘6&: + !"”:6;;‘) - r.;éjk + 2}',;?’,}?'.&]‘

(€ x) =
(7

The constitutive equation relating stresses and strains for a
linearly elastic material ( generalized Hooke’s law ) is used along
with Eq. (2) to write

(D_,?kbn + ﬁjk!’m)ehn =0k + 6

(8)

where o}, is the isotropic component of the actual stress tensor
while &, is the residual one. Applying Eq. (8) to the first term
on the left-hand side in Eq. (6) yields

- ]| ene 004000
= f (& X)ER0OANAX) + f uf (&, X)b 00 dAX)
= — fr u (& x)p(x)dT(x) — f uif (& 0P, (x)dl(x)

+ fr P& ) [E(x) — w(x)1dT(x). (9)
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Recalling that the isotropic fundamental tensors comply with
ofy = Djuncity and, from Eq. (8), that % = D€, it is
possible to rewrite the first term in Eq. (9) in the form

£ 2 )% x)
b

% L o hi(E X)) (10)

Integrating by parts the right-hand side term in Eq. (10) and
substituting the result into Eq. (9) leads to

j: o Buw(& ) (O dQUx) — :':

Q2 ]

efi(E, X)&jt(x)dﬂ(x)
+ J; uf (& x)b,00)dNAx) = — L u¥ (& x)p(x)dT(x)

+f P& x)u(x)dl(x) (11)
-

where the first term on the left-hand side can be shown to reduce
to the displacement vector at point £ (Brebbia et al., 1984) and
the dash through the integration symbols denotes integrals that
are to be interpreted in the Cauchy principal value sense. Equa-
tion (11) can then be written as

ui(€) = fr uf (& x)p(x)dl(x) — fr PECE x)u;(x)dT(x)

— f ei(E x)au(x)dQ:(x) — J;I uF (€, x)b(x)dQx).
1]

This equation can be seen as Somigliana’s identity with an
additional domain term which takes into account the anisotropy
of the material, This additional domain term introduces a set of
domain variables represented by the residual stress field
(X).

An integral equation for load points on the boundary is ob-
tained by a limiting process, taking the load point £ from within
the domain to the contour T'. The resulting integral equation is
expressed by

Cg(E)u;{£}+:f P& x)u(x)dT(x)

r

= fr ui(& x)p(x)dli(x) = — J:I € (& x)u(x)d:x)

" J"“ wF(E X)b0OO)ANX) (13)

where the elements of the tensor ¢;(§) are functions of the
internal angle of the boundary at point &.

Whereas Eq. (13) provides the first primary integral equa-
tion of the proposed formulation, another integral equation
is still required to provide, after discretization, the necessary
number of linear equations to solve the problem numeri-
cally. This supplementary integral equation is obtained by
differentiating Eq. (12) with respect to the coordinates of
the load point £, as expressed by

\

\

/ |D;21pb/h
r

(12)
y
D . p/h
16P
[
e

—

o

ERRR

/ b

A \mw@\?\w%m\\\\\\ s = ‘— *

-3
Dy pl/h

Fig. 2 Rectangular plate subjected to uniform tension
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and then combining these derivatives to obtain the strain tensor

€4(x). This strain tensor is then related to the residual stress a “ r
tensor &,(£) using the generalized Hooke'’s law, leading to the + A%, (€) Jr ui (&, x)pe(x)dT(x)
second primary integral equation of the method, that is "
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o 1 a . As the load point £ is considered within the domain in Eq.
= Do 5 [6): ) ena(& X)Gu(x)dUx) (15), it is possible to apply the differentiation directly to the
" L kernel of the boundary integrals. Recalling the identity
a
mT x(x) oxi(€)
9 5 1 8 f uk (£, x)b()dQ(x) the following tensors are obtained:
2 an(g) 1t
1| Gum(& x) | Oui(E, X)]
s + =ss ﬁn ] 17
+ [ unce x}bx(x)dﬂ(x)] (15) 2 [ G G el X) (D
8“:;11({) 43
where the first term on the left-hand side is equal to &;(£). and
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Fig. 6 Filleted plate in tension
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[ However, differentiation of the domain integrals needs further

f. attention due to their singular kernel.

|||||||

2.1 Differentiation of the Singular Domain Integrals.

(o) In order to obtain the final form of the integral equation for
the residual stresses (&) expressed by Eq. (15) it is necessary
to differentiate the extended form of Somigliana’s identity, Eq.
(12), with respect to the coordinates of the load point. This
differentiation can be directly applied to the fundamental solu-
tion tensors for the boundary integrals. However, the same pro-
cedure cannot be applied to differentiate the domain integrals
as the concept of differentiation of singular integrals does not
follow the classical rule (Mikhlin, 1962, 1970). The correct
differentiation of these integrals yields additional terms, which
can be determined analytically through the use of Leibnitz’ rule
(Brebbia et al., 1984; Perez and Wrobel, 1992, 1993).

According to Telles and Brebbia (1979), where the problem
of differentiation of similar domain terms in a BEM formulation
for plasticity is presented in detail, the derivative of the domain
integrals can be written as

a

(b) e Jo 6 082004900
- §, 2880 5, 00000
+ Uk.'(f)f €mu(&, X)ﬁ ({) dl'(x) (20)

where I'{ defines a circle uf unit radius centered at the load
— point and &y (£) corresponds to the first term on the left-hand
side of Eq. (15).

The expression for the derivatives of the domain integral
obtained in Eq. (20) can be substituted into the second term on
the right-hand side of Eq. (15). This term then assumes the
form

([
2 [ax.,-:g} f eul&, X)Bu(x)dUAX)

L9
(C) 811»(5)

Fig. 7 Boundary discretization (a), and internal meshes with 26 (b), and
44 (c) internal cells

& (€, X)&k.'(X)dQ(X)]

= Gul(x)dx)

dedu(é, X) .
0

1
2 %, (€)

1 [ opi(é, k(&
5[ pal x) | Opih(§ x]] = —piha(& x)  (18)

9%, (£) Ix, (&)
%ls et + U;c:(ﬁ)_r ema(€, X) (E) dT'(x)
where €%.,(&, ) is given by Eq. (7), while p X, (&, x) is given .
+ T, Z24E 2 5, 0000
Phu(E X) = ———— " Ox(8)
e dn(l — v)r?

+ ou(E) fr' exi(€, x) dr(X):I (21)

dr
X {(l == 2”)(60111”& = 6mknu == 6nknm e 2?’,,,,.”.,,?1;‘) ox, HI(E)
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Finally, Eq. (15) can be rewritten as

€ :ﬁnkf( E\ X ) = [{ 1.~ 2]}] (5nk6m.‘ o 6::!&6“!}

1
Sl Gr = 8(8) + Df P& XD 0O0AT(X)
r
+ zy(ﬁnfrvmrtk + 6,";-","?',& + Snkrymrsf + Eml:rmrv!) - 6nm5!d
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= zamurakrrf + 6&{".;"!”1" - Srsmrmrykr,l] . (23) v r 2 .
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= Dyud T €&, X)8ulx)dU x)
]

1 5 — & ..
+ 16(1 — )G [(6 — 8v)5,(E) a,f(.g)au]}

- ﬁifmu o Exnk(gs X)bk(x}dg(X)- (25)

Equations (13) and (25), together with appropriate boundary
conditions, provide the necessary integral relations for the nu-
merical solution of the problem.

3 Matrix Formulation

Following the approach used by Perez and Wrobel (1992,
1993) for anisotropic problems of potential theory, the nu-
merical solution of the system formed by Eqs. (13) and (25)
is obtained by discretizing the contour I' into boundary ele-
ments and the domain 2 into internal cells. Then, by applying
the discrete version of Eq. (13) at each boundary node, the
first set of linear equations is obtained in the form

HU - GP =ES - VB (26)
where H and G are the conventional BEM influence matri-
ces; U and P denote nodal boundary displacement and nodal
boundary traction vectors, respectively; E is the matrix re-
sulting from the domain integration of ¢ i3 S represents the
vector of domain unknowns & at the internal collocation
points; V is the matrix resulting from the domain integration
of uf; and B is the actual body force vector.

The supplementary set of linear equations can similarly be

898 / Vol. 63, DECEMBER 1896

obtained by applying the discretized version of Eq. (25) at the
internal collocation points. This procedure leads to

HU-GP=ES - VB (27)

where H and G are matrices concerned with boundary integrals;
E is a square matrix resulting from the domain integration of
€fa; and V is the matrix resulting from the domain integration
of fﬁ‘;.

To avoid the computation of the residual stresses & at interior
points, the coupling of the two equations is done by eliminating
the domain unknown vector S. With this purpose Eq. (27) is
written in the form

S =E"'(HU - GP + VB). (28)

The expression for vector S in Eq. (28) is then substituted into
Eq. (26), resulting in

(H - EE"'H)U
=(G-EE"'G)P - (V-EE"'V)B. (29)

This procedure is equivalent to the FEM condensation of inter-
nal degrees-of-freedom (Desai and Abel, 1972).

The final system of linear equations can be obtained by substi-
tuting the boundary conditions and rearranging Eq. (29) in order
to obtain an expression of the form

AX =F (30)

from which the boundary unknowns X of the problem are com-
puted. Once this solution is obtained, the domain unknowns can
be computed, if required, by referring to Eqg. (5).

The algorithm recently proposed by Guiggiani and Gigante
(1990) for evaluation of multidimensional Cauchy principal
value integrals was used to determine the components of matrix

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



” -0.00
o
¥-0.10
-
-0.20
E
w
o
9-0.30
(=5
b1
e 0.40
000 250 560 750 10.00
Coordinate x
[=]
0 > >
2 Q
« E ; _g
g® e
> 5 )
o 8 o g
o o ©
o o o o f=1=] o o o oc
N - Q v o e o n e
P & ? ? ? -I:D 0.10 r_;) cl:p ri) j
Displacements vx10™* = -0.00 Displacement vx10
> ©e06€ Anisotropic fundamental solution
€-0.10 aattt 26 internal cells
E EE888 44 internal cells
o —0.20 -
Q
2
a-0.30 3
2 E a
o : =
—0.40 3 S

2,50

0.00 5.00

7.50  10.00

Coordinate x

Fig. 10 Vertical displacements for & = 30 deg. Units in m.

E when the integration is performed over the cell that contains
the load point. Standard Gaussian numerical integration was
used otherwise.

In this work quadratic boundary elements were used for the
discretization of the contour I, while rectangular discontinuous
internal cells were used for discretization of the domain (2. For
the latter, either constant or Lagrangian quadratic interpolation
functions were used to approximate the unknowns &; within
each cell (Fig. 1).

4 Numerical Examples

Four examples are presented in this paper. In these examples
the loading is applied on the middle plane of the cross section
of the plate, thus causing a state of generalized plane stress
(Lekhnitskii, 1968; Ashton et al., 1969).

In all examples the xy-axes are the reference axes of analysis,
x,y; are the principal directions of elasticity of the material
(Lekhnitskii, 1968), and a denotes the angle between them. It
should be noted that the angle & is to be measured as indicated
in Fig. 2, i.e., from the principal axes of orthotropy to the
reference geometrical axes (Ashton et al., 1969).

The isotropic reference elastic constants were computed in
the xy-axes Ey = (Ex + Ey)/2, vp = (vy + v,)/2 and Gy =
Ey/[2(1 + vo)].

Example 1. Plate stretching. Figure 2 depicts a rectangular
plate subjected to tension by normal forces distributed along its
two side edges. The D' terms are coefficients of deformation
(components of the inverse of the elasticity matrix) (Lekhnit-
skii, 1963). The length of the plate is I = 10 m, its height b =
4 m, and its thickness 2 = 0.25 m. The load intensity per unit
length p was taken as 0.25 MN/m. The angle o was made equal
to 30 deg.

The elastic properties of the material on the principal axes
of elasticity were taken as E,,, = 144.789 GPa, E,, =

Journal of Applied Mechanics

11.721 GPa, G,,, = 9.653 GPa and v,,, = 0.21, representa-
tive of a fiber-reinforced graphite epoxy (Snyder and Cruse,
1975).

Six quadratic boundary elements were used for discretizing
the contour of the plate while both constant and quadratic
discontinuous internal cells were used for domain discretiza-
tion. The results obtained using one constant internal cell and
one subparametric quadratic internal cell are presented in
Fig. 3, along with the analytical solution to the problem (Lek-
hnitskii, 1968). In this figure it is important to notice that
the magnitude of the results presented for the top side of the
plate, 107, is one order smaller than the order for the other
sides, 1072,

Example 2. Shear loading. In this example, the load inten-
sity per unit length p is tangentially distributed along all edges
of the rectangular plate (Fig. 4). This loading causes the aniso-
tropic plate to be subjected to both shear on plane xy, which is
determined by D, and either elongation or shortening of its
sides, depending on the signs of D;J and D3 (Lekhnitskii,
1968; Pagano and Chou, 1969). The results obtained using
one constant and one subparametric quadratic internal cell are
presented in Fig. 5, along with the analytical solution to the
problem (Lekhnitskii, 1968). The angle a is kept equal to 30
deg.

Example 3. Filleted plate in tension. A rectangular filleted
plate of fiber-reinforced graphite epoxy is submitted to uniform
tensile loading (Fig. 6). The dimensions of the plate are | =
10 m, » = 4 m, and A = 0.25 m, while p was taken as 0.25
MN/m.

The contour was discretized using 28 quadratic boundary
elements, Fig. 7(a), while 26 (Fig. 7(b)) and 44 (Fig. 7(c))
quadratic internal cells were used for the domain discretiza-
tion.
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Fig. 11 Rectangular plate under inertial loading

Results for the case where the principal directions of elasticity
xiy, are aligned with the reference axes xy (o = 0 deg) are
presented in Fig. 8(a) for variables in the x direction and in
Fig. 8(b) for variables in the y direction. Similarly, results for
a = 30 deg are presented in Fig. 9 for variables in the x direction
and in Fig. 10 for variables in the y direction.

It can be seen from Figs. 8—10 that the results obtained using
the formulation proposed here converge to the solution obtained
using the anisotropic fundamental solution (Cruse and
Swedlow, 1971). The influence of refining the internal discreti-
zation can be noted in the graph on the right hand side of Fig.
8(b).

Example 4. Inertial load. A rectangular plate of mahogany,
which is considered here as a plane homogeneous orthotropic
material, is analysed under inertial loading due to an acceleration
a = 9.81 m/s? (Fig. 11). The axis x, coincides with the fiber axis

of the wood whilst the axis y, coincides with the transversal axis
of orthotropy. The elastic properties of mahogany (13 percent
moisture content) are E,, = 12397 GPa, E,, = 0.483 GPa,
Gy, = 0469 GPa and v, = 0.55, while its density is 530 Kg/
m* (Bodig and Goodman, 1973 ). The dimensions of the plate are
! =1m, b= 0.2 m and unit thickness.

Six quadratic boundary elements and one quadratic internal
cell were used for modeling the problem. Results obtained using
the formulation presented in this paper were plotted along with
results obtained using the anisotropic fundamental solution and
particular integrals (Deb and Banerjee, 1990). These results
are presented in Fig. 12 and Fig. 13 for variables in the x and
y directions, respectively. The maximum difference for dis-
placements in the x direction, computed using the two different
approaches to the problem, is around four percent for the dis-
placement u at the corner x = 1 m, y = 0.2 m.
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Fig. 12 Variables in the x direction for « = 30 deg. Displacements given in m and tractions in Pa.
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5 Concluding Remarks

In this paper, an alternative boundary integrai-equation for-
mulation in which Kelvin’s fundamental solutions for isotropic
elastostatics are used for solving homogeneous anisotropic
problems of the elasticity theory is presented. The proposed
approach can also be used for any nonlinear or transient prob-
lems by considering the nonlinear term or the time derivative
as a body force type term. Therefore, it is expected that this
generalization will extend the range of application of boundary
integral-equation methods in anisotropy to many problems
where the fundamental solution is not known nor ever likely to
be known.

The body force term, as defined in the Navier equation, Eq.
(1), represents the domain loading caused, for instance, by
gravitational or centrifugal forces (Brebbia et al., 1984). In the
classical boundary element approach to anisotropic problems,
this body force term results in domain integrals that have to be
evaluated numerically. However, in contrast to isotropic prob-
lems, no Galerkin tensor corresponding to the anisotropic funda-
mental solution is found in the literature to make it possible to
transform these domain integrals into equivalent boundary ones.
Therefore, alternative techniques, such as the one presented
here, or the one presented by Deb and Banerjee (1990), which
introduces particular integrals to account for the specific cases
of inertial and centrifugal loads, have to be used to compute
the influence of body forces into the analysis.

Although the need for discretizing the domain might be seen
as a practical disadvantage of the formulation proposed here,
current mesh generators can greatly mitigate this possible disad-
vantage. Moreover, apart from using the anisotropic fundamen-
tal solution, there is no reliable alternative integral-equation
formulation for the analysis of anisotropic materials that com-
pletely avoids the need to define any sort of internal nodes; for
instance, no reference has been found in the literature where
the solution of bending problems of homogeneous anisotropic

Journal of Applied Mechanics

materials was obtained using any sort of alternative integral-
equation formulation.
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Piezoelectric Plates in
Cylindrical Bending

Exact solutions are presented for the problem of piezoelectric laminates in cylindrical
bending under an applied surface traction or potential. An arbitrary number of elastic
or piezoelectric layers can be considered in this analysis. Example problems are

considered for several representative cases, with resulting displacement, potential,
stress, and electric displacement distributions shown to demonstrate the effects of
the electroelastic coupling.

1 Introduction

The foundations and governing equations for linear piezo-
electricity are well established and have been documented by
a number of authors, including Cady (1964 ) and Nye (1972).
Tiersten (1969) also presented extensive development of this
theory as it applied to the linear vibrations of piezoelectric
plates. Piezoelectric laminates have seen extensive experimental
study but somewhat limited theoretical development. Ray and
co-workers (1992, 1993) studied a single layer of piezoelectric
material in cylindrical bending and a laminate with surface
piezoelectric layers. In the latter case, the piezoelectric coeffi-
cient ¢33 was set equal to zero. Heyliger (1994) considered a
similar problem in which this coefficient was nonzero, resulting
in a different form of the solution of the elastic and electric

ﬁeﬁ(}'ﬁn gP {?lse studies that have appeared to date such as the
work of Tzou and co-workers (1989) and Lee (1989, 1990) on
piezoelectric laminates have incorporated a number of simpli-
fying assumptions regarding the nature of the elastic and electric
field quantities. This includes the assumptions related to the
distribution of the displacement and electrostatic potential
through the thickness of the laminate.

In the present study, exact solutions are presented for piezo-
electric laminates in the two-dimensional configuration of cylin-
drical bending. This extends the work of Pagano (1969, 1970b)
for elastic laminates. The expressions for the displacements,
stresses, potential, and electric displacement are presented for
several representative laminates. These results should provide
a means of comparison for simpler and more computationally
efficient piezoelectric plate theories while also providing infor-
mation regarding the behavior of these increasingly important
laminates.

-2 Exact Solution

Governing Equations. The geometry of the laminate is
such that the thickness dimension of the laminate coincides with
the z-direction, with the length of the plate in the y-direction
denoted as L and the total thickness denoted as H. Each layer
of the laminate is of thickness h; and can be purely elastic or
piezoelectric, The general problem considered in this study is
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to determine the behavior of the elastic and electric field compo-
nents throughout the laminate under an applied mechanical or
electrical loading. The forcing function is introduced through
either an applied surface displacement, traction, potential, or
electric charge. It is also possible to consider internally applied
quantities in this formulation.

A single piezoelectric layer has the constitutive equations
given in contracted notation by (Tiersten 1969)

a = C(J-SJ - e*.'EQ

Dk = E.’HS} + EHE;. (l)

Here o; are the components of the stress tensor, C; are the
elastic stiffness components, S; are the components of infinites-
imal strain, e, are the piezoelectric coefficients, E, are the com-
ponents of the electric field, Dy are the components of the elec-
tric displacement, and ¢, are the dielectric constants. For these
equations only, the indices i and j range from 1 to 6, and k and
I range from 1 to 3. The poling direction is coincident with the
x3 or z-axis. In cylindrical bending, all variables are assumed
to be independent of the x; = x-axis.

The displacement components u; , where u, = u, u; = v, and
u; = w, are related to the strains S; through

1 (0w O
Sy == -+ =]
¥ 2 (&tj 8Xj)

To be consistent with Eq. (1), the conventional notation for
the strain indices has been used, i.e., S, = S,, 853 = S, etc.
The electric field components can be related to the electrostatic
potential ¢ using the relation

(2)

2%
6):,' '

The materials used in this study are originally orthotropic, with
a rotation about the z-axis then allowed. It is assumed that the
nonzero components of the rotated piezoelectric tensor e; are
€31, €1, €33, €y, €35, and es;. The rotated elastic stiffnesses Cj
are those of a monoclinic material, and the necessary dielectric
constants are given by €;; and €3;.

The equilibrium equations in the absence of body forces are
given by

E =~ (3

oy =0 ()
and the charge equation of electrostatics is given as
D;; = 0. (3

Substituting in the constitutive relations, the stress-strain rela-
tions, and the field-potential relations gives the governing equa-
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tions of the problem in terms of the displacement components
u, v, and w and the electrostatic potential ¢ as

sz,gTzz + C,6%+ ﬁﬁ-g—:: + ‘bggz
+ 45(5?2;’ + g:j) i %}: i % =0 (6)
c(% ; ‘éy’”) + Ci % i %ﬁ’
+ Cp 3?32 - C,,% o+ C““gg_z 33% =0 (8)
ez.,(——‘?—z—v— + @) + s B_‘"“u o 622@
dydz  Oy? dy oz dy?
+ ey 3225 + e 2}?: + eﬁ;j)—zgz- — €33 % =0. (9)

These represent the governing equation for a single piezoelectric
layer. For a layer with no piezoelectric effects, these equations
reduce to the three-dimensional equations of elasticity and, as-
suming €;, = €, = €33, the Laplace equation for electrostatics.

For the problems considered in this study, an arbitrary num-
ber of laminae are assumed to be perfectly bonded together. At
the top and bottom surface of the laminate, a specified load,
displacement, potential, or charge can be imposed. Of primary
interest here are the cases in which either a known normal
traction or potential are imposed on the top and/or bottom
surfaces. These are the cases considered in this study, with the
shear tractions specified to be zero on the top and bottom sur-
faces. The laminate is assumed to be simply supported, and the
vertical edges of the laminate are assumed to be grounded.
Hence along a vertical plate edge, the normal stress o, trans-
verse displacement w, and electrostatic potential ¢ are specified
to be zero.

Both the applied load and potential can be expressed in the
form of a Fourier series. These functions are represented in the
form

(10)
(11)

q(y) = g, sin py
d(y) = ¢, sin py
where

p=pn)="C

3 (12)

and n is an integer. These expressions can be used either for
the top or bottom of the laminate.

At each interface between layers, continuity conditions of
displacement, traction, potential, and electric displacement must
be enforced. Using an indexing scheme, the conditions for the
ith layer can be expressed as, for example,

u‘(y, _Th') = u“"(y, }%) :

Here i represents the layer number, with i = 1 the top layer,
and each layer has an individual coordinate system with the

(13)
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origin at the left end in the center of the layer. Similar interface
conditions exist for v, w, ¢, o., 0., 0., and D,.

Method of Solution. There are two types of solution pre-
sented here corresponding to laminae with the principal material
directions unaligned or coincident with the x or y-axes.

Off-Axis Laminae. Solutions for the displacement compo-
nents and the electrostatic potential are sought in the form

u(x, y, z) = U(z) cos py = U exp(psz) cos py
v(x, y, z) = V(z) cos py = Vexp(psz) cos py
w(x,y,z) = W(z) sin py = W exp(psz) sin py
d(x,y, z) = B(z) sin py = ® exp(psz) sin py, (14)

Here the overbarred terms are constants and s is an unknown
number. Substitution of these expressions into the equilibrium
and charge equations results in the system of equations

Csss? + Ay Cuss® + Ap Aps Apgs
Ciss® + Ay Cus® + Ay Azss Aggs
—Apss ~Aps Cis® + Az enns? + Ay
_A14S ‘—'A24.§' 833.92 + Agd A“ == E33$2
U 0
Vv 0
X wil = Vo (15)
i 0
The elements A; are given by
Ay =—Css Ap=—-Cy A;3=0Cy+ Cis Ay =exs + ex

Apn =—Cp An=Cn+ Cy

Am = B3 + €4

Ay = —Cyy Ay = —ey Ay = €. (16)

Setting the determinant of this matrix to zero results in the
characteristic equation

As® + Bs®* + Cs* + Ds* + E=0. (17

Expressions for the coefficients of this polynomial are lengthy
and are not given here. This equation can be written as the
fourth-order equation

r*+er+drt+er+ f=0 (18)
where
r=g? (19)
B C D E
== d== e== f== 20
A il el 9

The roots of Eq. (18) are a function of the material properties
and the form of the applied load or potential as represented by
p. They can be real, imaginary, or complex. Regardless of the
nature of the roots, the solutions for V(z), W(z), and ®(z)
corresponding to a given root s are based on an initial construc-
tion of the solution for U(z). The remaining components can
then be computed using Eq. (15), which is rearranged as

C44.\'2 + A22 AZ}T AzaS V
—Axps C33.5'2 + A33 93332 + qu w
—A24S 833.\"2 S AM A.M = 633.&‘2 6
—Cyss® — Ap
= Aps (21)
Ays

General expressions for the constants ¥V, W, and ® can be
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constructed as a function of the real, imaginary, or complex
roots. These are

3] 4 .2
V(s) - fus +ﬁ235(:)ﬁ3-5 + fia (22)
4 2
W(s) = s(fas E{z:; + f23) (23)
s s(fust + fus? + fi)
D(s) = IXE) (24)
A(s) = dis® + dos* + das® + d,. (25)

The constants d; and f; are lengthy and are not given here. The
solutions for the elastic and electric field components corre-
sponding to each type of root are developed separately below.

Case 1: Real Roots for r. Given n real roots for r, the 2n
roots for s can be obtained using Eq. (19). These roots are
either real or imaginary depending on the sign of r. Following
the nomenclature used in Pagano (1970), the solution for the
displacement components and electrostatic potential corre-
sponding to the these roots can in either case be written as

U(z) = 2, U(z) V(z) = X LU(z)
i=1 j=1
W(z) = X MW(z) ®(z) = X NW(z)

i=1 i=1

(26)

where
Ui(z) = FiC(z) + G;Si(2)
Wi(z) = G;Ci(z) + a;F;8(z2). (27)

Here F; and G; are real constants, there is no sum on j, and the
functions C and S are defined as

C; = cosh (pm;z) Si(z) = sinh (pmyz) ey =1 (r > 0) (28)
C; = cos (pmyz) SKz) = sin (pm;z) a; = —1 (r < 0) (29)

with m; = |5;|. The coefficients L;, M;, and N; are more specific
representations of the parameters given in Egs. (22)—(25) and
are given in this case as

1
L= A (fiam + fiam} + fisam} + fis) (30)
j
My = 2L (fum] + faoym} + fr) (31)
y
Ny =3 (fum} + fram} + fo) (32)
fl
where the determinant A is given by
A; = digym! + dym} + dsaym} + dy. (33)

Using the constitutive equations in (1), the corresponding
expressions for the stress and electric displacement can be com-
puted as

n

o; = sin py Z [-Ci: Ly — Ci

J=1

2
m
+ Ciay Hj (fum] + fzzm_?aj + fa)

T

T+ €50 ‘5 (fmm} i f:ﬂ'm_?aj + f)lpUlz) (34)
i
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= cos py ¥, [Cu(Lm; + M)

o..'f’l’ =
J=1
+ euN; + CosmylpWi(z) (35)
0w = cos py 3 [Ces(Lym; + M)
i=1
+ esN; + CssmlpWi(z)  (36)
0y =sinpy ¥, [—CulL; — Ces
J=1
i
+ Caetj EJ' (fum] + fmia; + fo)
f
m? 3 ,
+ ey D (fam] + fom?Pa; + fu)1pUlz) (37)
i
D, = cos py 2. [en(Lym; + M) + exsm; — exlN,1pW(2) (38)

j=1

D, = sin py Z [—exnl; — e

i=1

2
my

+ ey _D_ (fﬂm} + ﬁzm}ai + faa)
i

m?
— €nl; H’r (fmmf +f32m?ﬂj + ) 1pU(z) (39)
J
Here i = 1, 2, 3 correspond to x, y, and z for the normal stress
components,

Case 2: Complex Roots for r. The elastic, electric, and
geometric properties for some laminae yield complex roots.
These occur in conjugate pairs, which result in the final roots
for s in the form *(a = ib), where i = ¥ —1 and a and b are
positive constants, The solution for U(z) in this case can be
expressed as

U(z) = cje™ cos bz + c¢;e™ sin bz
+ cae ™ cos bz + cqe” sin bz (40)

where ¢,—c, are real constants. Following some algebraic ma-
nipulations and using Eqs. (21)-(25), the solution for V(z)
can be expressed as

V(z) = c,e™(T") cos bz — €, sin bz)
+ c;e™ (€2, cos bz + T, sin bz)
+ cye (I) cos bz + € sin bz)
+ cae” (=N cos bz + Ty sin bz). (41)

Here 'y = R[V(a + ib)] and &, = J[V(a + ib)]. Similarly,
the final expression for W (z) can be expressed as

W(z) = ce™[(al’; — bS),) cos bz + (—bI"; — afly) sin bz]
+ e[ (bl; + afY;) cos bz + (al’y — bSY,) sin bz)
+ c3e "“[(bSYy — al'y) cos bz + (—bI', — afly) sin bz
+ cqe (b, + afls) cos bz
+ (—al; + b)) sin bz] (42)

where I'; = R[W (a + ib)] and 2, = I[W (a + ib)]. The final
expression for @ is identical to that of W (z) except the subscript
on I" and §2 changes from 2 to 3, with I’y = R[P(a + ib)] and
Qs = J[P(a + ib)].

The expressions for the stress and electric displacernent com-
ponents can be obtained by the appropriate differentiation and
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Table 1 Elastic, piezoelectric, and dialectric properties of piezoelectric
materials

Property PZT-4 PVDF (PbssCa2)((CO.5W.5).04Ti.08)05

£y (GPa) || 813 [ 2aT. 127.
E; 813 | 23.2 127.
Es 64.5 | 10.5 119.
g 0.320 | 0.154 0.199
s 0.432 | 0.178 0.174
Vaa 0.432 | 0.177 0.174
Gas 25.6 | 2.15 53.5
Gia 25.6 | 4.40 53.5
Gz 306 | 6.43 53.0

e (C/m?) || 1272 | -01 2.96
e -5.20 | -.13 0.80
€32 520 | -.14 0.80
€33 15.08 | -.28 6.88
[T 1300 | 11.98 181
21 1475 | 11.98 202

combination with the constitutive equations as given in Eq. (1).
These expressions are omitted here for brevity,

On-Axis Laminae. If the material axes of the lamina coin-
cide with the x or y-axes, the material constants Cys = Cis =
Cis = exs = e = 0 and the displacement in the x-direction
uncouples from the other displacements and the electrostatic
potential. A procedure similar to that of the previous section is
used with the matrix Eq. (15) modified such that the first row
and column are eliminated and the exponential arguments of
the fields are taken as (sz) instead of (psz) in Eq. (14). Two
of the roots are computed as = py/Cgs/Css, with the remaining
six roots found from the characteristic equation

—AsS+ Bs* + Cs*+ D=0 (43)

where the constants A, B, C, and D are easily determined. This
can be expressed as the third-order equation

gi+dg+ f=0.

The nature of the subsequent solution depends on the magni-
tude of the parameter «, which is given by the value

fZ
27 4
If k < 0, then the three roots for g are real and distinct. For «
= (), there will be three real roots, at least two of which are
equal. For k > 0, there will be one real root and two conjugate
complex roots. The case k = 0 was not found for any of the

materials considered in this study. Only lhc remaining two cases
are considered.

Case 1: k < 0. Given three real roots for g, the roots of
the original sixth-order equation can be determined by consider-
ing

(44)

(45)

'y—'s—g+-§~ (46)

3A
This will lead to six roots for m, which can are either real
or imaginary depending on the sign of . The solution for V,
W, and @ can be cast in the same form as for the off-axis lamina
in Eq. (26) with n = 3 and, for the expressions that follow, the
argument of the trigonometric and hyperbolic functions in Egs.
(28)—(29) are (smyz) rather than (pmyz). Additionally,

B
34

1/2

(47)

lg.i
The values for the coefficients in Eq. (26) now take the form
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L= i} [(aym}en — pPexn)(Cy + Cu)

J

£

+ (aymies — exp®)(en + ex)] (48)
i
R, = l% [(a,sm}fan — eup?)(Cy + Cn)

i

+ (Caup® — aym] Cs3) (e + €3)]  (49)

Jy = (ymiess — pPen)(aym}Cyy — p*Cu)

+ mjes; — 2e,miplesen + ehpt. (50)

The stresses and electric displacement components can be com-
puted with little difficulty.

If the layer is nonpiezoelectric, the coefficients e; = 0 and
the elastic and electric fields uncouple within a given layer. The
elastic solutions have been given by Pagano (1970a, b) for the
on-axis and off-axis laminates and are not repeated here. The
two roots corresponding to the potential can be computed as

< (51)

€33

n = *p

The electrostatic potential within the elastic layer is therefore
given by
2
®(z) = sin py X, B; exp(n;z) (52)
i=1
where B; are constants. The components of electric displacement
for these layers are given by
2
D, = —exnp cos py 3, B, exp(nz)
i=1
2
D, = —e3; sin py 3, Bin; exp(mz).

i=1

(53)

(54)

Case 2: k > 0. When k > 0, there will be one real root
for g and two roots that are complex conjugate. The case of
real roots for g has been discussed in the previous section, and
the focus here is on the remaining two roots. When vy is com-
plex, the two complex conjugate roots of g can be used to
express the final roots of m as +(a * ib), where i = \/—_l and
a and b are positive constants. The general solution for V in
this case can be expressed as

V(z) = e™(c, cos bz + ¢, sin bz)
+ e ™™(c3 cos bz + ¢4 8in bz) (55)

where ¢; — ¢, are real constants. The corresponding solution
for W can be written as

W(z) = e“[(c)B) + ¢38:) cos bz + (—c |82 + c20,) sin bz]
+ e ™™[(—eaf + c4fy) cos bz

+ (—e3fa — ¢4fy) sin bz]. (56)
Here the parameters 3, and f, are defined to be
B =aly — by B, = bl + af, (57)
where
£i&s + £,
N =22—22 58
&+ & (58
E?.E! ‘EE‘!
59
£ + &3 (29)
where £, = R(pF)), fz*W(PFll & = R(pF,), & = J(pFy).

The functlons F, and F, given by
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Table 2 Thickness distributions for two-layer piezoceramic

Applied Load Applied Potential

Zzx 10° [ VX100 [ Wx 100 [ @ x 107 Vx L0 | W x 10 []

5.0 -170.406 | 1.05609 0.0 -17.2277 | 2.21625 1.0
3.75 -129.322 | 1.05896 | 6.17969 | -14.4289 | 2.29892 | .067338
2.5 -88.8804 | 1.06105 | 10.5763 || -11.6676 | 2.37336 | .935611
1.25 -48.8826 | 1.06236 | 13.2037 || -8.93234 | 2.43971 | .904762
0.0 -9.13120 | 1.06291 | 14,0706 || -6.21137 | 2.49809 | .874736
-1.25 31.5361 | 1.06292 | 11.3823 || -5.03124 | 2.62086 | .655129
-2.5 72.3126 | 1.06263 | 8.14620 || -3.85882 | 2.74217 | .436359
-3.75 113.341 | 1.06203 | 4.35533 || -2.69006 | 2.86221 | .218094

-5.0 154.765 | 1.06112 0.0 -1.52001 | 2.98116 0.0

a. Displacements and potential.

Applied Load i Applied Potential
7 x 109 oy a: ay: | D; x 10¥ a, a, x 10% Tye D x 107
5.0 57.8014 1.0 0.0 -2.21625 || 98.0706 0.0 0.0 -4.38016

3.75 43.9608 | 958954 | 1.99926 | -2.34277 || 29.3552 | -5.79244 | 2.50035 | -4.14535
25 30.1904 | .850095 | 3.45477 | -2.67988 | -38.9872 | -16.1166 | 2.31044 | -3.91847
1.256 16.5305 | .694665 | 4.37185 | -3.16447 | -107.217 | -20.4299 | -.560217 | -3.69876
0.0 2.93185 | .513734 | 4.75387 | -3.73402 | -175.593 | -8.20718 | -6.11227 | -3.48550
0.0 3.77076 | .513734 | 4.75387 | -3.73402 }| 135.710 | -8.20718 | -6.11227 | -3.48550
-1.25 | -13.1944 | -328502 | 4.56889 | -3.80576 | 87.2734 | 6.57771 | -1.73460 | -3.46700
-2.5 | -30.2007 | .163623 | 3.71705 | -3.87336 | 38.0426 | 7.90257 | .743546 | -3.45386
-3.75 || -47.3021 | 045329 | 2.19569 | -3.92364 | -9.43411 | 3.22258 | 1.32334 | -3.44601

-5.0 -64.5526 0.0 0.0 -3.94337 || -58.0090 | 0.0 | 0.0 | -3.44340
b. Stresses and electric displacement.
Table 3 Thickness distributions for two-layer angle ply
Applied Load Applied Potential

zx 108 [ Ux100 [V x 100 [Wx10° [ x 107 | U x 107 | V x 101 | W x 1012 )
5.0 || -.206992 | -.495662 | .346564 | 0.0 -.764064 | -.468075 | 15.6050 1.0
3.75 || -.206070 | -.364412 | 346799 | .134270 | -.755342 | -.424885 | 12.2777 | 871884
2.5 || -.204588 | -.2403590 | .346939 | 230526 || -.639752 | -.389956 | 8.97940 | .745014
1.25 || -204392 | -.119897 | .346995 | .280030 || -.420367 | -.362492 | 5.70691 | .619210
0.0 | -.207306 | .000495 | .346968 | .310144 || -.096538 | -.342085 | 2.45603 | .494202
-1.25 | -.204461 | .120891 | .346877 | .280005 || .269690 | -.356217 | -.77633 | .370085
-2.5 -.204705 | .241306 346704 | 230483 520472 | -.377512 | -3.99341 | 246419
-3.75 | -.206214 | 365260 | .346446 | .134230 || .686048 | -.406159 | -7.19927 | .123116
-5.0 || -.207145 | 496354 | .346093 | 0.0 .738964 | -.442736 | -10.3979 | 0.0

a. Displacements and potential.

Applied Load Applied Potential
2 x 10° Oz oy Tzy Oz °L| Oy
5.0 59.7588 | 79.7839 | -42.1976 || -.724839 | 1.16623 | -6.72581
3.75 34.9072 | 49.6298 | -20.2912 || -1.44536 | .271217 | -6.01241
2.5 11.5045 | 21.2152 | .293333 || -1.84070 | -.265246 | -5.65146
1.25 -11.4374 | -6.59348 | 20.5300 || -1.93095 | -.466448 | -5.62344
0.0 -34.8876 | -34.9076 | 41.3746 || -1.72257 | -.340519 | -5.92280
0.0 34.8919 | 34.8719 | 41.2207 || -1.39763 | -.015570 | 6.30743
-1.25 11.4529 | 6.56881 | 20.3894 || -1.70438 | -.265235 | 5.81390
-2.5 -11.4720 | -21.2210 | .170115 || -1.70708 | -.181898 | 5.65351
-3.75 -34.8512 | -49.6081 | -20.3923 || -1.40754 | .233379 | 5.82299
-5.0 -59.6717 | -79.7249 | -42.2709 || -.794152 | 994541 | 6.33291

b. Intralaminar stresses.

) Applied Load Applied Potential
z x 10 o |. Oz oy: | D; x 10" || o, x 107 oz: | 0y x10° | D, x 107
5.0 1.0 0.0 0.0 -.156059 0.0 0.0 0.0 -.116937

3.75 946384 | -1.22100 | 2.53343 | -.153601 || -.064501 | -.248914 | 2.69964 | -.115712

25 816009 | -1.61004 | 3.92066 | -.147352 || -.175424 | - 476821 | 2.59877 | -.114655
1.25 || .652840 | -1.20250 | 4.20759 | -.138952 | -.249742 | -.697131 | 1.05460 | -.113762

0.0 | 499904 | .009427 | 3.30620 | -.130007 | -.256322 | -.922764 | -.637134 | -.113034
-1.25 || .346093 | 1.21556 | 4.20638 | -.121071 || -.221507 | -.685872 | -1.20919 | -.112469
-2.5 .183886 | 1.61881 | 3.91882 | ..112677 || -.150059 | -.461787 | -2.28504 | -.112065
-3.75 || .063581 | 1.22444 | 2.53188 | -.106434 || -.054817 | -.237534 | -2.20396 | -.111823
-5.0 0.0 0.0 0.0 -.103979 0.0 0.0 0.0 -.111743

c. Interlaminar stresses and electric displacement.
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Fig. 1 Through-thickness distributions for PVDF cross-ply under applied trac-

tion (case 1) and potential (case 2)

F, = [e3(a® — b* + 2iab) ~ €3,p*1(Cas + Cx)
+ [en(a® — b? + 2iab) — exp?(ex + €2) (60)
Fy = (€% + Cuen)l(a® — b*)* — 4a®® + diab(a® — b?))
+ pi(a® — b? + 2iab)(—Csen — Cuers — 2e€3324)
+ pH(Cuern + €3). (61)

Using similar steps, the final solution for ® can be written
as

D(z) = e“[(\fa + ) cos bz + (— s + €285) sin bz]
T e ™[y + i) cos bz
+ (—eafls — c4f83) sin bz]  (62)
where in this case
By = al’y — b)Y,

Here the parameters I'; and (), are defined to be

By = by + afl,. (63)
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s més + maéy

64
£3+ &3 (w1
€5 — T{I£4

== 65
Poa+ & (©3)
where 1, = R(pF;) and n, = |(pF,), with
F; = [es(a® — b® + 2iab) — e2p*1(Cyy + Ca3)
+ [—Cs3(a? — b? + 2iab) + C“pz](ez4 + es). (66)

Solution for the Laminate. The form of the solution within
each layer is given for the displacement components U/, V, and
W, the stresses o, 0,, 0., 0,., and g, the electrostatic potential
@, and the electric displacement components D, and 1) . In
general, these solutions are a function of eight constants that
must be computed using the boundary and interface conditions
for the complete laminate.

To evaluate these constants, the boundary conditions at the
top and bottom surfaces of the laminate and the interface condi-
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tions between the dissimilar plies are imposed. For n layers,
this results in four conditions on both the top and bottom sur-
faces and eight continuity conditions at each of the (n — 1)
interfaces. This results in a system of 8n equations with 8n
unknowns. Once the constants are evaluated, final expressions
for the elastic and electric field variables can be computed at
any location within the laminate.

3 Numerical Examples

In this section, the solution methodology is applied to three
basic geometries. These are (1) a two-ply laminate of dissimilar
piezoceramics, (2) a two-layer angle ply constructed of the
piezopolymer PVDF, and (3) a three-layer cross-ply con-
structed of PVDE. The material properties for all of the materi-
als considered in these examples are given in Table 1. The
properties for PZT-4 are taken from Berlincourt and co-workers
( 1964J , those for (Pb_ggca‘|2)((C0‘5w.5)_04'ri‘95) 0O, from Yama-
shita and co-workers (1981), and from Tashiro and co-workers
(1981) for the PVDEF. The latter values were for a single crystal,
and were used because this is one of the few complete sets of
constants available for this material. These geometries were

Journal of Applied Mechanics

considered only to demonstrate the solution and give representa-
tive behavior for the computed field quantities. No extensive
effort was made to assess the influence of any of the geometric
or material parameters in this initial study. The resulting dis-
placements, stresses, and potential are given in meters, New-
tons/meter?, and volts, respectively.

Two-Ply Laminates. Two separate laminates are studied in
this section. The dimensions are L = 0.1 m and H = 0.01 m,
A two-ply laminate composed of [PZT-4/(PbgCa ;2)((COs X
W 5)0sTios)O1] with equal thickness layers is considered first.
For these material properties the wu-displacement uncouples
from the remaining displacements; hence only the in-plane
fields are considered for this example. There are two loading
conditions. First, a transverse normal stress was applied along
the top with g, = 1 and the potential and shear stresses at the
top and bottom surfaces specified to be zero. The second loading
condition considers a layer under a sinusoidal (n = 1) potential
at the top surface with the bottom surface held at zero potential.
The top and bottom surfaces of the laminate are traction-free.
The maximum magnitudes of the through-thickness distribu-
tions for both cases are given at several locations of z for the
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clastic and electric fields in Table 2. For this and the next
example, two values are given at the material interface if there
is a discontinuity in the stress components. Integrating the shear
stress over the end of the laminate yields a normalized value
of exactly half the applied resultant load for the applied load
case, and a value of zero for the applied potential case.

The piezopolymer polyvinlidene flouride (PVDF) has seen
significant application in piezoelectric laminates. It is of interest
because it possesses differing properties in the 1 and 2 direc-
tions. A two-layer angle-ply [ —45/+45] is constructed with the
same load conditions as in the previous case. The thicknesses of
each layer are /1, , = 0,005 m. The maximum value distributions
are listed in Table 3.

The trends of all results are dominated by the difference in
material properties. In the first example, the displacements in
the upper layer are slightly larger and the stress o, is smaller
than the lower layer because of the lower modulus in the PZT-
4. Likewise, the potential gradient in the upper layer is smaller
than that of the lower layer in part because of the much larger
dielectric constant. For the angle-ply, there is a mild antisymme-
try of the results because of the location of the forcing function
on the upper surface. This behavior increases as the length/
thickness ratio of the laminate is decreased.

The Three-Layer Cross-Ply. In this example, a three-layer
[90/0/90] laminate is constructed with H = 0.01 m with the
90-deg plies parallel to the y-axis. The cases of applied surface
traction and applied surface potential are considered separately,
Two L/H ratios are considered: 4 and 100, In all plots the dotted
(L/H = 4) and dashed (L/H = 100) lines denote the applied
load case, with the solid (L/H = 4) and chain-dashed (L/H =
100) lines denoting the case of applied potential. The maximum
values of v, oy, g,,, and ¢ through the laminate thickness are
displayed graphically in Figures 1(a)-(d). In these figures, the
functions are plotted against the parameter 7 = z X 10°. The
scaled functions are defined for the applied load case (termed
case 1) as v¥* = v X 10" (L/H = 4) and v* = v X 10° (L/H
= 100), o ¥ = 0,/1000 L?, 6% = 0,,/10 L, and ¢* = $/0.01
L. The results for the applied potential (case 2) are also shown
in the same figures, with the exception of the v displacement
for L/H = 100. This distribution is nearly constant at —1.5 X
10™"" m and is not plotted. The scaled field quantities are given
asv* =v X 10", 0¥ = 0,, 0% = 0,, X 100 L, and ¢* = ¢.
As the aspect ratio increases, the quantities approach piecewise
linear behavior through the thickness of the individual laminae.
There are significant differences in behavior between thick and
thin laminates, demonstrating the need to use adequate levels
of approximation when modeling these laminates.

910 / Vol. 63, DECEMBER 1996

4 Closure

The field distributions in the examples considered here dem-
onstrate the limitations of some simplified theories in making
approximations regarding the nature of assumed elastic and
electric fields through the thickness of the laminate. Common
assumptions made regarding the displacement and potential dis-
tributions can have possibly significant effects on the resulting
approximations for the remaining field quantities. The solutions
and results provided here should provide a means of comparison
to assess relative accuracies, advantages, and disadvantages of
more computationally efficient and general plate theories for
piezoelectric laminates.

References

Berlincourt, D. A., Curran, D. R., and Jaffe, H., 1964, *‘Piezcelectric and Piezo-
magnetic Materials and Their Function in Transducers,"" Physical Acoustics, W, P.
Mason, ed., Vol. 1, pp. 169-270.

Cady, W. G., 1964, Piezoelectricity, tev. ed., Vols. I and 11, Dover Publications,
New York.

Heyliger, P.R., 1994, *‘Static Behavior of Laminated Elastic/Piezoelectric
Plates,”” AIAA Journal, Vol. 32, pp. 24812484,

Lee, C.-K., and Moon, F. C., 1989, ‘‘Laminated Piezopolymer Plates for Tor-
sion and Bending Sensors and Actuators,” Journal of the Acoustical Society of
America, Vol. 85, pp. 2432-2439,

Lee, C.-K., 1990, “‘Theory of Laminated Piezoelectric Plates for the Design
of Distributed Sensors/Actuators. Part [: Governing Equations and Reciprocal
Relationships,"” Journal of the Acoustical Society of America, Vol 87, pp. 1144
1158,

Nye, N. Y., 1972, Physical Properties of Crystals: Their Representation by
Tensors and Matrices, Oxford University Press, Oxford, UK.

Pagano, N, 1., 1969, **Exact Solutions for Composites in Cylindrical Bending,"'
Journal of Composite Materials, Vol. 3, July, pp. 398-411.

Pagano, N. J., 1970a, *‘Exact Solutions for Rectangular Bidirectional Compos-
ites and Sandwich Plates,”” Journal of Composite Materials, Vol. 4, Jan., pp. 20—
34,

Pagano, N. 1., 1970b, *‘Influence of Shear Coupling in Cylindrical Bending of
Anisotropic Laminates,”" Journal of Composite Materials, Vol. 4, July, pp. 330—
343,

Ray, M. C, Rao, K. M,, and Samanta, B., 1992, *‘Exact Analysis of Coupled
Electroelastic Behavior of a Piezoelectric Plate Under Cylindrical Bending,"
Computers and Structures, Vol. 45, pp. 667-677.

Ray, M. C., Bhattacharya, R., and Samanta, B, 1993, “‘Exact Solutions for
Static Analysis of Intelligent Structures,” AIAA Jowrnal, Vol. 31, pp. 1684—1691,

Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum, New York,

Tashire, K., Tadokoro, H., and Kobayashi, M., 1981, **Structure and Piezoelec-
tricity of Poly(Vinylidene Flouride),” Ferroelectrics, Vol. 32, pp. 167-175.

Tzou, H. §., and Gadre, M., 1989, “‘Theoretical Analysis of a Multi-Layered
Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration
Controls,"" Journal of Sound and Vibration, Vol. 132, pp. 433-450.

Yamashita, Yokoyama, and Honda, 1981, **(Pb, Ca)({Co,,W,,2), TiO; Piezo-
electric Ceramics and Their Applications,”” Proceedings of the 3rd Meeting on
Ferroelectric Materials and Their Applications, Japanese Journal of Applied Phys-
ics, Vol. 20, Supplement 20-4, pp. 183-187.

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A Generalized Method of

Gwolong Lai

Associate Professor,

Department of Construction Engineering,
National Yunlin Institute of Technology,
Yunlin, Taiwan 640, R.0.C.

A. R. Robinson

Professor Emeritus,

Department of Civil Engineering,

University of lllinois at Urbana-Champaign,
Urbana, IL 61801

Mem. ASME

Rotational Superposition for
Problems With Elliptical
Distribution of Boundary Values'

An extension of the usual rotational superposition is developed from geometrical
considerations. This approach relates the solution of any dynamic or static elasticity
problem which corresponds to boundary values on a circular area to the solution of
the problem in which the same boundary values are '‘stretched’ in one direction.
From the two-dimensional problems that correspond by rotational superposition to
the circular case, new two-dimensional problems are formulated which, when super-

posed properly, result in the solution for the elliptical boundary distribution. This new
technique is first presented for stretching the boundary values of axially symmetric
problems, and then extended to others, including the elliptical shear dislocation

problem.

1 Introduction

In general, it is a very difficult task to find the analytical
solution for most three-dimensional static or dynamic elasticity
problems. By contrast, several analytical techniques are avail-
able for solving two-dimensional problems. For some special
three-dimensional problems, however, there exists a one-to-one
correspondence between a three-dimensional problem and cer-
tain two-dimensional problems that can be constructed. Rota-
tional superposition is an effective approach to expressing a
three-dimensional problem in terms of the corresponding ficti-
tious two-dimensional problems (Aleksandrov, 1961).

The method of rotational superposition, which was first devel-
oped for the solution of axially symmetric problems, can be
traced back to Smirnov and Sobolev (1933) for dynamic prob-
lems, but is usually ascribed to Weber (1940) for static prob-
lems. Later, Kostrov ( 1964a) employed this technique to solve
an axisymmetric dynamic problem of a tension crack propagat-
ing in an unbound medium and extended the application to the
problem of an expanding shear crack over a circular region
(Kostrov, 1964b). The rotational superposition technique has
also been used to solve static elasticity problems involving sol-
ids of revolution (Alexandrov, 1968).

In this paper, a brief review is first given of the usual rota-
tional superposition for dynamic elasticity problems in a half-
space where nonzero boundary values are specified on an ex-
panding circular area of the boundary plane. The surface bound-
ary values are then imagined to be *‘stretched’’ in one direction
so that the circular area becomes an elliptical one. The main
thrust of the analysis is then to use the geometrical relationships
between the ellipse and the generating circle to obtain a set of
new two-dimensional problems and a new superposition rule
that lead to the solution of the ‘‘stretched’’ three-dimensional
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problem. The new technique that results then permits solution of
dynamic boundary value problems over an expanding elliptical
region if the boundary values are obtainable from those of the
corresponding problem for a circular region by merely stretch-
ing the boundary values in one direction. It should be clear that
in dynamic problems only the boundary values undergo a simple
stretching, not the entire field. In general, this is also true for a
static problem,

As illustrative examples, the new superposition method is
first applied to stretching the boundary values of axially sym-
metric problems. Then the new approach is extended to find
the solution of an elliptical shear dislocation problem in an
elastic unbounded medium.

2 The Rotational Superposition Technique for the
Circular Case

Consider a linearly elastic half space y = 0. A plane-strain
field (uy2, uy2, 0) and an antiplane field (0, 0, wu,;) that are
functions of x,, y,, ¢ and satisfy the three-dimensional equations
of motion are applied at an angle w, with the x-axis, as shown
in Fig. 1. If these plane-strain and antiplane displacement fields
are multiplied respectively by weighting functions w,(w,) and
w,(w,) and their effects superposed for w, from O to =, the
three-dimensional field generated is clearly a solution of the
three-dimensional dynamic elasticity equations. This resulting
displacement field is expressed as follows (Johnson and Rob-
inson, 1972):

u, = J; Ue(p cos (w; — w), y, 1) cos (w; — wIw,(w,)dw,

w)" y; I) Sln (W| - w)wﬂ(wl}dwl

= f U2 (p cos (w; —

0

U, = I Un(p cos (w, — w), y, t) sin (w; — wIw,(w,)dw,
0

+ f w2 (p cos (w) — w), ¥y, 1) cos (w, — w)w,(w,;)dw,
4]

Uy = f Uy2(p cos (wy — w), y, hwp(w))dw, (1)
o
where (p, w, y) are the cylindrical coordinates of Fig. 1.

DECEMBER 1996, Vol. 63 / 911



2

X3
ﬁ w, ¥}
X

Fig. 1 The geometry of rotational superposition

If the three-dimensional problem is axially symmetric, a
plane-strain problem (with w,(w,) = 1) can be found that when
superposed rotationally as above gives rise to the specified axi-
symmetric problem. The antiplane problem is absent here. If
the plane-strain problem is taken to be symmetric, i.e.,

Uer(— Xz, Y2, 1) = —Upa (X2, Y2, 1)
Uy (— X2, Y2, t) = Uy (X2, y2, 1), (2)

then the plane-strain problem is unique and the following sim-
plified expressions can be obtained (Thompson and Robinson,
1969):

U, = f ug(p cos n, y, t) cos ndn

0

u, =0
Uy = f Uy2(p €os 1, y, 1)dn. (3)
a0
The expressions for the stresses are
o, = J' [0 — 2p€sn sin? nldy
0
o, = f [0 — 2p€,, cos® nldn
o
gy = f 0y2dn
o
Ty = J; Tyy2 COS Ndn
Ty = Tpw = 0. (4)

The task of finding the fictitious plane problem, i.e. its bound-
ary and initial conditions, that corresponds to an axisymmetric
problem is usually done by solving a set of Abel integral equa-
tions (Aleksandrov, 1961). For example, assume that the
boundary and initial conditions for the axisymmetric problem
are specified functions of o, and 7,,, then the first and fourth
of Egs. (4) can be solved to determine the corresponding quanti-
ties for the plane strain problem. The result is

1 8 3 r
0y2(%, ¥, 1) = e e {fu ay(r,y, 1) N g df'}
2

X, 2
LTyp(r,y,r)mdr}. (5)

For the axisymmetric problem in which the normal and tan-
gential tractions are specified on the boundary y = 0, Egs. (5)
for y = 0 give the boundary tractions for the corresponding
plane-strain problem. The plane problem can then be solved
directly (Smirnov, 1964; Thompson and Robinson, 1969; Er-

1 @
rasn o0 =2
2 2
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ingen and Suhubi, 1975). The results when superposed in accor-
dance with Eqs. (3) and (4) yield the solution of the axisymme-
tric problem,

A more general type of rotational superposition that is often
useful results in nonaxially symmetric distribution of boundary
tractions or displacements. One very useful examplé of this is
a case in which a displacement or a traction in one direction,
say x, is applied to an expanding circular area on the boundary
plane (Kostrov, 1964b; Johnson and Robinson, 1972). Corre-
sponding to this kind of problem, a fictitious antiplane problem
as well as a fictitious plane-strain problem is now necessary
and the weighting functions in Egs. (1) are taken in the follow-
ing form:

(6)

To guarantee uniqueness, the plane-strain problem is taken as
antisymmetric with respect to the y-axis and the antiplane prob-
lem as symmetric, i.e.,

wy(w) = cos w; w,(w,) = sin w,.

uxZ(—x2! Ya, !) = “x?.(xZD ¥a2, f}
U2 (=X, Y2, 1) = —thya (X3, Y2, 1)
(7

With these assumptions, the following simplified expressions
can be obtained by a change of variable (7 = w, — w) in Egs.

(1):

U (— Xz, Y2, 1) = (X, Yo, ).

u, = {f U2 (p cos m, y, 1) cos® ndn
0

- f u(p cos 1, y, t) sin’ ndn} Cos w

0

u, = {—f Ue(p cos m, y, t) sin® ndn
0

+ f u(p cos n, y, t) cos? ndn} sin w

0
u, = {f Uy (p cos 1, y, t) cos ndn} cos w. (8)
0

Similar expressions for the stresses can be found in Johnson
and Robinson (1972).

Depending on the given boundary values, the fictitious plane
problems can then be determined in a way very similar to the
axisymmetric case. For instance, consider the dynamic problem
of an expanding circular shear dislocation nucleated from the
origin on the y = 0 plane in an unbounded medium. The bound-
ary conditions on the dislocation plane are given by the follow-
ing equations:

“,o(P» w, ‘)fy=o* = _“ﬂ(P9 w, ‘)|y=0_ = u,(p, t) cos w
uw(p9 w, £)|_v=0‘r = _Hu(ﬁ- W, l[)|)|'='Zl = _“x(pa f} sin w

o, =0 for

(%)

where u,(p, t) is the distribution function of the tangential
relative displacements in the x-direction. The fact that the o, =
0 everywhere on the y = 0 plane follows from the antisymmetric
nature of the problem with respect to the plane y = 0. To solve
this problem, first we can examine the form of the first two of
Eqgs. (8). It can be observed that if one chooses

y=0

Uy = —Up = U(xy, 1) for y, =0, (10)

the three-dimensional motion resulting from superposition will
always be in the x direction (w = 0) on the y = 0 plane, as
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Fig. 2 A simple stretch in the x-direction

required by the first two of Egs. (9). The following equation
can then be obtained:

Uy U,

oS W [yngr SN w |,mp

J" U(pcosm, t)dn = u(p, t). (11)

0

From this the function U{x;, f) is then also determined, i.e.,

J.': g
J; u (&, 1) T{Z d&_} . (12)

Therefore the fictitious plane problems corresponding to the
circular shear dislocation problem are determined uniquely and
their boundary conditions for y, = 0" are as defined below.

1 a
U(xy, 1) = ;a{
2

(1) The plane-strain problem:

Ua (X2, 1) = Ulxg, 1)

o, = 0. (13)
(2) The antiplane problem:
Ua(xa, 1) = —U(xa, 1). (14)

3 The Geometry of a Stretch in the x-Direction

Up to this point, known results have been summarized for
dealing with three-dimensional problems with boundary values
over a circular region, In order to develop the new rotational
superposition with a stretching effect, some necessary geometri-
cal relationships will first be established in this section. Consider
a line OA on the xz-plane as shown in Fig. 2. The point
A(xy, z;) will move to the point A, ((1 + s)x,, z;) if the whole
surface is stretched (1 + s) times in the x-direction. Then
a point B on the line_0A will move to a point B, on the
line OA, also. Because AA, is parallel to BB, it is apparent that
the triangle OAA, is similar to the smaller triangle OBB,. There-
fore the following geometrical relationship holds:

OB OB.

15
OA OA,’ &)

Similarly, any shape on the xz-plane will change when the
whole surface is stretched (1 + s) times in the x-direction, e.g.,
a circle is stretched into an ellipse. The geometrical relationships
between a circle with center at the origin and the resulting ellipse
after stretching can be easily found. As shown in Fig. 3, A, By,
C,, and D, are the transformed points on the stretched surface
corresponding to the points A, B, C, and D on the original
surface, respectively. Point A, is determined such that line
AjA; is tangent to the ellipse and perpendicular to the
line OA,. Point B, is the intersection of lines B,C, and OA,. In
any standard analytic geometry textbook (e.g., Lehmann, 1942,
p. 161), it is shown that

Journal of Applied Mechanics

z = mx + rnm*(l + 5)* + 1

(16)
is the equation of the tangent A,A, where
1
m= - (17)

tanﬂ]’

r is the radius of the circle, and £, is the new angle that the line
OA, makes with the x-axis. The length OA, is the distance from
the origin (0, 0) to the line A;A,. Again from (Lehmann, 1942,
p. 72), it is seen that

OA; = r{(1 + ) cos? B, + sin® f,. (18)
It will be convenient to set OA, = r+p(B8,) with
p(B) = V(1 + §)* cos® B, + sin? §,. (19)

In addition, the condition that the tangent A,A, passes through
the point A,((1 + §)r cos w,, r sin w;) leads to the following
relationship between w, and 8,:

tan B, = (1 + §) tan w,. (20)
Taking the differentials of both sides,
sec’ B1dB, = (1 + s) sec? wydw,,
we can deduce that
1 +5 1+
dw, = dg, = )
A (1 + 5)% cos® B, + sin? B, By P*(B1) dpg,. (21)

By noticing in Fig. 3 that the triangle OA A, is similar to
the triangle OB,B, and employing Eq. (15), we readily de-
rive a useful equation which relates the segment OB to OB, and
OC to OC;:

o5, _ 08, _ o0
OA, OA, OA
or
s ORR s (ﬁ
032=OA" 08 = 2LLU T GE _ »(8,)- OB,
and finally

OC, -cos (B, — w) = p(B:)-OC - cos (w, — wy). (22)

Py

Sl

Fig. 3 Geometrical representations of a circle and the resulting ellipse
after a stretching in the x-direction
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4 Rotational Superposition With Stretching on the
xz-Plane

In Section 2 it has been shown how to solve three-dimen-
sional axisymmetric dynamic problems by finding a correspond-
ing plane-strain problem, solving it, and applying rotational
superposition to the two-dimensional results. The solution of
the fictitious plane-strain problem is, of course, determined by
its boundary values.

Now consider a three-dimensional problem with nonzero
boundary values u, or o, on the y = 0 surface that can be
interpreted as a ‘stretch’’ in the x-direction of an axisymmetric
distribution on the xz-plane. For convenience, this problem will
be called a *‘stretched boundary value problem.”” As noted in
the Introduction, in general the entire field is not simply
stretched in the same way. The analysis of the present section
and an example following will show how to obtain modified
two-dimensional problems and from these to find the solution
for the stretched boundary value problem. After this method is
developed, it will be shown in Section 6 that the same stretching
process is applicable to problems arising from the stretching of
a nonaxisymmetric problem that can be solved by rotational
superposition. In that section a shear dislocation over an ex-
panding elliptical region is found by beginning with the corre-
sponding problem for an expanding circular area.

First for an axisymmetric distribution normal to the xz-plane,
consider a known plane distribution f(x,) which is an even
function of x, along the x,-axis (see Fig. 3). As before, an
axisymmetric distribution on the xz-plane can be constructed
readily by defining the value of the distribution F at any point
C(po, wy) as follows:

F(C) = F(po, wo) = J::f(ﬂu cos (w; — wp))dw,

= J“f(pg cos w, )dw,. (23)
L]

Here f(x;) and F(p,, wy) can be the normal component of
displacement or traction that enters the boundary conditions. It
is apparent that the resulting distribution F is a function of p,
only. If the function F(p,) is known beforehand, the inverse
problem of constructing the corresponding distribution f(x;)
can be solved readily. The solution to the inverse problem is,

as in Eqgs. (5),

1 8
f(xz}—;a—h{

Xz 5
F dty . 2

fn (g)m E} (24)

The problem now is to construct a surface distribution which
is a stretch in one direction of an axisymmetric distribution on
the xz-plane. A new rotational superposition with stretching
effect is defined for the value of the distribution F, at any
point C,(p, w). A weighting function w,(8,) for stretching
is included in the superposition, as shown in the following
equation:

Fe(Cl) = Fe{p! w)
= fu Je(pcos (B — w), Bi)w.(B)dB,  (25)

where the distribution f, (x,., 8,) is a stretch of the distribution
f(xz) with a stretching ratio as a function of 3,. The function
fe(x.2, B1) is defined in terms of the function f(x,) by

Xe2
Jelxea, BY) —f(m) .

The weighting function w,(f,) is derived from the geometrical
relationships between w, and £, as follows:

(26)
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@_ 1+s _ I+
dg,  (1+s)?cos’ B +sin?B; p*(B)’

From the geometrical relationships established in the previous
section, the following equalities can be easily proved, from
which the relationship between the axisymmetric distribution F
and the stretched distribution F, is verified:

we(B1) = (27)

preos (B — w) = p(B)) porcos (w, — wp)
fe(p cos (81 — w), Bi) = f(po cos (w1 — wp))
w (1) dB) = dw,
so that
F.(C) = F(C). (28)

Therefore, the new rotational superposition with the stretching
effect defined by Eq. (25) results in a value of the distribution
F, at the stretched point C, that is the same value that F has at
the original point C. It is now clear that the surface distribution
F, is a stretch of the axisymmetric distribution F in the x-
direction.

5 An Expanding Uniformly Distributed Elliptical
Normal Load on the Surface of a Half-Space
Consider the problem of a linearly elastic half-space sub-
jected to an expanding elliptical normal traction on the surface.
The normal load intensity is assumed to be uniformly distributed
of unit magnitude acting downward in an expanding elliptical

region on the surface y = 0. The boundary conditions are as
defined below:

2

(1 +s)’+

e
=0 for -——2+zz>ar
(1l +s)

7, =0 for y=0

2

o,(x,z,t)= -1 for ’=sat

(29)

5.1 The Corresponding Plane-Strain Problem. The
problem for the elliptical distribution is solved by first examin-
ing its counterpart, an axisymmetric problem with an expanding
circular normal load on the surface. The axisymmetric boundary
values on the surface y = 0 are given by

T =0 for y=0.

a,(p,t) = —1 for

0 for p>at

p=at

Tylps 1) = 0. (30)

The fictitious plane-strain problem corresponding to this axi-
symmetric problem can then be found by substituting the above
boundary values into Eqgs. (5), which gives the boundary condi-
tions for y, = 0 of the plane-strain problem as follows:

1
Oy, 1) = — - for |x| = at
1 |xz| ]
=——|1-= for |x| > ar
™ [ Gx% — a’?

Toa(Xz, 1) = 0. (31)

After the plane-strain problem corresponding to the axisym-
metric case is found, the plane-strain problem corresponding to
the elliptical normal load problem can be determined readily
by stretching the boundary values in Egs. (31) according to Eq.
(26). That is, for y, = 0,
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|
J;Z(xez,rvﬁl)='; for |x¢!2| 5“,&.’

1 ixezl
=—=|1- fi w2| = ot
ﬂ—[ IEZ_Q}%H‘Z o ile aﬁl
Tohe(Xeas t, 1) =0 (32)
where
as, = p(B)ra = (1 + 5)? cos? B, + sin? B, a. (33)

Here it should be noted that the stretched plane problem for the
elliptical case is a function of §,.

5.2 Solution to the Stretched Plane-Strain Problem.
Since the tractions on the surface y, = 0 in Egs. (32) are
homogeneous functions of degree zero, the stretched plane-
strain problem can be readily solved by using the method of
self-similar potentials (Smirnov, 1964; Thompson and Rob-
inson, 1969; Eringen and Suhubi, 1975). The displacement and
stress fields for the fictitious plane-strain problem are then deter-
mined readily as below:

T 4, t
Uy = —f Rc[f 60" do + f ’ Vbt — Hzlll“de]d»r
0 0 0
' o, 0,
Uy = —f Re[f Ya=* — 9*®'de —f .‘?lI"dG]d'r (34)
0 0 0

e
T x2

= Re[r' (b + 207 - 2a~)®'d6
7 0

ﬂ]
+ f 200b7 — 62'11’d9]

]

v 0
D2 - ReU (b7 - 26%)D'dh — r 20yb~2 — ﬂzw'da]
e 0 0

e 0,
To? o ReU 20Va — 6°'df

H 0
+ r (b2 — 292)qﬂda] (35)
i}

where a and b are the speeds of the P and § waves, p is shear
modulus,

2

@b, 6(b™ - 26%)
ur R(8*)(1 — aj,0%)*"?

20%a * - §*
R(Bﬁ)(l _ aEIBZ)SJZ

@'(6, ;61) =

aj,
(e, p)=—-—
s

in which

R(8%) = (b™> — 20%)* + 4%a™* — 94b > — 6°

is the Rayleigh function, and 6, and 6, are the complex functions
defined implicitly by

t— Oix — ya? — #7=0
1 — Bpx,, — y¥b 2 — 03 = 0. (36)

5.3 The Displacement and Stress Fields for the Elliptical
Load Problem. After the displacement and stress fields for
the stretched plane-strain problem are determined, the three-
dimensional displacement and stress fields for the elliptical nor-
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Tangential relative displacement

a = 5.6 km/sec, b= 3.2 km/sec
s=05, a= 1922 sec
5 am e km/sec

Fig. 4 An expanding elliptical shear dislocation (circular when s = 0)

on the y = 0 plane

mal load problem can be found by superposing the two-dimen-
sional fields using the rotational superposition with stretching,
which results in the following equations:

U, = J.“ ur(p cos (B — w), y, L, B1)
X cos (B, — w)w.(B1)dp,
U, = J; ui(p cos (B — w), y, t, B1)

X sin (B — wyw.(B)dp,
uy:-J. “;2(;0 cos (JBI '_w)a Y, t, ﬂ')wf(ﬂl)dﬁl (3?)

i
0= [ (0% = 2ueta sin? (B — ). (8B,
0= [ (0% = 2ucta co5® (B, = ) Iw(B)dP,
oy = J:r o 52w (B1)dB,
Tow = J:,ufiz sin 2(81 — w)w.(B,)dB,
= J[ 75008 (8, ww.(B1dp

Tyw = f Tf-yz sin (8, — w)w,.(B,)dB,

0

(38)

where w,(3,) is the weighting function for stretching as defined
in Eq. (27). Because the displacement and stress fields resulting
from superposition satisfy the boundary conditions on the sur-
face y = 0 as given by Eqgs. (29), they are the solution to the
elliptical normal load problem being considered.

6 Application to the General Elliptical Shear Dislo-
cation Problem

In addition to the problem of normal tractions or displace-
ments on an elliptical area, the problem with tangential bound-
ary values in one direction over an elliptical region can also be
dealt with by a different rotational superposition with a stretch-
ing effect. Consider the problem of an expanding elliptical shear
dislocation nucleated from the origin on the y = 0 plane in an
unbounded medium as shown in Fig. 4. The boundary condi-
tions on the y = 0 plane are taken as follows:
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u(x, z, )] y=0r = —u,(x, 2, )] y=0~ = U(pp, 1) COS W
U (X, 2, 1) ym0t = =X, 2, 1)] 20~ = =t (pp, 1) sin w
og,=0 for y=20 (39)
where
x?.
pu(x, z) = 1#(1_-+—s)2 2% (40)

In this problem, the elliptical shear dislocation can be consid-
ered as a stretch in the x-direction of the circular dislocation in
Section 2. The rotational superposition defined by Eqgs. (1) and
(6) can now be modified in a similar manner as in Section 4.
The new rotational superposition used for the elliptical shear
dislocation problem is then defined by the following equations:

U, = J:u:z(p c0s (81— w), y, 1, B1) cos (B — w)
X cos Byw.(B8))dB; — J: uz(peos (B —w),y,t,B1)
X sin (B, — w) sin Byw,(B,)df,
= [ utatocos (8= w1y, 1, 80500 (81~ w)
X cos Buw.(BdBs + [ uia(pcos (B~ w),y.1,80)
X cos (B — w) sin Giw,(B,)dB,
U, = J; uya(p cos (B — w), y, t, B1)

X cos Biw.(B,)dB,

where the weighting function w,(8,) for stretching is as given
in Eq. (27).

It will now be verified that the same stretching approach used
for the axisymmetric case, Eq. (26) can also be applied to find
the plane problems that lead to the superpositions of Eqs. (41).
That is, the plane problems corresponding to the elliptical shear
dislocation problem are determined readily by stretching the
boundary values of the plane problems for the circular case
found in Section 2 in accordance with Eq. (26). For y, = 07,

(1)

(41)

the plane strain problem is determined by

Xe2 X2
; €2y by =y s = U —— 3
Waa Gt 1) uQ(P(ﬁJ I) (P(ﬁl) f)

0y =0 (42)
and
(2) the antiplane problem is determined by
Xe2 Xez
Uz (Xe2, 1, = —— | ==-U—, ¢ 43
s b) MIZ(P(}GL) ) (P(ﬁl} ) ()

where U(x,, t) is as given in Eq. (12).

In order to confirm that the new rotational superposition de-
fined by Eqgs. (41) together with the above plane problems give
rise to the elliptical shear dislocation problem, the superposed
three-dimensional boundary values on the surface y = 0~ are
examined, as follows:
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u, = J; [ugz cos (B — w) cos B, — us,
X sin (B, — w) sin B, 1w.(B))dS,
= J" us2[cos (B — w) cos B,

0

+ sin (B, — w) sin B, Iw.(B,)dB,
= J‘“ Uspow.(B1)dp,  cos w
0

u, = Jw us[sin (B, — w) cos B

0

—cos (B — w) sin B,1w.(5,)dp,
’ ﬂf’ S0, (By)dB; - sin

0
a, = 0.

In addition, the following equality can be verified from the
results in Section 4.

f up(p cos (B — w), 1, B)w(B1)dB = ups, t)
0

Therefore, the three-dimensional fields resulting from superpo-
sition have the same boundary values on the surface y = 07 as
given by Eqs. (39) for the elliptical shear dislocation problem
being considered.

Once the boundary conditions are established as the superpo-
sition of two-dimensional fields by the new rotational superpo-
sition, any other field quantities can be expressed as

0, = f [0%2 — 2ueis sin? (B, - w)] cos ﬁlwr(ﬁl)dﬁl
0

= J'x Tie 8in 2(B; — w) sin Bw.(B))dp,

}

[ J; [o%2 — 2uess cos? (81 — w)] cos Biw.(8,)df,

+ f T 8in 2(8, — w) sin Byw.(6,)dB,

0

Ty = J; aya cos Bw.(B,)dB,

oo = || Lneta sin 208, - w) cos p,
+ T €08 2(B) — w) sin Bi]w.(B)dp,
Ty = JZ [752 cos (81 — w) cos B,
= Toe Sin (B, — w) sin By ]w.(6,)dp,
o= [ rsasin (81 - ) cos
+ T4 cos (B — w) sin ﬂ.]wefﬁr)dﬁ[- (44)

7 A Specific Spreading Elliptical Shear Dislocation
in an Infinite Medium

As a specific application of the general results of Section 6,
the problem of an elliptical shear dislocation spreading in an
infinite medium is now treated. The relative displacement distri-
bution function u.(p,, t) that, together with Egs. (39), defines
the boundary conditions on the y = 0 plane is taken in the
following form:
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DVa*? — pi for p, = at

=0 for

ux(pbv ll)

Py > at (45)

where D is a constant, « is the speed of propagation of the
elliptical dislocation boundary along the minor axis, and the
parameter p,(x, z) is as defined in Egs. (40). It has been shown
that Eq. (45) is also the solution form for the crack surface in
self-similar problems of an elliptical shear crack propagating in
an isotropic medium subjected to a homogeneous shear (Bur-
ridge and Willis, 1969). Thus, the results given in this section
will correspond to a solution for an elliptical shear crack prob-
lem.

To solve this problem, again the corresponding circular shear
dislocation problem is examined first. The boundary conditions
on the y = 0 plane of the circular problem are given by Egs. (9)
together with the following relative displacement distribution:

u(p, t) = DVa¥t* — p* for p=at

=0 for p=>at (46)

Kostrov (1964b) showed that these boundary conditions actu-
ally correspond to the case of an expanding circular shear crack
in an infinite elastic solid. From the previous results, the bound-
ary values given by Burridge and Willis (1969), Egs. (39) and
(45), should then be the solution form on the crack plane for
an expanding elliptical shear crack. In their paper, Burridge and
Willis assumed that this is the case and then verified the solu-
tion. The results of this paper show much more simply that
their reasonable assumption was indeed correct.

To return to the calculations, the distribution Eq. (46) is
substituted into Eqs. (13) and (14) to give the boundary values
on y, = 07 for the plane problems corresponding to the circular
dislocation problem. The results are

(1) for the plane-strain problem

D [ x| at — | x|
2(, 1) = = | at + == log | ————
(%2, 1) ﬂ'[ 2 s at + | x|
o, =0 (47)
and
(2) for the antiplane problem
Upa (X2, 1) = —Uea(X2, 1), (48)

The fictitious plane problems for the elliptical shear dislocation
problem can then be readily determined from stretching as in
Eqs. (42) and (43), which results in the boundary conditions
on y, = 07 for the stretched plane problems as follows:

(1)

the stretched plane-strain problem

D | x.2| apg [~ | X2
i e2s by s o v e It
U5 (Xeay t, B1) (B [ﬂ’m 5 og AT+ |xe2|
52 (X2, t, B1) =0 (49)

and
(2) The stretched antiplane problem
Ui (X, t, Bi) = —uia(xe, t, i) (50)
where

ag, = p(Bi)ra = V(1 + 5)* cos® B, + sin® B, *a. (33)

7.1 Solution to the Stretched Plane Problems. It is ap-
parent that the tangential displacement for y, = 0" in Eqs. (49)
is a homogeneous function of degree 1. Thus this stretched
plane-strain problem can also be solved straightforwardly by
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Fig. 5 Response at (p = 10 km, w, ¥ = 15 km) due to a spreading
elliptical shear dislocation (s = 0.5)

employing the method of self-similar potentials, which gives
the following two-dimensional displacement fields:

2Da} b? J~' [ f". 267
ui = ——— 1 Re —_——df
2 (B Jo o (1 — a3 (82}

% 9(b~* — 26%)
+f ﬁdﬁ dr
o (1-a36%

2Da}, b? [ % 20%a? — §?
H;g R me— Re e T Y V]
mp(B1) Jo o (1 —apb?®)
Ay ez(b-z e 282) :I
~ do |dr. (51
.[, A —agombi—g 4 ©D

The solution of the antiplane problem can also be found
readily by using the method of self-similar potentials (Johnson
and Robinson, 1972). The result is

Dat’, ' 2
= i e(___t?zz z)d'r‘
wp(B8)) Jo 1 - ﬂfmez

7.2 Determination of the Three-Dimensional Fields.
Once the stretched plane problems have been solved, the three-
dimensional displacement fields for the expanding elliptical
shear dislocation problem are completely determined by super-
posing the two-dimensional fields for the stretched plane prob-
lems according to Eqgs. (41). The stress fields can be found
from the fundamental stress-displacement relationships for
plane fields and Eqs. (44) if they are of interest.

A numerical example with properties shown in Fig. 4 has
been examined. The calculated displacement responses at some
points are illustrated in Fig. 5. By symmetry, the radial and
vertical displacements are zero when w = 90 deg, and the
circumferential displacement is zero when w = 0 deg. In addi-
tion, it can be readily seen from the results that the body has
not been disturbed until the arrival of the first P-wave front at
the point at which the field is calculated.

¢
Uz

(52)
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8 Conclusion

An extension of the usual rotational superposition to include
a stretching in one direction of a boundary value distribution
on a plane has been presented. This stretching technique is
applicable to three-dimensional boundary value problems when-
ever the distribution of boundary values can be considered a
“‘stretch’’ in one direction of a circular surface distribution. By
means of the generalizations developed, the rotational superpo-
sition technique becomes even more powerful and more versa-
tile. In addition to the two examples given in this paper, this new
approach could prove useful in a number of other applications
including problems in layered media. In this way, it is possible
to increase the small number of unsymmetric three-dimensional
static and dynamic elasticity problems that have been solved
exactly.
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Crack Growth Along a
Bimaterial Interface

An experimental investigation has been conducted to study the dynamic failure of
bimaterial interfaces. Interfacial crack growth is observed using dynamic photoelas-
ticity and characterized in terms of crack-tip velocity, complex stress intensity factor,
and energy release rate. On the basis of crack-tip velocity two growth regimes are
established, viz. the subsonic and transonic regimes. In the latter regime crack-tip
velocities up to 1.3 times the shear wave velocity of the more compliant material are
observed. This results in the formation of a line of discontinuity in the stress field

surrounding the crack tip and also the presence of a pseudo crack tip that travels
with the Rayleigh wave velocity (of the more compliant material).

Introduction

In recent years there has been a resurgence of interest in the
dynamic failure of bimaterial interfaces. This interest is primar-
ily motivated by the role of interfacial fracture in determining
the macroscopic response and failure modes of various multi-
phase materials, The first experimental study of this phenome-
non of dynamic interface fracture was by Tippur and Rosakis
(1991). Their investigation demonstrated the possibility of in-
terfacial crack propagation at velocities up to 80 percent of the
shear wave velocity of the more compliant material comprising
the bimaterial interface. This experimental study motivated sev-
eral analytical and numerical investigations of the same problem
(Yang et al., 1991; Wu, 1991; Nakamura, 1991; and Deng,
1992). A higher order asymptotic stress field for dynamic crack
propagation along bimaterial interfaces was provided by Liu et
al. (1993). The same paper also presented experimental evi-
dence of the highly dynamic and transient nature of this phe-
nomenon. Most recently, L.ambros and Rosakis (1994 ) demon-
strated that dynamic crack propagation along a bimaterial inter-
face can occur at transonic velocities (with respect to the more
compliant material ). However, experimental data, especially in
the transonic regime, is still limited and analytical studies are
nearly nonexistent.

This study is motivated by the need to employ experimental
techniques to investigate the phenomena of both subsonic and
transonic crack propagation along bimaterial interfaces. Thus,
dynamic photoelasticity was employed in conjunction with
high-speed photography to study the failure of bimaterial inter-
faces in the subsonic and transonic regimes. Failure was ob-
tained by subjecting the bimaterial specimen to dynamic impact
loading. Varying the velocity of the projectile used to impact the
bimaterial specimen results in very different crack propagation
characteristics. Low-velocity impact leads to subsonic crack
propagation, in which the crack-tip velocity is less than the
shear wave velocity of the more compliant material, Whereas,
high-velocity impact leads to transonic crack propagation, in
which the crack-tip velocity is greater than the shear wave
velocity but less than the plane wave velocity of the more
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compliant material. This paper investigates and discusses the
various physical phenomena that characterize crack propagation
in both the subsonic and transonic regimes.

Experimental Procedure

The experimental setup used to investigate crack propagation
along a bimaterial interface subjected to impact loading is
shown in Fig. 1. As demonstrated in the figure, the bimaterial
specimen is placed on the optical bench of a high-speed Cranz-
Schardin spark-gap camera and subjected to impact by a projec-
tile fired from a gas gun. This impact results in a compressive
wave that traverses the width of the specimen and reflects as a
tensile wave from the opposite free surface. The reflected wave
loads the crack tip resulting in crack initiation and subsequent
crack growth. The dynamic stress field produced by the propa-
gating crack is observed using dynamic photoelasticity in con-
junction with high speed photography. This is made possible
by the transparent and photoelastic nature of the compliant half
of the bimaterial specimen. The high-speed Cranz-Schardin
camera provides a total of twenty images at framing rates of
up to one million frames per second. These photographic images
represent the full-field isochromatic fringe patterns for the stress
field surrounding the propagating interface crack. Note that the
isochromatic fringe patterns are observed only in the compliant
and transparent half of the specimen.

The bimaterial specimen used to investigate interface fracture
is shown in Fig. 2. It consists of a compliant half bonded directly
to the stiff half. The compliant half was chosen to be a transpar-
ent and photoelastic polyester resin (Homalite-100), while alu-
minum was chosen as the other half. This combination provides
a significant mismatch in the mechanical properties of the two
materials comprising the bimaterial interface, The properties of
both the materials are ligted in Table 1.

The bonding of the two materials comprising the interface is
done by a direct-bonding procedure to ensure a *‘true bimaterial
bond.”” First, the Homalite and aluminum halves of the speci-
men are machined to size, mechanically abraded by sand-blast-
ing and cleaned. Then, a thin layer of uncured polyester resin,
to which a curing agent (Methyl ethyl ketone peroxide) has
been added, is applied to the bonding surfaces and the two
specimen halves are held together until the resin cures. After
room temperature curing for 48 hours the resin achieves the
same mechanical and optical properties as Homalite-100 re-
sulting in a true bimaterial bond. This bonding procedure was
evaluated by conducting tension tests on two Homalite-100
halves bonded with this technique. The experiment provided a
tensile strength of 21 MPa (3000 psi) which compares well
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Circular Polarizer
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Fig. 1 Experimental setup for investigating the fracture of a bimaterial
interface subjected to impact loading by a projectile fired from a gas
gun

with the standard value of 28 MPa (4000 psi) for homogeneous
Homalite-100. The starter crack along the interface is formed
by incorporating a strip of Teflon tape during the bonding proce-
dure.

In this experimental investigation the bimaterial interface
specimen was subjected to two different magnitudes and rates
of loading, as determined by the velocity of the gas gun fired
projectile. The same steel projectile (12.5 mm diameter and
100 mm long ) was used for both experiments. The impact veloc-
ities used were a ‘‘low’’ velocity of 5 m/s and a ‘*high’’ velocity
of 30 m/s. These projectile velocities correspond to impact
energies of 1.25 J and 45.4 ], respectively. The low and high-
impact velocities resulted in very different crack-tip propagation
histories.

Analysis of Isochromatic Fringe Patterns

Isochromatic fringe patterns obtained from the high-speed
camera were analyzed to determine various fracture parameters
such as the crack-tip velocity, the complex stress intensity fac-
tor, and the energy release rate, This analysis procedure is based
on the transient higher order asymptotic stress field equations
for a crack propagation along a bimaterial interface (Liu et al.,
1993). Consider a crack propagating along a bimaterial inter-
face as shown in Fig. 3. From the higher order asymptotic
analysis of Liu et al. (1993) the stress field in vicinity of the
crack tip is given as

UJ}'(EI‘ 525 f) = Z EPMJE)!"}(Hls T2y IJ (])

m=)

where 7; = €;/e,i € {1, 2}, and € is a small arbitrary positive

b—125 mmn—ed

T
Material - 1
150 mm
— 25 mm _EEIJ me
B | — Impact
130 mm
A - Starter Crack
Material - 2 B - Interface
O AEEL

Thickness = 6, 35 mm

Fig. 2 Schematic of bimaterial interface specimen
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Table 1 Material properties of bimaterial system

6061
Property Homalite-1001  Aluminum

Young's modulus, E, (GPa) 53 71
Poisson’s ratio, v 0.35 0.33
Density, p, (kg/m3) 1230 2770
P-wave velocity (plane-o), ¢,, (m/s) 2220 5430
S-wave velocity, c¢,, (m/s) 1270 3100
Surface wave velocity, cg, (m/s) 1186 2890
Fracture toughness, K., (MPa,/m) 0.45 99
Material fringe value, f,, (kN/m) 237 —

+ Maufactured by Homalite, Inc., Delaware, USA,

number. This parameter is used to scale a small region around
the crack tip such that the scaled coordinates 7; fill the entire
field of observation. Now, py < p; < pp < ..., Le. ol are
the primary terms, o'’ are the first-order corrections and so on.
The exact form of the stress field equations in terms of positional
coordinates, crack-tip velocity, material properties, and various
fracture parameters is given by Liu et al. (1993).

The generation of the isochromatic fringe patterns, which are
contours of constant maximum shear stress, is governed by the
stress optic law,

Nf; _ _01— 0y _ o= oY 2
Zh = Tmax = 2 _J( 2 ) +Tx_;' (ZJ

where f, is the material fringe value and h is the thickness of
the specimen. The stress optic law is coupled with the higher
order asymptotic stress field to yield the relation that defines
isochromatic fringes in the vicinity of a crack tip propagating
dynamically along a bimaterial interface,

Nf:? 2 2 2 1t " 2
o | = H {[(1 + ai) ReFi(z; 1) + 2a; ReGy(z; 1)]

+ [2a; ImF{(zi; 1) + (1 + @) ImGo(z,; 1)]*}
= (1 + a})? [ReF§(z1; N]*

+ daf[ReGi(z; 1)]*

+ 4a,(1 + a?) ReFi(z1; 1) ReGi(z; 1)

+ dai [ImFg(z,; 1)]?

+ (1 + @) [ImGy(z; 1]

+4a(1 + af) ImFi(z; 1) ImGi(z,; 1)} (3)
where
2 v?
ale—c—?, a3=1—c—§ 4)

with v being the crack-tip velocity, and ¢, and ¢, the P and S-
wave velocities, respectively, of material-1. The modified coor-
dinates z, and z, are defined as z; =, + i@y and z, = 7y +
ia;n,. The functions F), and G}, have been defined by Liu et

Material 1
X $2
_______ X e
I(t) Material 2

Fig. 3 Schematic of a crack propagating along a bimaterial interface
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Fig. 4 A typical sequence of isochromatic fringe patterns for the crack propagation along
a Homalite/aluminum bimaterial interface subjected to low-velocity impact loading. The
fringe pattern is determined on the Homalite half of the specimen.

al. (1993). Equation (3) is used to analyze the experimental
isochromatic fringe pattern to determine various fracture param-
eters, such at the dynamic complex stress intensity factor, the
energy release rate, and the nonsingular stress field component.
The analysis procedure employs a nonlinear least squares
method based on the Newton-Raphson technique.

Results and Discussion

Subsonic Crack Growth. This sections presents and dis-
cusses crack propagation along a bimaterial interface resulting
from low-velocity (=5 m/s) impact loading. A typical sequence
of isochromatic fringe patterns for crack propagation for such
an experiment is shown Fig. 4. The photographs depict the
dynamic stress field that surrounds the crack tip as it propagates
along the bimaterial interface. Also, the location of the crack
tip is indicated in each frame. The crack-tip velocity history
corresponding to this experiment was determined from the
crack-tip location as a function of time and is plotted in Fig. 5.
This plot shows that after initiation the crack-tip velocity in-
creases rapidly to around 80 percent of the shear wave velocity
of the more compliant material, ¢FOMAYT™E Thereafter, the
crack-tip velocity continues to increase, but at a slower rate,
and finally reaches the shear wave velocity, oA,

Broberg (1960) has shown that the crack-tip velocities for
unassisted crack growth in homogeneous materials cannot ex-
ceed the Rayleigh wave velocity due to energy considerations.
However, for bimaterial interfaces the energy to the propagating
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Fig. 5 History of the crack-tip velocity for subsonic crack propagation
along a Homalite/aluminum bimaterial interface
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crack tip is supplied from the stiff half, which has higher wave
velocities than the compliant half, and higher crack-tip veloci-
ties are possible. Such crack-tip velocities have been observed
previously under similar loading conditions but for a different
bimaterial system (Tippur and Rosakis, 1991).

For the major duration of the experiment described above
the crack-tip velocity was less than the shear wave velocity of
the more compliant material (v < ¢HOMALUTE) This phenomenon
of subsonic crack growth was observed typically for all experi-
ments that involved low velocity impact. Moreover, for this
crack-tip velocity regime the higher order asymptotic field equa-
tions of Liu et al. (1993) are applicable and were used to
determine the various fracture parameters. Figure 6 shows the
variation of the real and imaginary parts of the complex stress
intensity factor, K“. The magnitudes of both the real and imagi-
nary parts of the stress intensity factor (K, and K;) decrease
rapidly to zero with crack propagation. The variation of the
energy release rate with crack propagation also shows a decreas-
ing trend and is plotted in Fig. 7. As the crack propagates along
the bimaterial interface, the crack-tip velocity increases and the
energy required to drive the crack decreases. Yang et al. (1991)
have shown that for a crack propagating faster than the Rayleigh
wave velocity (but less than the shear wave velocity) of the
more compliant material, the energy release rate goes to zero.
This accounts for the decreasing trend of the energy release rate
as shown in Fig. 7. In actual experiments the energy release
rate does not go to zero even after the crack-tip velocity exceeds

1,00
~ F O RealPariof K, K,
8 t O Imaginary Part of K, K,
E 075 & —=—= Linear Fi
£ i RN
2 os0f g
g 025 : “;“““
i
; ey
000 | -
§ oo} P
E 025 o--"
[ o
050 5 L 1 | L pelo sy 1 al )
1 15 20 25 30 40
Time, t, (ps)

Fig. 6 Variation of the real and imaginary parts of the complex stress
intensity factor, K¢, for crack propagation along a Homalite/aluminum
bimaterial interface
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Fig. 7 Variation of the energy release rate, G, for crack propagation
along a Homalite/aluminum bimaterial interface

the Rayleigh wave velocity of the more compliant material.
This is possibly due to the presence of some dissipative mecha-
nism such as crack tip plasticity that is not accounted for in
theories based on elastodynamics.

Lambros and Rosakis (1994 ) have proposed a fracture crite-
rion for crack propagation along bimaterial interfaces at crack-
tip velocities less than the shear wave velocity of the more
compliant material (v < ¢FOMAUTE) This criterion is based on
an earlier criterion proposed for quasi-static crack growth along
bimaterial interfaces (Liechti and Knauss, 1982). The criterion
requires that the ratio of the shearing and opening crack-face
displacements at a given point behind the crack tip should re-
main a constant, i.e.,

(5)

1
2 = tan [¢ + € In r — tan~' (2¢)] = constant
2|r=a

where 6, and &, are the shearing and opening displacements of
the crack faces as defined in Fig. 8; n and ¢ are interface
parameters that depend on material properties and crack-tip
velocity; ¢ is the mode mixity; and r = a is some given point
behind the crack tip. Equation (5) is fitted to experimental
data for subsonic crack growth along a Homalite/aluminum
bimaterial interface as shown in Fig. 9. As shown in the plot
the experimental data shows the same trend as the theoretical
equation which indicated that for subsonic crack propagation
along a Homalite/aluminum bimaterial interface the quantity
8,/8, is a constant. The fact the quantity §,/6, is a constant is
employed Lambros and Rosakis (1994) to propose a relation
between the energy release rate, G, and the velocity of crack
propagation. Figure 10 shows a plot of the normalized energy
release rate as a function of crack-tip velocity. The experimental
data exhibits the same trend as the fracture criterion proposed
by Lambros and Rosakis (1994 ).

Transonic Crack Growth. When the bimaterial interface
is subjected to high velocity impact (~30 m/s) the resulting
fracture phenomenon is different from the earlier case. Typical
isochromatic fringe patterns obtained for the fracture of a bima-
terial interface subjected to high velocity impact is shown in

(Compliant Material)

8.
Crack 7 P
Faces Bee T N z____'i

Crack Tip
Veloaity, v.

Interface

(Stiff Material)

Fig. 8 Opening of crack faces behind the propagating crack tip for
subsonic interface fracture
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Fig. 9 Fit of constant crack face displacement ratio (Eq. (5)) to experi-
mental data for subsonic crack propagation along a Homalite/aluminum
bimaterial interface

Fig. 11. The history of the crack-tip velocity for this experiment
is plotted in Fig. 12, The crack tip rapidly accelerates directly
up to the shear wave velocity of the more compliant material,
cHOMALITE " and stabilizes around this value for about 20 us.
Thereafter, the crack-tip velocity continues to increase beyond
the shear wave velocity of the more compliant material.

The terminal crack-tip velocity observed in these high veloc-
ity impact experiments was around 130 percent of the shear
wave velocity but less than the plane wave velocity of the
more compliant material. This phenomenon of transonic crack
propagation (cFOMAITE <y < JIOMALITEY wag observed typi-
cally for all high impact velocity experiments. The experimental
evidence for transonic crack propagation is still limited
(Lambros and Rosakis, 1994, 1995) and theoretical develop-
ments are nearly nonexistent. Thus, there is significant specula-
tion as to the nature of the fracture phenomenon under such
velocity regimes.

A direct consequence of transonic crack propagation is the
formation of a line-of-discontinuity in the stress field sur-
rounding the moving crack tip, The propagating crack tip acts
as a source of shear and plane waves which radiate out in to
the material and establish the stress field that surrounds the
crack tip. If this source (the crack tip) propagates faster than
the shear wave velocity then the spreading out of the shear
waves is limited and a line-of-discontinuity forms. This line-
of-discontinuity represents jumps in the stress and displacement
fields and is akin to the formation of shock waves in fluids.

Experimental evidence of the line-of-discontinuity is shown
in Fig. 13 in the form of discontinuous isochromatic fringe
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e o o o o
o N &2 @ ®
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Fig. 10 Comparison of the experimental variation of the energy release
rate with the crack growth criterion proposed by Lambros and Rosakis
(1994)
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Fig. 11 A typical sequence of isochromatic fringe patterns for the crack propagation along
a Homalite/aluminum himaterial interface subjected to high-velocity impact loading. The
fringe pattern is determined on the Homalite half of the specimen.

contours. The line originates at the crack tip and radiates out
into the material. The angular orientation of the this line-of-
discontinuity can be related to the crack-tip velocity and the
shear wave velocity of the material as (Cole and Huth, 1958),

. C.\'
s e =

(6)

v

where « denotes the angular orientation of the line-of-disconti-
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Fig. 12 History of the crack-tip velocity for transonic crack propagation
along a Homalite/aluminum bimaterial interface
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Fig. 13 Discontinuities of isochromatic fringe contours representing the
formation of a line-of-discontinuity
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nuity, ¢, is the shear wave velocity of the material, and v is
the velocity of the crack tip. The orientations of the line-of-
discontinuity determined from the experimental isochromatic
fringe patterns were compared with the angles predicted by Eq.
(6) and are listed in Table 2. The correspondence between the
experimentally observed and theoretically predicted angles is
excellent and substantiates the presence of the line-of-disconti-
nuity. Recently, Liu et al. (1995) have considered steady-state
transonic crack propagation along an elastic-rigid bimaterial
interface. Their asymptotic analysis predicts the presence of the
line of discontinuity in the stress field. The angle of orientation
of the line of discontinuity as predicted by Liu et al. (1995) is
the same as that given by Eq. (6).

The experimental isochromatic fringe patterns also show the
presence of a secondary disturbance that trails behind the propa-
gating crack tip. This secondary disturbance, indicated in Fig.
13 as the pseudo-crack tip. This *‘pseudo-crack tip’* propagated
along the debonded interface (on the compliant side) at the
Rayleigh wave velocity of the more compliant material,
cHOMALITE  Experimental measurements of the velocity of the
‘‘pseudo-crack tip’" are plotted in Fig. 12. The disturbance was
produced when the crack tip accelerated beyond the Rayleigh
wave velocity of the more compliant material, ¢}°MAM™,

An additional phenomenon observed during transonic crack
propagation is the presence of a ‘‘zone’" directly behind the
propagating crack tip that is marked by the lack of isochromatic
fringe patterns that intersect the interface. This zone is also
shown in Fig. 13 and represents large-scale contact occurring
behind the dynamically propagating transonic crack tip, as pos-
tulated by Liu et al. (1995). The exact nature of this contact
zone is yet to be determined. The mechanics of transonic crack
propagation are schematically presented in Fig. 14,

Conclusion

An experimental study was conducted to investigate crack
propagation along bimaterial interfaces that were subjected to
impact loading. The bimaterial specimens were loaded by im-

Table 2 Comparison of experimentally measured and the-
oretically predicted orientations for the line-of-discontinuity

Frame number Vi HOMALITE QTHEORY OnxeT.
13 1.16 59.5 deg 63 deg
14 119 57.5 deg 55 deg
15 121 55.7 deg 53 deg
16 1.30 50.3 deg 48 deg
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Fig. 14 Opening of crack faces behind the propagating crack tip for
transonic interface fracture

pacting them with a projectile fired from a gas gun. This dy-
namic loading caused the interface crack to initiate and subse-
quently grow along the interface. The crack propagation phe-
nomenon was observed using dynamic photoelasticity in
conjunction with high-speed photography.

Varying the velocity of the projectile used to impact the
bimaterial specimen resulted in different crack propagation
characteristics. Low-velocity impact led to subsonic crack
propagation, in which the crack-tip velocity was less than the
shear wave velocity of the more compliant material (v <
cHOMALITEY whereas high-velocity impact led to transonic crack
propagation, in which the crack-tip velocity was greater than
the shear wave velocity, but less than the plane wave velocity
of the more compliant material (¢HOMAUTE < 3 < HOMALITEY

For subsonic crack propagation along the bimaterial interface,
the isochromatic fringe pattern surrounding the crack tip was
analyzed to determine various fracture parameters. These pa-
rameters of interest are, namely, the crack-tip velocity, the com-
plex stress intensity factor, and the energy release rate. After
initiation the crack-tip velocity was found to increase rapidly
to around 80 percent of the shear wave velocity of the more
compliant material, ¢'*A"™  Thereafter, the crack-tip velocity
continued to increase, but at a slower rate, and stayed less than
the shear wave velocity of the of the more compliant material,
cHOMALITE £or the major dyration of the experiment. The magni-
tudes of both the real and imaginary parts of the stress intensity
factor (K, and K;) decrease rapidly to zero with crack propaga-
tion. The energy release rate also showed a rapidly decreasing
trend. Finally, the crack propagation was determined to occur
in accordance with the fracture criterion proposed by Lambros
and Rosakis (1994).

For the case of transonic crack propagation, the crack-tip
velocity was found to increase rapidly to the shear wave velocity
of the more compliant material, ¢ 7oMAYTE Thereafter the crack-
tip velocity continued to increase up to 130 percent of the shear
wave velocity of the more compliant material, ¢POMAHTE A

924 / Vol. 63, DECEMBER 1996

direct consequence of this transonic propagation was the forma-
tion of a line-of-discontinuity in the stress field surrounding the
moving crack tip. This line-of-discontinuity represents jumps
in the stress and displacement fields surrounding the crack tip
and appeared in the form of discontinuous isochromatic fringe
contours, Additionally, transonic crack propagation resulted in
large-scale contact of the crack faces behind the propagating
crack tip. The stress field also showed the presence of a second-
ary disturbance, termed the pseudo-crack tip, which propagated
and trailed the moving crack-tip at the Rayleigh wave velocity
of the more compliant material.
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The Elastic Field in a
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Half-Space With a Circular
Cylindrical Inclusion

The problem of a circular cylindrical inclusion with uniform eigenstrain in an elastic
half-space is studied by using the Green's function technique. Explicit solutions are
obtained for the displacement and stress fields. It is shown that the present elastic

fields can be expressed as functions of the complete elliptic integrals of the first,
second, and third kind. Finally, numerical results are shown for the displacement

and stress fields.

1 Introduction

The problem of determining the elastic field in an elastic
medium caused by an inclusion with uniform eigenstrain is of
interest in engineering. Early work by Eshelby (1957, 1959)
showed that an ellipsoidal inclusion with uniform eigenstrain
induces a constant stress state within the inclusion. Since then,
the inclusion problem has been greatly developed, as pointed
out by the extensive reviews of Mura (1987, 1988). A number
of techniques have been used to deal with the class of problems.
However, many results at present are not expressed in explicit
form but are in the form of numerical solutions.

Using the Galerkin vector stress function, Mindlin and Cheng
(1950) investigated the thermoelastic stress field in the semi-
infinite solid when a uniform dilatational thermal expansion is
given inside a spherical region. Youngdahl and Sternberg
(1966) analyzed the stress concentration around a cylindrical
hole in a semi-infinite medium by using the Papkovich stress
functions. Chiu (1978, 1980) obtained the stress field and sur-
face displacement field by superimposing the solution for a half-
space under some normal surface stress on the full solution due
to two cuboidal domains with initial strains. Utilizing Mindlin’s
(1953) solution for Green’s function in a half-space, Seo and
Mura (1979) studied the problem of an ellipsoidal inclusion
with uniform eigenstrain, Numerical results are obtained for the
stress field. An alternate method for solving the axisymmetric
elastic fields in the half-space with an isotropic spheroidal inclu-
sion was proposed by Yu and Sanday (1990). In their study,
Eshelby’s method for the ellipsoidal inclusion and the Hankel
transformation method for the prismatic loop were used. Hase-
gawa, Lee, and Mura (1993) gave the axisymmetric stresses
and displacement fields caused by a solid or hollow circular
cylindrical inclusion in the present of uniform eigenstrain in a
half-space. Their solutions were obtained from the solution of
an infinite body by applying to the boundary plane equal and
opposite normal and shear stresses in order to satisfy the trac-
tion-free surface condition.

In comparison to the axisymmetric elastic field given by Ha-
segawa et al. (1993), a general case to a circular cylindrical
inclusion with arbitrary uniform eigenstrains in a half-space is
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considered in the present paper. Analytical solutions for the
displacement and stress fields are obtained by using the tech-
nique of Green’s function. From Wu and Du (1995a, b) and
Appendixes B and C it can be found that the displacement and
stress fields can be expressed as functions of the complete ellip-
tic integrals of the first, second, and third kind. Finally, numeri-
cal results are shown for the displacement and stress fields.

In what follows, the summation convention over repeated
Greek and Latin indices is adopted. Greek subscript varies from
1 to 3 and Latin one does from 1 to 2. Furthermore, a comma
indicates partial differentiation, thus f; means 9f/dx; .

2 Statement of the Problem

A semi-infinite domain is defined by x; = 0 as shown in Fig.
1. The surface x; = 0 is free from external tractions. The present
analysis considers a circular cylindrical inclusion 2 with radius
a and length h = h, — hy where h, and h; are the distances
from the free surface (x; = 0) to the upper and lower surfaces
of inclusion, respectively. Its objective is to determine the dis-
placement and stress fields when the eigenstrain e ¥, (x) is given.
From Wu and Du (1995a), when eigenstrain € ¥3(x) is uniform,
the induced displacement field u,(x) due to €5 is given by

hy

un(x) = C,aamfﬂ I:J:l fG«ﬂ(x = K’)dxidxi“

x_"=h|

in h,
+ Coppeily J; _[2 Gap(x — X')n,adfdx’ (1)

where Cg,, are the elastic moduli, Gug(x — x") are the elastic
Green’s functions for the semi-infinite isotropic medium, €, is
the area of the base of circular cylinder, n, is the outward unit
normal to cylindrical surface, and (r, 6, x3) are cylindrical
coordinates, namely, there are relations x{ = a cos 0, x; =
a sin # on the cylindrical surface.

Following Green’s functions in a semi-infinite isotropic me-
dium (see Appendix A) and taking into account the symmetry
in directions x; and x,, we only need to solve the following
kinds of integrals:

dxidxa
T(x, X3,2) = f
10 X2, 2) " R,

Tap( X, X2, 2) = f f (fa = x,.)(}xg = xp)
Q, R
Ry

T(xla X2, Z‘} = f
0,
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Fig. 1 Cylindrical inclusion in a half-space
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TU:‘(XI, Xay Z, Z') = f f x3x3(x;
Ny

Tiaa(x1, X2, 2, 2) = f f X3x3 (X
:zl

+
Ty (ti, X2, 2, Z) = f f”‘“"’ 5 getdxg
ih

— x/)(x; — x
R3

/)
2 dxldx}

= Xxi)(x; + x3)
R3

dxidx;

Xi '—I; ] I
Ti(x1, %, 2) = fﬂ. fmdxldxz

Ti{.‘(xl * -pls
Ll
0, R, +

(x; — x/)(x — x
Ry(R; + 7)?

”] dxidxs  (2)

and

2n A, i
QI(Il,Xst:‘)=aJ. f’%
LR R,
2 i o 3 ,
Qup(xr, X2, X3) = af f= cos G(x, x;)(x,,, x5) il
0 h RI
2m  ph, ‘
Ql(xhxz}xa)=af fzm
(1] y Rz
1 2%, Cos 9(xq o x:‘,}(xﬁ o x.&)
Olp(x, X2, ) = a
4] I

R}
Oi(xy, x2, 3) = a f f e 9x3xq ——— dfdx;

Qla(xi, Xy X3) = af J:‘z cos Oxyx3(x; —

Q:za(xhxz- X3)

"2 cos Oxsxi(x; — x| {)(x3 + x3)
=a Rg

dfdx;

x,-)(x

RS dﬂdxg

dBdx},
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Qins(xy, %2, x2) = @ f f "o 913x1(x3 ) dfdx}

J:1 8
0! (xy, X3, x3) = af f c{;:z(g' o] )dadxi

Qé(xl s X2, x?i)

""f f [R2+2‘

where 6,'. is the Kronecker delta and

(x; — x;)(xj -
R:(R, + 2)°

xf)] cos Bdfdx} (3)

=Xz — X3 I=X3+ x§

Ry =[(x; —x)? + (x, — x;:'z i Zz]m

Ry = [(xy — x1)* + (x; — x1)* + 222 (4)

3 Solution of Eq. (2)

In this paper, we use a similar procedure as in Wu and Du
(1995a, b) to solve the integrals of (2) and (3). Since there is
no substantive difference in the derivation, some details will be
omitted. For this purpose, we shall only give the final expres-
sions below. From Wu and Du (19954, b), it can be seen that
the solution of (2) is related with the position of point x = (x;,
X2, X3), 80 we shall use some symbols with superscripts i and
o to express the corresponding integrals in (2), respectively.
When point x is located within V:x? + x} = ¢?, —0v < 53 <
o, superscript i is used. But when x is located within V,:x? +
x3 > a*, —© < x; < %, we use superscript o.

3.1 When Point x is Located Inside V,. Following Wu
and Du (1995a) and Appendix B, the integrals of (2) can be
expressed as

Tap( X1, X3, 2)

Tl‘(x]a xz»Zj = [(xl;st Z) T:;m(x|.frz.f) = mn(xl;x‘zvz—)

T'(xy, %2, 2) = I(X1, %2, 2)  Thp(xy, %3, 2) =

: &
T:nfi(xlv X2, 2,2Z) = E’ ma( X1, X2, 7)

2
i s i
Taa(xy, 2,2, 7) = Z:E Iy (x4, X2, 7)

2 _ 2
7 1a(x), X2, 2)

_
z2,7) = 2

T;(xl. X2y

i

1200 + 22) D10 % )

Tia(x, %2, z, 7 =-—

(2 =)t —ad) (72 - 2w
U. y X2, T) + ——m———
4872 (x2 + x3)* 21, %2, ) 67
" (% — 2%)xx
Tia(x, x2, z, 7) = m U(x, x3, 2)
72—~ 2Hxx
( 2 i Uy(x1, %2, 2)

2477 (x} + x3)*
(z = 2%)x
24(x? + x3)7

- szg(xls X2, z-) - (a

X (a* — x1 — x3

T!;BB(xlsxlvzs Z) = [1 (x1, x2, 2)

-xi-x3+7%
- )P (%1, %2, T, —Z9)]
Tgas(xn X2, 2, 0)

_52_::2

2 P (%, %, T, —2°)

[(a® = xt — x3 -
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¥ _ a2
—(a* — x5 — x)P(x1, %, 2, 0)] + (5—6;—-)3

A
2(x? + x3)

X I*(x), %3, ) + (@ — xt — x})?P(x, %, 7, 0] + 47

(o, %, 0) = [I'(x1, X2, Z) — 2(a® + x} + x3)

T (21, x: zﬁ*ﬁﬂ(x %2, 7)
11 Iy A2s x;;'+x§ 3 [ 1
2 2 2
X1 X1 — X2
Uixy, 2, 0) + ———= Us(x, %2, ) — 7w
x?+'x% 4(| 2 F) 4(x1;+x%)2 5{] 2
.. 2x,x
Tho(0, %2, 2) = — =—— Us(x1, %2, )
1 T X2
XXz XXz
+ Us(x), x + ——————— Us(x;, X2, 5
T Usn 3 2 4 5 Ustnn 1 D) (9)
with

Ui(xy, X2, 2) = 3% (xy, 2, 2)
+2(a® = x1 — x)P(x1, %, 7, 0)
+ (@ - x} -3 -2, %, T, 7
Us(xy, X2, ) = =32°1' (X1, X2, 2)
+ 22(3(a* = xi — x3) + 221 (%1, %2, 2)
—(a? - x} — x3)%(a® - x} - x5 = 22 P (%1, %2, 7, 0)
+(@-xt—-B+H@*-x1-x}-79)

X P(x, %2, 7, —72) — 22%(a% — x3 — x3)*1*(x0, %2, 2)
Us(xy, %2, ) = P(xy, %2, 7) — (a® — x} — x) P (x1, %, 7, 0)
Us(xy, X2, D) = I'(xy, X3, ) + (a® = X3 — xDP(x1, 22, 2)

+ 27%(a* — ¥} = X)) P(xi, %. 7. 0)
Us(xi, X2, D) = —1°(x1, X, 2) + (a® — x} = x)I' (%1, X2, 2)
+ (a® — x} — 2 (a® — x} — x3 = 221 (%, X2, D)
—(a? = x} — x})*(@* — x} = x3 = 4P (x1, %2, 7, 0)
- 2z7%(a* = x} = )’ I'(x, %, D) (6)

where I*(x,, x2, 2)(k = 1, 2, 4), I*(xy, x3, 2, §), 1(x,, %2, 2)
and Lg( X, Xz, z) in (5) and (6) can be found in Wu and Du
(1995a) and I°(x,, x,, z) is given in Appendix B.

It should be shown that the remaining components can be
obtained by the following formulae:

T (xys X2, 2 2) = Tl X152, 2)
Tona (%1, %2, 2, 2) = T3, X1, 2, 2)
Tz, %, D) = Ti(n, 11, 7)
Th(x1, X2y 2) = T4 (%2, X1, 2). (7

3.2 When Point x is Located Inside V,. Following Wu
and Du (1995b), the integrals in (2) can be written as

T°(x), X2, 2) = r(xl, X3, 2) Tiﬁ(xl. X2, Z2) = F;ﬂ(xlv Xa, Z)

T”(-xi! X2, f) = r(XII Xz, ?—) Tynn(xll Xz, ZJ) = ‘:un(xlv X2, Z)

&

Tra(x1, %2, 2, 2) = %I;uil{xls X2, Z)
22

TgS(xls X2y Zy Z—) = sz BJ(xI; X2, Z-)
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7t -

T'(,S(xlixZ! Z}Z_} i 42_2

22
Ls(xy, x2, 2)

(22— )7

Toa(xi, %2, 2, ) = T, %, 2, D) — P

Ton(x1s X2y 2, Z) = Tina(x1, X2, 2, 2)

Tha(x1, %23 25 1) = Tiaa(xr, %2, 2, 2)

2 _ n2
Tha(xy, %2, 2, 7) = Tonlxy, X2 2, 0 — M
6z
2 ol
T",’(xl, 0,20 =Ti(x, %, 2) + (a f‘ fz)xtﬂ
X+ x3
r 0y ST R
0ty 00 D) = Tis(ai, 1y, 7) + 2D oy

(x} + x3)?

2a2x|x22—'ﬂ'

T2 (x;, X2, ) = T, X2, 1) +
(X1, X2, Z) 12(x1, X2, Z) 2 + 122

(8)

where I x, xz, z) and Is( x,, X2, z) have already been given in
Wu and Du (1995b). It should be pointed out that the remaining
components can still be obtained by the relations given in (7)
but the corresponding superscript i should be replaced by letter
0. Thus, we fully determine the integrals of (2). In the next
section, we shall solve the integrals of (3). For these integrals,
we do not need to consider the position of point x.

4 Solution of Eq. (3)

For brevity, let us first introduce functions Jé(x1, X2, z) and
J&s(x1, X2, 7) which satisfy the following relations:

JE(x1, X2, X3) = J(x1, X2, 2) [ Byas

Tap (X, X2y X3) = Jip(x1, X2, 2) |2

(9)
where functions J(x,, X2, X3) and J5s(x;, X2, x3) are defined
and given in Wu and Du (1995a). Using a similar procedure
shown in Wu and Du (1995a), the integrals of (3) can be
expressed in the following form:
Q' (x1, X2, x3) = J(x1, X2, 2)12:;:1
- h
Qus(xy, X2, x3) = S5 (15 Xas 2) |,
0'(x1, X2, x3) = =J(xy, X2, 15_)|f:§=nl

23 %0 I
QLX) X, Xa) = —J 50 (1 X2y D) e,

Qis(x1, X2, X3)

8ax,T J
== +:‘ s [(—ax3J*(x, %, 2) + xiVxd + x5 (1, 32, 2)
X1 Xz

h I
- a(x% - x%)Jﬁ(xli X2y z)]lx§=ﬁ| + j€3(xlt X2, z_)|x§=1:|

03 (x1, X2, X3) = &x:c_ixz{;_i“
Xy + x3

[aJ‘t(xthv 7)
+ 2k + 2 P, 5, D) — 20500, 32 D],
+ J5a(xy, X2, Z’Higfm
03(x1, X2, X3)

4ax 1X3 I

e T=2==E (801, X2, Z) + %2 (x5 X2, D] |ayen
X7+ x3
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Oha(xr, Xas %) = =408 (%1, %3, 35) — (31, 32, D) [,
Q_}D(-’Cls X3, X3)
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X [a(x} — x)Vxi + x3 Vi(x, X2, X3, X5, 7)

QIM(Xl y Xz, X3) =
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4a.x3
3(x} +
— xVat + x3 Walxy, 1, ¥4, 2)
Iy

=+ ﬂ(le T x%)w3(xls X2,y x;a z’)]l."'3=h|

Q%za{xl s Xz, X3) =

Q—:Sl\(xlvx}.va) [(uzwl(xlsxz-xa»z')

4ax|x,_x3
3(xt + x3)
= Vxi + x3 Wa(xy, Xa, X3, Z) + 2aWs(x,, X, X5, f)]lx‘..;.,

Q%il(xla X2, Xa) = [—aW (x), x5, X3, 2)

dax,x
Oin(x1, Xa, X3) = T]=1— (250" (x1, %2, Z)

+ 26070, x, ) + 208X, x,, Z')”E-—;.,

Q:(xlsxz»xs)
Tr(hz

e S {az(x2 - xi)[sgn (a*

202 +x2)2 Xt —xi) = 1]

— (x} + x3)*[sgn (a® — x1 — x3) + 1]}

t Ty (G a . 2)
1 2

+ [(x3 — x1)(2a* + %) + 2x3(x} + D)1 (21, 2, 2)
+ (a® = x} = x3)[a*(x} — x3)
+ (2} + 22 (0, X, 2) + 22, 3, D1 2 <y

ma’x;x(hy — hy)

O (X1, X3, %3) = o L D [1 — sgn (a2 — x2 — x3)]
1 3
2xpx
(x3 +I xzz)z [_Ju(xl.JCz, ) — (24 + x% + x% 23 2—2)
1 2

X JHxy, 22, 2) + a*(a® — x} — x3)
X [J2(x1, %, ) + 22041, %2, D)) [,
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x,Z’z?r
2(x%+ x3)3
— 4q%x3][sgn (a® —

Q:I(xlv Xy, X3) = [(a* = x} — x3)(x] + x3)

~x3) — ]“x,_n,

X1

Y » k) X=l’
2(x| o ) (X1, X2 ZT)| 3=

4 iif be ]
o Jﬁ-z%zz = [2ax3Vx} + x3Z,(x), 12, 2)
(x1 + x3)
}'x%)zz(xn X3, 7)
+ 2a(x} — x3Vxt + x3Z5( 01, x5, 2)

+ a*(x} = 3xDZ(x1, X2, D,

—(x! + x¥x% + 3a

Q:z(xl,l'z;x:)
_a’(x3 - 3a)nt’r
203 + x3)?

[sgn (a* - x} — x3) = 11/,

dax,7
o+ x3)°
+ (xt + x1x3 + a’x? — 202D Z (%1, X2, T)
—a(3x} - X%:‘m Zy(xy, X2, Z)
+ a*(3x} - Xz]'zé(xl- X2, Z’)]lq_h,

[a(x} = x3)Vx} + x3 Zi (21, x2, 7)

X|Z_27r

2 2 2 2 2
—_— e+ Xt + X))+ x
202 + ) [( I 3)(xy 2)

31
sz(xi » X2, x’?) =

— 4a*x3][sgn (a® — x} — x3) — 1]]11s,
X
E(x.—_)-  (ETRTE 5 1Y
— Sy [2ax§\l'x% + x% Zy(x, %, 7)
Vi + 22y

+ (xix3 + x5 + a’x7 — 2a*x3)Z(x), X2, 2)

— daxiix} + x% Zi(xy, X2, 7)

- a*(x} = 3x3)Zu(x1, X2, Dl iten, (10)
with
Vi (x!a Xa, X3, x5$ 2_) = x;Jil g()ﬁ. X2, ZT}
+ 2607 X, 0, )+ 20700 ¥ (X, 0, D) (1)

Wi (xi, 32, 3, D) = 230 (%1, X, ) = ™ (0, 3, 1) (12)
Y(xi,%,2) = =327 (x1, %2, 2)

+ [4(a® + x} + x3) + 221 (%), %2, D)
-z%)
+ 407 + DI, 0, D) + T (13)

+ (a* — xy — x3)(a® — x} — X3 - 220 (0, %, T,

Zi(xy, X2, 2) = J(xy, X, D) + 22T B(xis %2i-0)
(i=123,4) (14)

where sgn (x) is signum x, J'(x,, xs, z) (i=1,2,4,...,9
and J*(x,, xz, z, §) have already been given in Appendtx B of
Wu and Du (1995.1} and J*(x,, x,, z) (k = 10, 11, 17

are expressed in Appendix C of this paper.

Evidently, if variable cos @ in (3) is replaced by sin # and
the corresponding integrals are expressed by Q2(x;, x2, x3),
Qaﬂ(xl- X2, X3), Qz(xl 2 X2, X3), Qnﬁ(xl 1 X2, X3), Q'i(xl s X2, X3),

im(xn X2, X3), Qm(xls Xz, X3) and an(xh X3, X3), all the
other components related with the displacement field are given
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by exchanging 1 and 2 in the superscripts and subscripts, for
example,

0% (x1s X2 Xa) = @' (12, X1, X3)
Ohi(x1, X2, X3) = Oha(X, X1, X3)
Ot (X1, %2, 3) = Qlna(oz, X1, X3)

O} (x1, X2, x3) = Ol(x2, X1, X3)

(15)

0% (x1, %25 1) = 011 (%2, 11, 32).

5 The Displacement and Stress Fields

According to Green’s functions in a semi-infinite isotropic
medium and (1)~—(3), the induced displacement field within
the region Vi: x3 + x3 = a?, —» < x; < % due to uniform
eigenstrain €35 can be written as

wy(X) = {2ueB1(3 — 4u)(T' (%1, X2, 2) by

+ TLa(x1, X2, 2)) + T'(xy, X2, D + Thn(X1, X2, 2)
+ 2T5(x1, %23 2, 2)Omn —
+ 401 = )1 = 2)F(xi, %2, D,

6T:mr3(xl v X2, 2, 2’)

+ ()\-Cnfa + 2“&:?3)[T:‘,.3(xl, X2, z}

+ (3 - 4V)Tf!|3(xlu Xay &y f) T 6Tin33(xla X2, s Z}
=401 = v)(1 = 20) T (X1, X2, D1 lymi

+ Z {.hb"ie

k=1
+ Q—ﬁm(xlv X2, -r'i)) + Qk(xlr X2, xﬁ)b‘mn + Q:‘nn{xlv X2, I:\)
+ 205(x1, X2, x3) 8y — 6@ 53Xy, X2, X3)

+ 4(1 = v)(1 = 20)0h(x1, X2, )]

+ 2}1'6:1.*)[(3 s 4”)(Q (th X2, x.\)éim:

+ E 2uei[04a(x1, X2, 23) 4 (3 — 4v)Fha(x1, X2, X3)

k=1
+ 6Q,,,33(x.,x2, xz) = 4(1 = V)(l o= 2!,-‘)Q (xy, X2, x;)]}

1
16mu(l — v)

+ (3 - 4)Ta(xy, %2, 2, 1) — 6T a3 (X1, X3, 2, 2)
+4(1 — v)(1 = 2v)Th(x1, %2, Z")H;,-J,l

ufq(x) = ‘IZMEBIT:IIH(XI, X2, Z)

+ (hed, + 2uen)[(3 — 4v)(T'(xy, X2, 2)

+ Thalx), X2, 2, D)) + (5 — 120 + 8uH) T (x1, X2, D)
+ Tha(xy, X2, 2) + 2(5 — 8 T(x1, %2, 2. 2)

+ 6T (x1, X2, 2, Z)]|:_§*n1

2
i Z (Nbpue ks + 2M£ﬁt)[an3(xn Xa, X3)
k=1

+i(3 - 4U)Qﬁr1(xl‘ Xz, X3) — 6Qf,,33().‘|. X2, X3)
+ 4(1 - )1 - 2:/)Q (X1, X2, X3)]

+ Z 2uel(3 — 4v)(Q*(xy, X2, X3) + Oha(xy, X2, X3))
k=1
+ (5 — 120 + 830 (xy, X2, X3) + Q%(x1, X2, X3)

+ 2(5 - 8u)05(xy, Xa, X3) + 60%533(x1, X2, 3)1} (16)
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Fig. 2 Variations of the displacement field along the x;-axis under the
conditions e} = e =eh =1, e =ehh=eh=0foruzand e, = ek =
eh=0eh =€h =€} =1foruluy)

where N and p are the Lame constants and v is Poisson’s ratio.
Obviously, the corresponding displacement field within V;: xi
+ x3 > a, —% < x; < %, can easily be obtained by replacing
the superscript i of (16) with letter o.

Following Wu and Du (1995a, b) and Appendixes B and C,
it is found that the present displacement field can be expressed
as functions of the complete elliptic integrals of the first, second,
and third kind. In order to determine the stress field, we only
need to solve the first partial derivatives of the three complete
elliptic integrals with respect to variable x;. These three first
partial derivatives have been obtained in Wu and Du (1995a)
and they are still functions of the complete elliptic integrals of
the first, second, and third kind. Thus, according to Hooke's
law

Noaplu, (x) — €]
+ plUas(X) + Upa(X) — 2ei¥s] X €0
NOopthyo(X) + pluga(X) + uga(x)] x & €,

we can determine the corresponding stress field. Because of the
complexity of stress field, here we will not give its concrete
expressions.

Tap(X) = (17)

6 Results and Discussions

It is seen from the results in Sections 3-5 that the displace-
ment field and stress field caused by a circular cylindrical inclu-
sion with arbitrarily uniform eigenstrain in a half-space can be
expressed by functions of the complete elliptic integrals of the
first, second, and third kind. Following Appendix D, we can
find that the logarithmic singularity caused by eigenstrain €%,
exists at x? + x3 = a?, x3 = h, or h,. This conclusion is similar
to one given by Hasegawa et al. (1993).

Figures 2—4 show the variations of the displacement field
and stress field along the x;-axis. The figures are sketched in
nondimensional form for a constant value of Poisson’s ratio v
= 0.3. Figure 2 illustrates the distribution of the dnplacement
field along the x;—axm under the condmons eh = 522 = e; =
1, C]z = C:.; = 623 = 0 for U3 and 6“ . (':;z = E;J = 0 E'|2 =
Ef} = €3 = 1 for u,(u,). From this figure, it can be seen that
the displacement field has the minimums and maximums at x,
= h, and h;, respectively. When x; increases, u;(u;) and u,
tend towards zero.

Figure 3 shows the variations of the stress held ( oy = an
and 01,] along the xq-axts under the condition e}, = €3 = €5
=1, € = €13 = €33 = 0 when radius a equals 0.1, 1 and 5,
respectively. From this figure where three continuous changing
curves correspond to the stress oy while other three ones whose
variations are discontinuous correspond to o, (o), we can see
that the stress o, (o2, ) is positive outside the inclusion while it
is negative within the inclusion. Evidently, when the cylindrical
inclusion becomes slender (radius a decreases), the stress com-
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Fig. 3 Variations of the stress components along the x;-axis under the
condition e, = € =€ = 1, €2 = €3 = €85 = 0. Here, three continuous
changing curves correspond to oj; while other three ones which are
discontinuous correspond to oy, {022).

=
o

Fig. 4 Variations of the stress components o and os(o2s) along the
Xs-axis under the conditionefi = e =L =0, e =€ =€ =

ponents o,(02;) and o3; vary sharply. When a = 5, however,
the change of the stress field (o), = o4, and o33) is stable. It
should be shown that the stress component o35 is continuous at
X3 = h[ and hz.

Figure 4 illustrates the variations of o, and o,3(05) along
the x;-axis under €}; = €5 = €5 = 0, €y = €3 = €33 = 1.
From this figure, it can be seen that o,; has a discontinuous
change, whereas o3( 02 ) is continuous.
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APPENDIX A

Following Mura (1987), Green’s functions in the semi-infi-
nite isotropic medium can be expressed as

"o 1 3—-4v 1 .
Gy(xhx)—l‘sﬂ“(]‘y){ R 55"’&50
" (x; — x{)(x — x]) ¢ (3 —4v)(x — x)(x — x/)
R} R}
" 2x3:.’3 [6{,- _3(xn - x )z{xj =X )]
R3 R3
L4l - - 2w) [a‘ _(x;~x:)(xj~x})]}
i
Rg + x + x:‘ RZ{RZ + X3 + x;)
' (x — xj) Xy — X3
G —_ =
y(x = X7) 167m(1—v}{ R}

(3 —4v)(x — x3)  6xsxz(x + x3)
+ —
R} R3

" 4(1 —v)(1 - 2v]}
Rz[Rz + X3 + x;)

x —x} X3 — X3
G;'_‘;(x"'x'J i i { 3 3

Tlemu(1 —v) | R

(3 —4v)(x; — x3)  6x3xi(xs + x1)
+ = + -
Rz R;_}

_ 4(1 — v)(1 = 2u))
Rz(Rz + x; + x-’;-} j

1 3 —4v
Gu(x — x') =
(X = X7) lﬁﬂ'p(lﬂp){ R,

LU= - —4y) (= x)?
R: R}

5 (3 — 4u)(x; + x3)? — 2x3x35
R;

! ty2
+————6“‘3“3(;‘5”-‘) } (ihj=12) (Al)
2
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where y is the shear modulus, v is Poisson’s ratio, and

Rl=(x —x{)*+ (% — x4 (x — x5)2 (A2)
RE=(x, — x)2 + (2 — x3)* + (s + x5)%. (A3)
APPENDIX B
According to Wu and Du (1995a) and the formula
x"f(x)dx x"Wax? + bx + ¢ (2n — 1)b
= flx)ymr—
Jax? + bx + ¢ na 2na
x"'f(x)dx  (n—1)c x" 2 f(x)dx
vax* + bx + ¢ na yax* + bx + ¢

——1- x" Wax® + bx + cfj%dx (B1)

na
we can obtain
1°(xy, X2, 2)
2 t2dt
o W+ 22— )6 — 1)

% {21 + 21, — 2" (%), X2, 2)

+ [2* + (0 + )22 — i) PP(x), %2, )
— 22(t + ) + 2P (xy, ¥, 2, —2%))  (B2)

where I'(xy, X2, 2), I*(xy, X, 2) and I*(x, X2, z, §) are given
in Appendix A of Wu and Du (1995a) and

t=(a—-Vx2+x})? h=(a+Vx}+x3)? (B3)

APPENDIX C

1 Evaluation of the Integrals J'(x;, X2, 2)(i =
10,...,13)

Letting & = V(1> — (13 — 13) t,/t, we have
.

v - 2 dt
S0 32, 2) J:. N - (P - 1)

. E(Jﬁ E r%)
ot} t

(cn

T2 2)
B 1 J"zaz+.ﬁ+x§+zz~r2
T2aVxt + x3dn N - )P - 1)
a+x+x+2
T 2alx? + X2

J*(x1, X2, 2)

_]2(x1‘ X2, Z)
ZaJx? + x3

I xy, X3, 2) — (C2)

_ 1 % (a? + x3 + x5 + 27 — 17)?
4a(x?+ x) Jy, N - (2 - 1)

PR
4a*(x? + x3)

[(a* + x7 + x3 + 22)2T"%(x,, x2, 2)

—2a? + x} + x5+ )P (x, X2, 2)
+ J'(x, %2, 2)]  (C3)

JP(xy, X2, 2)
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_ 1 i (a® + x} + x3 + 22— 1)°
8aN(x? + x2) AR - ) - 1)

1
= m [(a® + x} + x3 + 22)'T"°(x1, X2, 2)

—3(a® + x} + X3 + 221 (x, %2, 2)

+3(a® + x} + x3 + 22" (x1, X2, 2)

- fo(xh X2, Z)] (C4)

2 Evaluation of the integrals J'(x,, x;, 2)(i = 14,
veny 17)

Following the formula

. — 2
f@AIE = DE =D _ o@D —

W =) (- 1)

-2 I J(r§ — (2 -1t d—);—(‘-’—) dt, (C5)

we can obtain
2 dt
IR f (7 — DN - O =~ 1)
B 1
22%(1} — 2)(13 — 2°)
— [ = 20t + £3)2% + 32°1%(xy, X2, 2)
(C6)

(=227 (%), X2, 2)

+ 11637 (xy, %2, 2) )
1
JB (X, X%, 2) =
‘Zax% + x3
at+xt+xi+ 22—

« [ dt
-[. (12 = 2N - (2 - 1)

_at+ X3

"alaa ) o
1T X3

= J‘(xl;xz. zz) 7
X7+ x3
N .
4a*(x} + x3)
J"z (a* +xi+ x5+ 22— 17)?
n (12 = 2N} - ) (12 = 1)
-1
4a%(x3 + x3)
— 2(a® + xt + xDI (0, x2, 2)
+ J*(x1, %2, 7)1 (CB)

Jlﬁ[xli Xz, Z} =

[(a® + x% + x3)* 7" (01, X2, 2)

1
J(x), X2,2) =
Ceimie) Salg(xf+x§}3
J": @+ xt+x3+22-1%)°
0 (= 2N - 1) (12— 1))

l 2 2 243 74
= a’+ xt+ x3) "% (x40, %2, 2)
ml( 7+ x3) 1.2
—3(a? +xF+ x3)2 (%, %2, 2)
+[3(a+ x} +x3) + 2°1J% (%1, %2, 2)

- J'(x, ¥, 2)} (C9)
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where J'(x;, x2, z)(i = 0, 1, 2, 4) are obtained in Appendix B
of Wu and Du (1995a) and

t=Va—Vx} + 2% + 22,

ftr =V(a + Vx? + x3)% + 7% (C10)

APPENDIX D

Following Magnus et al, (1966), the complete elliptic inte-
gral of the third kind can be expressed by the elliptic integrals
of the first and second kind. From the definitions

¥
F(k, p) = f (1 — k*sin? )~ "4t
0

E(k, @) = J:(l —k?sin?0)'"?dr |k| =1 (D1)

where F(k, v) and E(k, ) are the elliptic integrals of the
first and second kind, respectively, it can be seen that only the
complete elliptic integral of the first kind has singularity when

k = *1. Below, we investigate this singularity. According to
Magnus et al. (1966), F(k) (F(k, w/2)) can be expressed as

F(k) = Q1n(2k* = 1) (D2)

where Q,(x) is a Legendre function of the second kind of order
n. For function Q,(x), Byrd and Friedman (1971) gave the
following relation:

lim Q,(x) = const. log (1 —x). (x < 1) (D3)
a1

From Wu and Du (1995a) and the expressions of variable k
in F(k), we find that when vx? + x3 = q and x; = A, or A,
F(k) can be expressed as the following form:

F(k) = const. log [(a — vx} + x})?* + (x; — x4)*]. (D4)

Since x3 in (D4) is evaluated at x3 = h, and h,, F(k) has the
logarithmic singularity when Vx? + x3 = @ and x; = h, or h,.
Performing the detailed examination and manipulation, we can
find that each component of eigenstrains ¢, has some effect
on the singularity of the elastic field.
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1 Introduction

The study of crack propagation in anisotropic media is of
great interest in the fracture analysis of a wide class of compos-
ite materials and the field of research is particularly motivated
by its engineering importance:

Many engineering composites exhibit strong directional elas-
tic effects associated with elastic symmetry with respect to three
mutually orthogonal planes, orthotropic materials, and this justi-
fies the increasing interest in the analytical solutions for elasto-
dynamic crack propagation in such materials.

Significant contribution has been made in subsonic regime
by Achenbach and BaZant (1975), Kassir and Tse (1983),
Arcisz and Sih (1984), Piva (1987), Piva and Viola (1988),
and Piva and Radi (1991) among others.

After the pioneering contribution of Winkler et al. (1970)
and Curran et al. (1970) in which it was shown that under
particular conditions a very rapid crack growth should be possi-
ble, some analytical studies concerning super-Rayleigh crack
propagation in an isotropic medium were treated by Burridge
(1973), Burridge et al. (1979), Freund (1979), Georgiadis and
Theocaris (1985), Georgiadis (1986), and more recently by
Broberg (1989) among others.

In the above mentioned studies some peculiar features of the
intersonic shear crack propagation (¢, < ¢ < ¢, where ¢ is
the crack velocity, ¢, is the shear wave velocity, and ¢, is the
longitudinal-wave velocity) were put in evidence.

One of these features is the role played by the velocity of
the crack as a control parameter which determines stable or
unstable growth. In particular, it was found that the stress singu-
larity at the propagating crack tip is influenced by a parameter
which is a function of the crack velocity, and is weaker than
the inverse square root singularity, unless for ¢ = V2c,.

More recently, a number of significant contributions which
extended the subject to interfacial crack propagation have ap-
peared. Particularly noteworthy are the works by Lambros and
Rosakis (1995) and Liu et al. (1995) where extensive investiga-
tions about the intersonic crack growth along an elastic/rigid
bimaterial interface have been presented.

Throughout these works it was given evidence of intersoni-
cally stable shear crack propagation in the velocity range 2 C,
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Effect of Orthotropy on
the Intersonic Shear
Crack Propagation

Of concern in the present paper is the steady-state elastodynamic problem of a semi-
infinite shear crack, propagating in an orthotropic medium. An intersonic regime is
assumed which leads to a significant change of the singularity at the crack tip.

< ¢ < ¢, where ¢, and ¢, are the shear and longitudinal wave
speeds of the elastic material, respectively. It was also shown
that for ¢, < ¢ < V2c,, crack propagation is still possible but
unstable.

A significant feature put in evidence by the above mentioned
authors and of particular interest in the present work is that the
stress singularity at the propagating crack tip was always weaker
than the inverse square root singularity (Liu et al., 1995).

The aim of this paper is to extend, from the analytical point
of view, the topic concerning the intersonic regime to the prob-
lem of a shear crack propagating through an orthotropic elastic
solid. Particular attention is paid to the stress singularity and to
its variation as a function of the crack velocity as well as of
the material orthotropy.

A semi-infinite shear crack, propagating at constant velocity
greater than the shear-wave velocity and less than the longitudi-
nal-wave velocity, is considered. The crack propagates under
the action of constant shear stresses applied to a segment of its
lips, following the moving crack tip.

The basic analysis is performed by using a complex variable
approach, proposed in previous papers by Piva (1987), Piva and
Viola (1988), and Piva and Radi (1991) to solve elastodynamic
crack problems in orthotropic media. The solution of the prob-
lem reveals a significant change of the stress singularity at the
crack tip with respect to that in the case of subsonic regime, as
well as to that obtained for intersonic crack propagation in an
isotropic medium.

The parameter which has a controlling effect on the strength
of the singularity at the crack tip is represented as a function
of the velocity for various orthotropic materials. It can be seen
that the results obtained for a bimaterial interface compare rea-
sonably well with those derived herein.

2 Mathematical Preliminaries

Let an orthtropic elastic medium be referred to a Cartesian
coordinate system whose axes X, Y, and Z coincide with the
three mutually orthogonal principal directions of the material.

An elastodynamic plane problem concerning a semi-infinite
crack propagating at constant velocity ¢ in the X direction, will
be studied.

Because in the sequel the motion will be referred to as one
in the X-Y plane, it is convenient to introduce the Galilean
transformation.

x=X-~¢a, y=Y%, (1)
where ¢ is time and ¢ is a constant velocity.

The stress-strain relations in the xy-plane are
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0o = Chu, + Cppvy, (2a)
gy = Cpu, + Coy, (2b)
TJ-_'\' = CM(“}' + Ux)) (26}

in which u = u(x, y), v = v(x, y) are the displacement compo-
nents in the x and y directions, respectively; and subscripts,
except for stress components, indicate partial derivatives with
respect to the subscripted variables. The coefficients C,,, Cs,
Cx, and Cy; are four independent elastic moduli of the material.

The system of equations governing the elastodynamic dis-
placement field reduces to

Uy + 2P0, + au, = 0,

Ve + 2By + a,, = 0, (3)
with
Ces Ciz + Cgs
2 T e G 2)6 T A
Cll(l _'M%) Cll“ _Mh
sz CIZ + C&ﬁ
B g BT 6 4
T Ce(l — MD) o Ces(1 — M3) g

The quantities M; = c¢/¢; and M, = ¢/¢, are the Mach num-
bers with ¢, = (C1/p)'"?, ¢3 = (Ces/p)'"* and p is the mass
density.

The system (3) may be rewritten as

b, + A, =0, (5)
where
b =(¢', 9% ¢% ¢ = (. uy, vy, 1,)"
and A is a 4 X 4 constant matrix, given by
0 a 26 0
i 8§ 8
0 0 -1 0
The characteristic equation of (6) is
A+ 2a02 + 4, = 0, 7

where
2y = a + o) — 4806, a, = aq,.
In the intersonic regime the Mach numbers are
My =cley <1, My=cle; > 1
and Eq. (7) provides the eigenvalues
AN=p, N=-p, A =g, A = As,
with
p=1[al—a)"* - al" gq=[(a}-a)"+a]"”
positive constants,

According to the approach proposed in previous papers (Piva,
1987), Eq. (5) may be transformed to

th. + By, = 0, (8)
where

=P, )
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and

_ 268p* 2pp? 0 28q*
a+p*  a+p? a — ¢°
26p 28p 284
= - 0
P a+p2 a+pz a—q2 , (10a)
-r p —-q 0
1 L 0 1
p 0 0 0
—p-! [0 -p 0 O
B =P 'AP = 0 0 0 —g (105)
0 0 g O

Furthermore, the system (8) may be decomposed into the two
systems

Yx + pyy =0, (11)

Yi—py;=0, (12)
and

Yi—qyy=0 (13)

Yi+ qy; = 0. (14)

It should be noted that the latter system defines the analytic
function

Q) =) + W' (x,y), z=x+iyy, y=1lg,
whose real and imaginary parts may be obtained using (9) and
(10a) as follows:

26

ReU(z) = ¢ (x, y) = & (052 + ——sz’) , o (15)
q a+p

2
ImQ(2) = y'(x, y) = g (cbl + % (b“) » (16)

where

NCES SICEES
26(p* + q%)

In addition, as the problem of concern is antisymmetric with
respect to the x-axis, the following relations hold:

¢'(x,y) = —d'(x, —y), d*(x,y) = $*(x, ~),
¢3(x, J’) = ¢‘3(x! "}')- ¢4(x' )’) = _¢4(x' _J’)- (17}

Hence, applying (17) to (15) and (16) leads to the symmetry
condition

Qz) = QD). (18)

Consider now the pair of Eqs. (11) and (12) whose integra-
tion yields

¥l(x,y) = F(x — &y),
Y2(x,y) = G(x + 6y), 6=1/p

with F and G arbitrary functions of their arguments,

It should be noted that as the Cauchy data for Eqs. (11) and
(12) are prescribed on the half-line y = 0, x < 0, the function
F(x — by) represents a signal travelling to the right and wave-
fronts x — &y = const. invade the half-plane x > 0, as y in-
creases. In view of the fracture problem to be studied the above
region must be assumed undisturbed and therefore it may be
stated that F(x — §y) vanishes.

(19)
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Fig. 1 Moving crack in orthotropic material

On the other hand, the function G(x + éy) which represents
a backward signal with wavefronts x + 8y = const., confined
into the half-plane x < 0, contributes to the shear field. There-
fore, keeping in mind Egs. (5), (8), (9), and (10), the stress-
strain relations (2) may be rewritten as follows:

Tax

= = [, Im{¥z) + LG(x + dy), (20)
66
Ty — 1 ImU(z) + LG(x + 6y), (21)
Ces
To — | Refiz) + G (x + 6y), (22)
G
where

I_& Cll(zﬂqz) i=&_&(2ﬁpz)

I Cﬁ& C{nﬁ o = qz ’ ® C{;ﬁ C(,(, o + PZ ’

= Ca Cu( 2084 ;_%_&(2&'2

2 Ces Ces\x—q°/)" % Ces Cs \a +p?

_ 28 _ 2B
o) eerli52)

3 Statement and Analysis of the Problem

Consider the antisymmetric problem of a semi-infinite crack
situated along the half-line y = 0, x < 0 and propagating with
a constant velocity ¢ in the positive direction of the fixed X-
axis. A shear traction 7, is applied to a segment x, of crack
faces and follows the moving crack tip (Fig. 1).

The corresponding boundary value problem is written as fol-

lows:
To(x,0) = —7¢, —Xp <x <0, (23)
Tolx,0) =0, —o<x<-x, (24)
0y(x,0) =0, —wo<x<®, (25)
u(x,0)=0, 0<x<w, (26)

where the constraint (26) by virtue of (18) is identically ful-
filled.

Equation (21) evaluated at y = 0 along with condition (25)
yields

Journal of Applied Mechanics
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Gx) = — 53 ImQx), —* < x < . (27)

Furthermore, insertion of (27) into (22) evaluated at y = 0
produces

C{—d Tolx, 0) = Lils ReQ)(x) — Lls ImQ(x),

66

—w < x < %, (28)

Through the position 7,,(x, 0) = 74(x, 0%) = 7" (x, y) for
—oc < x < (), the boundary conditions (23) and (24) specialize,
respectively, to

Ids ReQ* (x) — Lls ImY ™ (x) = — f(‘:ﬂ —xo<x<0, (29)
66
Lls ReQt(x) — LI ImQ7(x) =0, —w<x<-—x, (30)

or, because of (18), to the following Riemann-Hilbert prob-
lems:

Q) -gR () =f, —xn<x<0 (31)
Q*(x) — e (x) =0, —%<x< —Xo (32)
where
_ Ll + ilals _ 2_55-1 (Lls + ilds)To
Ll — ilds’ Css D? :
and
D?* = (Lls)* + (hls)?. (33)
Under the assumptions that stresses vanish at infinity and
displacements are one-valued functions, the solution to problem
(31) is (Gakhov, 1966)

X@ ° fat
omi Jo X(D(t—2)

Qz) = (34)

where X (z) is the Plemelj function for the semi-infinite crack
obtained as solution to the homogeneous problem of (31) and
problem (32). It is found that

X(2)=1z", (35)
with
log (g) _ | —|(Idlﬁ)
= —— = - — i 36
J Zﬂ'f ™ & ijfﬁ ( )

In the case of isotropic material the elastic moduli C; may
be related to Lame’s coefficients A and u as Cy; = Cy = X +
2u, Cia = \, Ces = p so that expression (36) reduces to

= 2 i
. _Lrg..l[m/(l M?) (M3 1)].
il

(M3 —2)° =)

which is the result given by Freund (1979) and Georgiadis
(1986).

The Cauchy-type integral in Eq. (34) may be evaluated in
asymptotic form. When |arg z| < m, it is found that
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—irw 2
it P (i) + o(ﬂ) ] 12 > %
) dt xp |r—1\z Z

i d QX1 —2) | i , .
[ g ()2 ofd)] e
xp |r sinrm\z r+1\x Xo

Thence, by utilizing (38) in (34) one finds the asymptotic behaviour for the potential function {2(z) as

1=r 2-r
_l._ (ﬂ) + 0(&) ” [Zl > x
r—1\z z

(39a,b)

(38a.b)

To 8in rmw

Qz) =
T Cels -r rHl
) o) e
Z

from which one recognizes that Im2(x) = 0 for x > 0. K, ,

Thus, bearing in mind Eq. (27) and substituting the asymp- To(x, 0) = o X, x>0, (40)
totic behavior (395) into Eq. (22) leads to the following singu-
lar shear stress distribution in the neighbourhood of the crack where the above expression has been normalized with respect
tip: to the Mode II stress intensity factor

g7 (LL )LL)

2
T

r=

PP S SR Sl T PR AT i

1 12 14 L6 1.8 2

Mach number M, =c/c,

Fig. 2 Exponent r vs M; for an Isotropic material and Steel-Aluminium

0.1} |
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= |
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= |
= | ]
laQ ]
- B l
Il
Ly

=05

i

1 1.2 1.4 1.6 1.8 2
Mach number M,=c/c,

Fig. 3 Exponent r vs M, for Graphite-Epoxy and Glass-Epoxy
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Fig. 5 Variation of 7,,/7, vs x/x, for Steel-Aluminium and Glass-Epoxy

(41)

K; = lim w/2_7r.r TTy(x,0) = JE‘,’;TO( — m-)x.{’.
. r

x40

4 Discussion of Results

In Figs. 2-3, the order of singularity given by (36) is plotted
against the Mach number M,.

Figure 2 is referred to an isotropic material (dotted line) with
Poisson ratio equal to 3 and to a Steel-Aluminium composite
(solid line) whose relevant material parameters can be found
in Table I.

Due to the weak anisotropy of the Steel-Aluminium compos-
ite the behavior is nearly the same for both materials and corre-
sponds to that obtained from formula (37). The exponent »

Table 1 Material parameters

Composite type Ci/Cs |GColCs |Gyl Gy
Steel - Aluminium __ |3.952 4.155 1.959
Glass - Epoxy 3.139 12.190 1.155
Graphite - Epoxy  [3.504 20.822 1.723

Journal of Applied Mechanics

varies continuously from r = 0 at M, = 1, up to a minimum
value r = — S at M, = Ji, and back to r = 0 at M, =
(C/Ce)'"™* = 2.

In Fig. 3 the order of singularity is represented for Graphite-
Epoxy (dashed line) and Glass-Epoxy (solid line) composites,
which are strongly orthotropic materials (Table 1).

A comparison with Fig. 2 shows that the exponent r
varies continuously from 0 to — § again, but its minimum moves
toward higher values of M, and becomes more pronounced as
the degree of material orthotropy increases.

It should be noted that there is a close analogy between the
trend of profiles shown in Figs. 2, 3 and those provided for a
bimaterial interface by Liu et al. (1995). Although they found
a stress singularity always weaker than — 3, the two sets of
results show a good qualitative agreement. The quantitative
discrepancy between the maximum values of the order of singu-
larities is due to the different boundary value problems taken
into account,

In Fig. 4 the behavior of the dimensionless shear stress given
by (40) is represented as a function of M, for Steel-Aluminium
(dashed line) and Glass-Epoxy (solid line) composites with
(x/x0) having the values 0.01 and 0.07 for the sake of illustra-
tion.

In Fig. 5 the shear stress given by (40) is represented as a
function of (x/xy) for the above mentioned composites and
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various values of M,. In this figure it can be seen that the
effect of the degree of material orthotropy is significant in the
immediate neighborhood of the crack tip. As the distance from
the crack tip increases, in the range of M, common to both
materials, the shear stress distribution is nearly independent of
the degree of material orthotropy as well as of M.
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Closed-form solutions based on a general homogenization composite shell model are
obtained for the effective stiffness moduli of the high-stiffness fiber-reinforced angle-
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ply composite shell. The design problem for the fiber-reinforced shell having the
required set of effective stiffnesses is formulated and solved. The set of prescribed
stiffnesses for which the design problem is solvable is described, and the effective
method of the design parameters calculation based on convex analysis is developed.

The minimum number of reinforcing layers required for the design of the fiber-
reinforced angle-ply shell with the prescribed stiffnesses is determined. The solution
of design problem is generalized on account of minimization of the fiber volume

content.

1 Introduction

The large-scale introduction of reinforced composite thin-
walled structural members has created a need for further prog-
ress in rigorous theoretical modeling capable of predicting both
effective characteristics and micro structure of processes oc-
curring under various types of environment.

The mechanical model which allows the prediction of the
behavior of multiple inhomogeneities in composite structure is
provided by the sets of equations with rapidly varying coeffi-
cients which characterize the properties of the individual phases
of the composite material. The resulting boundary value prob-
lems are rather complex, and it is quite natural, therefore, to
seek mechanical models with some averaged coefficients.

Different averaging techniques have been adopted to estimate
the effective elastic properties of composites, see e.g., Sen-
deckyj (1974), Hashin (1983), Weng et al. (1990), Chris-
tensen (1991), Tsai (1992), Vasiliev (1993), and Vasiliev and
Tarnopol'skii (1990). Analytical averaging schemes were also
utilized by Christensen (1990), Milton and Kohn (1988), Vin-
son and Sierokowski (1986), Vinson (1993), and Nemat-Nas-
ser and Hori (1993) to provide an estimate of the overall elastic
properties of inhomogeneous composite structures. The method
of optimal design of fiber-reinforced composite shells on ac-
count of dynamics and buckling is described in Obraztsov and
Vasiliev (1989) (see also Voitkov, 1979).

The effective properties of the composite material of a peri-
odic structure can be calculated by means of the asymptotic
homogenization method. The mathematical framework of the
asymptotic homogenization technique can be found in Bensous-
san et al. (1978), Sanchez-Palencia (1980), Lions (1981),
Bakhvalov and Panasenko (1989), and Kalamkarov (1992).
This method is mathematically rigorous, and it enables the pre-
diction of both the local and overall averaged properties of the
composite solid.

The homogenization model of planarly periodically inhomo-
geneous plate has been developed by Duvaut (1976). It should
be noted, however, that the direct application of the asymptotic

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS .

Discussion on this paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JourRNAL OF APPLIED MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, May 2, 1995;
final revision, Mar. 7, 1996. Associate Technical Editor: J. N. Reddy.

Journal of Applied Mechanics

homogenization technique to a two-dimensional plate or shell
theory will not provide the satisfactory results if the spatial
inhomogeneities of the material vary on a scale comparable
with the small thickness of the three-dimensional solid under
study. A modified approach developed by Caillerie (1984 ) con-
sists in applying the two-scale asymptotic homogenization for-
malism to three-dimensional problem for a thin inhomogeneous
layer. The similar approach was applied by Kohn and Vogelius
(1984) to the problem of bending of a thin homogeneous elastic
layer with a rapidly varying thickness (see also Lewinski,
1992).

The rigorous general homogenization composite shell model
was developed by Kalamkarov (1987, 1989, 1992, 1993) by
applying a modified asymptotic homogenization technique to
three-dimensional elastic problem for a thin curvilinear periodi-
cally inhomogeneous composite layer with rapidly varying
thickness. The application of this general model to the analysis
of the fiber-reinforced composite shells provides the accurate
analytical determination of their effective stiffnesses as well as
the local stress distribution (see Kalamkarov, 1992, 1993).

In the present paper, these results are taken as a basis to
formulate and solve a design problem for reinforced composite
shell with the required values of effective stiffnesses.

Following this Introduction, Section 2 deals with some basic
relations of the general homogenization composite shell model.
In Section 3, the fiber-reinforced angle-ply shell is considered,
and the analytical formulas for the effective stiffnesses of this
shell are provided. Section 4 is devoted to design problem for-
mulation, while in Sections 5 and 6 the effective method of
the design parameters calculation based on convex analysis is
developed, and the minimum number of reinforcing layers re-
quired for the design of the fiber-reinforced angle-ply composite
shell with the prescribed effective stiffnesses is determined.
Section 7 deals with the generalization of the design problem
solution on account of minimization of the fiber volume content.
In Section 8, the effectiveness of the developed approach is
illustrated by the design examples. Finally, Section 9 concludes
the paper.

2 General Homogenization Composite Shell Model

Let us consider a thin three-dimensional composite layer of
a periodic structure with the unit cell £2; (see Fig. 1). In this
figure, @), a2, and 7y are the orthogonal curvilinear coordinates,
such that the coordinate lines @, and «;, coincide with the main
curvature lines of the midsurface of the carrier layer, and coordi-
nate lines y are normal to its midsurface (y = 0). Thickness
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Fig. 1 Curvilinear reinforced composite layer; unit cell 25

of the layer and scale of the composite material inhomogeneity
are assumed to be small as compared with the dimensions of
the solid in whole, and characterized by a small parameter 4.
The unit cell € is determined by the following inequalities:

—6m/2 < @) < 612, — Bhal2 < oy < Bhyl2, ¥~ < y
<yt ¥ = 2612 + 6F*(a,/bhy, e/ hy).

Here 6 is the thickness of the carrier layer, and 8k, 6k, are
tangential dimensions of the periodicity cell €25. Functions F*
model the shape of the reinforcing elements at the upper (57)
and lower (§7) surfaces of the carrier layer, see Fig. 1. These
functions are equal to zero in the absence of surface reinforce-
ments, and then § represents the thickness of the composite
layer. The periodic inhomogeneity of the composite material is
modeled by the assumption that the stiffness tensor components
Ayma (@, 02, ) are piecewise-smooth periodic functions with
unit cell ;.

It is a common practice in performing stress analysis of a
composite structural member that the inhomogeneous medium
being studied is replaced with a homogeneous anisotropic me-
dium whose response is supposed to be equivalent to that of the
actual composite in a certain averaged sense. If the composite
material has a periodic structure, the averaged (or effective)
properties of the equivalent anisotropic homogeneous material
can be estimated by means of the asymptotic homogenization
method, which also gives asymptotically correct results for the
local stress field in the bulk of the composite solid, This method
is based on representation of solution of three-dimensional prob-
lem in form of two-scale asymptotic expansion in powers of
the small parameter 4. In the previous studies (see Kalamkarov,
1987, 1989, 1992) this approach was adopted in the analysis
of composite and reinforced thin-walled structural members. As
a result, the general homogenization composite shell model has
been developed. It is shown (see Kalamkarov, 1987, 1989) that
it is possible to calculate both the effective and local properties
of this composite layer by first solving appropriate three-dimen-
sional local problems set on the unit cell, and subsequently
solving a two-dimensional boundary value problem for a homo-
geneous (or quasi-homogeneous) anisotropic shell with the ef-
fective stiffness moduli obtained at the first step.

The constitutive relations of the anisotropic homogeneous
shell, that is those between the stress resultants ¥, N,, N,, and
moment resultants M;, M,, M,, on one hand, and the midsurface
strains €115 €22 (clongation), €p =€ = wl2 (shear), Ty T22
(bending), 7\, = 74, = T (torsion) on the other, can be repre-
sented as follows (see Kalamkarov, 1992);

Ny = 6(blfi)er, + 8% i),
Ny = 6(b¥)e,, + 62((."1‘5)7;\,,
Mg = 63(zblhder, + 63 (zels)m,,
My, = 52(25}1‘5)'51‘;. *+ 53(16'?5)’?’1.;. (1)
where 8 assumes the values 1 and 2, and is not summed here;
A = 1, 2. The functions b}"(&,, &, z) and cfJ'(&, &, 2),
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k,l, m,n, =1, 2, 3, can be calculated from the solution of
local problems on the unit cell (Kalamkarov, 1992). Here &,
= a,1A/(6h), & = a,A2/(6hy), z = /6, and A (a,, o) and
As(a, ) are the coefficients of the first quadratic form of the
midsurface of the layer. The above functions are determined as
follows:

1 aurm au™

bi" = o= Guip 2= + Guis —— + Gumn
hg kiig 6&3 ki3 62 Kl
av i av
cH' = — ay + iz —<F Ll (2)
k,ﬂ . 6&_{3 32

where functions U™ (€, &, z) and V ["'(&,, &;, z) are periodic
in variables £, and &, with periods A, and A,, respectively.
These functions are determined by solving the following set of
local problems (i,j =1,2,3; 8, \, u = 1, 2):

Lovy ok 1

0, —ngblf +nibM =0, at =z*
he 065 | Bz B0 + nibl % BT
-l_a_c;\g + M = 0’
hp 6Eﬁ 0z
1 ;
—njcll +nye =0, at z=z% (3)

hs

where n;° are components of the normal to the upper (S*) and
lower ($7) surfaces of the unit cell, (see Fig. 1) respectively,
related to the coordinate system &, &,, and z.

In the case of perfect bonding at the interface of the composite
material, the functions UM, V ™, as well as the expressions
[(1/hp)n'bl + n$bN] and [(1/hz)n el + nicM))
should be continuous at the interface. Here #{ are components
of the normal to the interface.

The averaging symbol (. . .) in Eq. (1) denotes the integration
over the three-dimensional unit cell of composite layer, as fol-
lows:

(f(&1, &, 2)) = J;f(ﬁn &2, 2)dE dydz. (4)

Local problems, Eqgs. (2) and (3), having been solved, the
functions by"(&), &, z) and (€, &, z) are averaged by
application of Eq. (4), giving the effective stiffnesses of the
anisotropic homogeneous shell, (b), (zbYs) = (c}4) and
{zeMs). One may proceed then to solution of the boundary value
problem for the homogeneous shell, that can be found in Ka-
lamkarov (1992, p. 141), to calculate the functions eyla;, az)
and 7,,(a,, o).

It should be noted that the formulas for the coordinates &,
and ¢, that are involved in the formulation of local problems,
contain metric coefficients A,(a;, ;) and A,(ay, a,). If A,
and A, are not constant (and they can be constant only if the
midsurface of the shell is a developable surface), then the effec-
tive stiffness moduli will also depend on the tangential coordi-
nates a; and «,. Consequently, the averaged anisotropic shell
can be quasi-homogeneous depending on the geometry of the
midsurface of the shell.

The notation for the effective stiffnesses used in Eq. (1) are
naturally related to the local problem formulation in the general
homogenization composite shell model, see Eqs. (2) and (3).
There is the following simple correspondence between this nota-
tion and the conventional notation for the effective stiffnesses,
sec e.g., Vinson (1993, p. 316):

Ay = 6«’“); By = 62(2””} = 52(Ci:>- Dy, = ‘5'1<Z£'”
Ap = &bi3), B =562 = 6%(cit)y Dy = 6 (zcfi
Ais = 8(b11), Bis = 6%(zb1}) = 6%cl}), Dy = 63zch

Ay = 6(”%%% By = 52(1(7%%) = 6*(c3H), Dy = 5]{205;2!)
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Fig. 2 Fiber-reinforced angle-ply composite shell

Ay = 8(b3), By = 8*(zb3) = 6%(cH), Dy = §¥(zcih
Ags = 5(“%), B = 52(2!);%} = 62{01% s Dg = 53(20:% .
(5)

Both notations related by the Eq. (5) will be used in the sequel.

The general homogenization composite shell model also pro-
vides an asymptotic result for the three-dimensional local stress
distribution in the composite layer. These stresses can be calcu-
lated by means of the following formula (k, ! = 1, 2, 3; u, v
=1,2):

au = biy (&1, &2, 2)eular, az)
+ ‘Scﬁv(fh &2, Z)T#v(ah az)- {6)

Analysis of local deformations and stresses was performed
earlier by Kalamkarov (1992, 1993). It has been shown, in
particular, that the large local shear stresses arise in the matrix
material in the case of dense placement of fiber plies. The
effect of torsion failure of the matrix material occurs if the fiber
volume content exceeds 60 percent. Torsion failure of the matrix
causes the delamination of the high-stiffness fiber-reinforced
angle-ply shells. It should be noted, however, that the failure
of angle-ply composite structures involves many different fac-
tors. The experimental results show that the other modes of
failure could prevail (see Vasiliev (1993, pp. 130-136) for the
details).

The application of the general homogenization composite
shell model is limited to the case when thickness of the shell
and the scale of periodicity, i.e., parameter 6, is much smaller
than the overall dimensions of the solid. This requirement is
fulfilled in a large number of applications.

3 Fiber-Reinforced Angle-Ply Composite Shell

The fiber-reinforced angle-ply composite shell is shown in
Fig. 2. There are no surface reinforcements in this case. The
shell is formed by N layers reinforced by parallel fibers. The
fiber within a jth layer, j = 1, 2, ..., N, makes an angle
with the coordinate line «;. The thickness of laminate is §, and
the departure of the axis of the fiber of the jth ply from the shell
midsurface (y = 0) is equal to éa;. We assume that material of
fibers is much stiffer than the matrix material, i.e., Er > E,,. This
assumption is typical for the polymer matrix fiber-reinforced
composites. Local problems (see Eqgs. (2) and (3)) are much
simplified, on account of the above assumption, by a decoupling
in the regions of fibers and matrix.

3.1 Effective Stiffnesses. Local problems of the homoge-
nization composite shell model (see Egs. (2) and (3)), can be
solved analytically for the elliptical cross section of the fibers
(see Kalamkarov, 1987). Having solved the local problems, we
average the functions b (&, £,, z) and cMj(£,, £, 2) and then
sum them up over the all N layers to obtain the following
formulas for the effective stiffness moduli of the high-stiffness
fiber-reinforced angle-ply shell:

Journal of Applied Mechanics

N N
(bag) = X E;Bi™6;, (zb3h) = (cip) = X qEB*™;

i=1 i=i

N
(zehs) = X Efjla}Bi™™ + C{*™2(16(1 + v)) ™', (7)
J=1

Here E; and v; are Young’s modulus and Poisson’s ratio of
fibers of the jth layer; 6, is the fiber volume content in the jth
layer; and the parameters B{* and C!{*™ are determined by
the following formulas for each combination of superscripts a,
B\ p=1,2

B}IIIIJ i A?D,;_“' COS‘ tpj,
B{"D = B(2ID — A4, D cos® g sin
B}]lZZ) = B}Zzll] - B}IZIZ) - A%A%D}_—d Cosz (PJ Slni (pj
B = A3D}* sin' g,
B{ = B = A,A3D;* cos g, sin® g,
'Y = AID}* cos? ¢,
X [243sin? (1 — e])A; + cos? p(1 + v))]

Cf2 = AD;* sin? o

(8)

X [2A% cos? pi(1 — e A, + sin? g;(1 + v;)]
Ci1# = Cf'Y = ATA}D; sin? g cos? g
X [~241A3(1 = e})A; + (1 + )]
Ci''® = 1Y = A4, D;* sin ¢; cos @
X [A3(A} sin® ¢, — Al cos? g))(1 — e}) A,
+ cos? gy(1 + vp)]
Ci'™ = CP = A A3D;* sin g; cos @
X [A}(A} cos? ¢, — A} sin? @) (1 — e}) A,
+ sin? (1 + v)]
C§™) = 0,543A3D*

X [(Af cos® p; — A3 sin? )*(1 — e}) A,

+ 2 sin? p; cos® (1 + )1 (9)
where
D} = A% cos? g; + Aj sin? ¢,

A; = [D} + AJAN(L — eP)]™! (10)

and ¢; is the eccentricity of the elliptical cross-section of the
fiber of the jth ply. In the case of circular fibers, ¢; = 0.

It is of interest to compare expressions (7)}—(10) for the
high-stiffness reinforced shells with the similar results that have
been derived in the framework of the semi-empirical approach;
see, e.g., Vasiliev (1993). In this procedure, first the averaging
the composite material characteristics of individual layers is
performed, and then the overall stiffnesses of the composite
angle-ply laminate are calculated using the orthotropic effective
stiffnesses of laminae and the stacking orientation of each lam-
ina. The comparison shows that the formulas (7) for the moduli
(bM;) and {zb4) coincide with the corresponding formulas for
the effective stiffnesses of a multilayer shell working in a ten-
sion-compression, provided that the contribution of the matrix
is negligibly small, and that A, = A; = 1. However, the above
flexural and torsional stiffnesses, (zch%), do differ from the
corresponding results of the semi-empirical approach, and can
be converted to these latter by settinge; = 1,j=1,2,..., N
(which means neglecting the shape of the cross sections of the
fibers in all plies), and, in addition to that, by replacing the
factor 16 by 12 in the denominator of the last formula (7)
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(which means neglecting the correct calculation of the moment
of inertia of the fiber cross-section). Apparently, the above Eqgs.
(7)—(10) derived using the general homogenization composite
shell model are more rigorous than the results of the approxi-
mate approach, in terms of better accounting the micro structure
of the composite material.

3.2 Numerical Example. To obtain an estimate of the
magnitude of the correction, consider a three-layer angle-ply
composite shell of a thickness § and with the fiber placement
angles ¢, = 7/4, v, = 0, and ¢; = —x/4. The fibers in all
three layers are made of the similar material with isotropic
elastic properties E and v, and they have the similar circular
cross section. We also assume that &, = 8, = 8; = 6, a, = 4,
a =0,a; = — 1 and A, = A, = 1. From the last formula of
Eq. (7), the nonzero flexural and torsional moduli of the shell
in the conventional notation, see Eq. (5), are given by

Dy = [0.15 + 0.031(1 + ») '16°E8,,
Dy, = [0.06 + 0.031p(1 + v) '16°Ef,
Dy = [0.09 + 0.031(1 + v) "16°Ef,,

Dgs = [0.09 + 0.016(1 + v)~']6°E8,. (1)

In order to specify the magnitude of the correction, let us
consider the graphite/polyimide angle-ply shell with the follow-
ing properties of fibers and matrix: Er = 300 GPa, E:/E, =
100, and vr = 0.2. We assume that a lamina thickness is 0.14
mm, and the fiber volume content is 60 percent. The magnitudes
of the effective stiffnesses calculated from Eq. (11) are the
following: Dy, = 2.34 Nm, D,; = 0.93 Nm, D, = 1.55 Nm,
Dgs = 1.37 Nm. The corresponding values resulting from the
semi-empirical approach are D, = 2.4 Nm, Dy, = Dy = Dg
= 1.29 Nm. The maximum correction of 27 percent is obtained
for the effective stiffness Dy,.

4 Design of the Fiber-Reinforced Composite Shells

In many cases, design of the composite engineering structures
is based on some empirical approximate formulas. But it should
be understood that a satisfactory design result can be achieved
only if the design procedure is based on a rigorous basic theoret-
ical model.

The application of the general homogenization composite
shell model to the analysis of the fiber-reinforced composite
shell shown in Fig. 2 provides the accurate calculation of its
effective stiffness moduli. These results are used in this section
for the design of composite shell with the required set of effec-
tive stiffnesses. A different approach was developed earlier by
Kalamkarov and Kolpakov (1993) for the optimal design of
wafer and honieycomb-like reinforced shells.

Suppose, it is required to design the fiber-reinforced compos-
ite shell with the prescribed set of effective stiffnesses. Equa-
tions (7)-(10) express the effective moduli of the high-stiff-
ness fiber-reinforced composite shell in terms of fiber placement
angles ¢;, fiber volume content #;, where j is a number of
the layer, and some other material properties and geometrical
dimensions of the composite shell. Let us assume now that all
fibers are of a circular cross section, and that they are made of
a similar material with Young’s modulus E. We also assume
that A, = A, = 1, which is possible for the cylindrical shells
or plates, in particular. The set of effective stiffnesses in the
tangential directions to the shell surface can be then expressed
as follows, cf. Egs. (5), (7), and (8):

Ay = 8(b11) = EwY,(y, @), Ayp = 8(b%) = EwY,(y, v)
A = 8(b1}) = EwYs(y, @), Ay = §b13) = EwYy(y, @)

Ags = Ay = 5(!’:%) = (5(bﬁ
= 0.5Ew[]l - Yi(y, ©) —

Ya(y, )] (12)
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where

N N
Yi(y, ) = X v;008' g5, Ya(y, p) = X v;sin' g
j=1 j=1

N
Yi(y, @) = 2, v, sin ¢, cos® @,

j=1

N
Ya(y, ) = X v, sin’ g; cos ;.

=1

(13)

N

Here w = E 8, v = (71, Y20 ... ¥n), and y; = Gi/w is

the propomon of fiber content within the jth layer, and ¢ =
(@1, 2, ..., y). By replacing functionals ¥,(y, ¢), Ya(v,
@), Y3(7, @), and Yu(, ) by the variables yi, y», y3, and yq,
and using the conventional notation for the effective stiffnesses,
see Eq. (12), we obtain the following algebraic system:

Ay = Ewy,, Ay = Ewy,, A = Ewys

Ag = Ap = 05Ew(]l — y, — y2). (14)

If we prescribe values of the effective stiffnesses A, Az,
Ajg, A, and Ags = Ay, then Eq. (14) will represent the system
for determining y = (y,, ¥2, ¥3, ¥4). Since the number of equa-
tions in the system (14) exceeds a number of unknowns, the
following solvability condition should be fulfilled:

Az = Ewyy,

Ass = A = 05(Ew — Ay — Ay). (15)
The system (14) can be resolved explicitly, so that

n=An(Ew)™, y; = Ap(Ew)™",

y3 = A(Ew) ™', ys = A (Ew) ™", (16)

The next and major step in the design problem is to determine
the fiber volume fractions y = (y,, ¥, - .., ¥~) and the fiber
placement angles ¢ = (¢, @2, ..., ©x), such that satisfy
equations

Yi(y, ¢) =wn, Yalvy, @) =y,

Y:!(y!

The following natural limitations are imposed on the design
parameters:

@)=y, Yilvy,p) =y (17)

o N (18)

™M=
=

I
=

v
e
e

I

-
M

-
L

o €[0,7l,j=12...,N. (19)

The question of a great practical importance here is to deter-
mine the minimum number of layers, Ny, that is required to
design the fiber-reinforced shell with the prescribed effective
stiffnesses.

4.1 Design Problem Formulation.
cludes the following two questions:

Design problem in-

(i) Determine if the system of Egs. (17) is solvable in the
set of variables satisfying conditions (18) and (19).

(ii) If the answer on the question (i) is positive, then find
the set of solutions of the system (17) under the conditions
(18) and (19).

5 Design Problem Solution

To solve the design problem, we first define a following set

of intervals within [0, 7] (hat impose the limitations on fiber
placement angles ¢;: ®" = 2 [a;, b;] C [0, ], and consider

a set
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Ub=[{p€®Y, y&R", ¥ satisfies conditions (18) }. (20)

Problem (17), (18) is solvable in the set of variables U} if
and only if the right-hand sides of Eqs. (17), (¥, ¥2: Y3, Ya)
belong to an image of the set U} under the mapping Y, given
by Eqgs. (13),

Y: (v, @) € Us = (Yi(y, @), Yal7y, @),

Yi(y, @), Yaly, ©)) € R, (21)

5.1 Statement 1.

(i) If N = 5, then image of the set U} under the mapping
Y, given by Egs. (13), represents a convex hull (see Rockafel-
lar, 1970) of the following curve I':

I'={y€e€R"y=(cos* g, sin" p,

sin i cos® , sin® ¢ cos @), p € Y] (22)

(ii) Any point that belongs to the image of the set U} under
the mapping Y, can be obtained as a value of the function Y
on a vector (y, @) € R® X &°,

In accordance with the Statement 1, a fiber-reinforced com-
posite shell with any prescribed effective stiffness moduli { A,4)
satisfying the solvability condition (15), can be designed by
using not more than five layers of reinforcing fibers.

5.2 Proof of Statement 1. It follows from the condition
(18) that the right-hand sides of expressions (13) represent a
convex combination of points of curve T', see Eq. (22). In the
general case, if any set {2 is a subset of R", the convex hull of
€ can be obtained by forming all convex combinations of ele-
ments of 2. According to Carathéodory’s Theorem, see Rocka-
fellar (1970), it is not really necessary to form combinations
involving more than (n + 1) elements at a time. The convex hull
of £, conv £2, can be obtained by forming convex combinations
involving not more than (n + 1) elements of £2. In our case,
2 =T, and n = 4. Consequently, we obtain that if N = 5 then
the image of the set U¥ under the mapping Y will coincide
with the whole set conv I'. That completes the proof.

6 Skew-Symmetric Fiber-Reinforced Shells

Let us consider now a practically important type of the com-
posite shells with the skew-symmetric placement of fibers about
the mid-surface of a laminate. In this case, for any layer with
the fiber placement angle + ¢;, there is a symmetric layer with
the fiber placement angle — y;, and the fiber volume fraction
7; is similar in these two layers. In the case of skew-symmetric
reinforcement, two last functionals in the Egs. (13) are identi-
cally equal to zero. It is also sufficient in this case to limit the
fiber placement angles by the interval [0, 7/2].

6.1 Design Problem Formulation.
(i) Determine if the equations (cf. Eq. (17))
Nivie) =y, Ny, @)=n (23)
are solvable in the set of variables (cf. Eq. (20))
Vea={(v.@) EUL v, =) — 9
=y, €10, 7/2],j=1,2,...,N/2}). (24)

(ii) 1If the answer on the question (i) is positive, then find
the set of solutions of the system (23) under the conditions
(18).

6.2 Statement 2,

(i) If N = 6, then image of the set V § under the mapping
{Yi(y, @), Ya(7, ¢)}, given by two first Eqs. (13), represents
a convex hull of a curve

Journal of Applied Mechanics

['={y € R*y = (cos @, sin* ), p € P}
= (y € Ry = (n, (1 —Vn)?), n € cos* ¥}

whera:?1 cos* @ denotes the image of the set @ under the mapping
(cos)”.

(ii) Any point that belongs 1o image of the set V 4 under
the mapping {Y,(v, ©), Ya(7y, ¢)}, can be obtained as a mean-
ing of the function (¥,(y, ¢), Y2(y, v)} on a vector (v, ¢)
€ Uj.

In accordance with the Statement 2, a skew-symmetric fiber-
reinforced composite shell with any prescribed effective stiff-
ness moduli {A,) satisfying the solvability condition (15),
can be designed by using not more than three pairs of layers
of reinforcing fibers with fiber placement angles +, and — ;.

(25)

6.3 Proof of Statement 2. The proof of Statement 2 is
similar to the above proof of Statement 1. Now the dimensional-
ity of space of conv I is equal to # = 2. According to Carathéor-
dory’s Theorem, see Rockafellar (1970), we need not more
than n + 1 = 3 elements to form the convex hull, conv T,
The total number of layers of skew-symmetric composite shell
should be doubled, and, consequently, we get N = 6.

7 Minimization of Fiber Content

Let us consider now an optimization of the design problem
concerning the minimization of the fiber content w. We include
now the variable w into the set of independent variables of the
system of Eqs. (16), and consider the problem of minimization
of w on account the condition that the composite shell has a
given (prescribed) set of effective stiffnesses. Suppose, we al-
ready solved the above design problem for some fixed w value,
w = wy, so that (cf. Eq. (17))

yi(-y‘ 'P)=J’?sf: ]1 21 3141 (26}

where y* = (»{, ¥9, ¥9, ¥9) is determined from the expressions
(16) with w = wy. It follows from the formulas (16) thaty =
(wo/w)y® will represent a solution for a given w value. More-
over, fiber volume fractions vy, satisfy conditions (18). As a
result, we arrive to a problem of searching minimum w value,
such that the point y(w) = (wo/w)y" belongs to convex set,
conv I'. Curve I" has been described in Statements 1 and 2. The
set

L= {y(w) = (w/w)y’, w € (0, wy)} (27)

represents a ray having an origin in the point y* € conv I, and
tending to infinity when w — 0. Since the set conv I" is compact
(because I' is compact) the ray L will intersect the boundary
of the convex compact set conv I when w equals some certain
value, w = w*, and they will have no other intersections when
w < w*. We formulate this result in form of a Statement 3.

7.1 Statement 3. The above formulated fiber content, w,
minimization problem is solvable if the design problem with
the required set of effective stiffnesses and some prescribed wy
value is solvable. The w minimum value is equal to w* that
corresponds to an intersection of the ray L with the boundary
of the set conv I'. Design project for the composite shell with
a minimum fiber content w* can be found by solving problem
(17), (18) or the problem (23), (18) with a right-hand side
equal to y = (wo/w*)y".

8 Design Examples

The developed theory is illustrated by the following two ex-
amples of the fiber-reinforced composite shell design.

In the first example, it is required to design a glass/epoxy
composite shell with a skew-symmetric placement of the fibers.
The shell should have the following effective stiffness moduli:
Ay = 25 GPa, and A, = 10 GPa. Young’s modulus of fibers
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m 12=0.58 0.73 1N

Fig. 3 Curve I' and the convex hull, conv I" (area ABCD)

is £ = 100 GPa, and the prescribed fiber volume content is w
= 0.5.
Curve I in the considering case is determined as follows (cf.

Eq. (25)):
F={y€R%y=(n -V,

n = cos*p € [0, 11}, (28)

Curve T and its convex hull (area ABCD) are shown in
Fig. 3.

The prescribed values y = (0.5, 0.2) are calculated from the
Egs. (16). It is seen from Fig. 3 that point y = (0.5, 0.2)
belongs to set conv I'. Consequently, the composite shell with
the above prescribed effective stiffnesses can be designed. Let
us calculate the design parameters of such composite shell, In
fact, the problem (23), (18) can be formulated as a problem
of determining the convex combinations of points on curve T,
that produce a given point y. Apparently, there is an infinite
number of points on curve I producing given point y. For
example, point y can be obtained as a convex combination of
points A and D (see Fig. 3). Introducing subscripts 1 and 2 to
coordinates of points A and D, we obtain n, = 0, 5, = 0.58.
Fiber placement angles ¢, and ¢, are expressed in terms of #,
and 7, by means of the formula ¢; = arccos (#;)""*, cf. Eq.
(25). Using this formula, we obtain ¢, = 90 deg and ¢, ~ 29
deg. Fiber fractions <y, and y, can be also determined from Fig,
3 as follows: ¥, = |yD|/|AD| =~ 0.14, and vy, = | Ay|/| AD]|
~ ().86. The resulting four-layer skew-symmetric composite
shell design is following: 14 percent reinforcing glass fibers
should be placed on angles +90 deg, and 86 percent of fibers
should be placed on angles +29 deg. Note that the obtained
design parameters represent just one of the possible design solu-
tions. However, this is a special design project in the sense that
it provides the maximum values of the fiber reinforcing angles,
This will simplify significantly the fabrication of the designed
composite shell by winding.

8.1 Example on Fiber Volume Content Minimization.
In the second example, it is required to design a skew-symmetric
composite shell with the effective stiffnesses similar to the
above first example, but, unlike of the previous example, it is
also required now to minimize the fiber content w. As it was
just shown, the design problem for w = 0.5 was solvable. There-
fore, the design problem including the minimization of w is
solvable as well. Assuming wy = 0.5, and following the above
theory, we look for a point of intersection of a ray (cf. Eg.

(27))

L={y(w)= % y' = % (0.5, 02), w € (0,0.5)) (29)

with a boundary of the area ABCD (see Fig. 3). This point of
intersection is denoted by B in Fig. 3, and it has the coordinates
(0.73, 0.28). Applying Statement 3 and using Eq. (29), we
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find that the minimum fiber content is equal to w* = wy(y"/y)
= 0.5(0.5/0.73) =~ 0.34.

To calculate the design parameters, we should solve the prob-
lem (23), (18) with a right-hand side y(w*) = (0.73, 0.28).
It is seen from Fig. 3 that point B can be represented as a
convex combination of points of the curve I in a unique way,
namely, as a convex combination of points A and C. Accord-
ingly, we obtain that n, = 0, 7, = 1, and ¢, = 90 deg, @, = 0
deg. The fiber fractions are y, = |BC|/|AC| = 0.27, and
v2 = |AB|/|AC| = 0.73. The resulting design provides the
minimum fiber content (w* = 0.34) for the above prescribed
effective stiffnesses. The designed four-layer symmetric com-
posite shell is formed by two layers with fiber placement angles
90 deg and fiber volume fraction 27 percent, and by two layers
with fiber placement angles 0 deg and fiber volume fraction 73
percent.

9 Conclusions

The explicit expressions for the effective stiffness moduli of
the high-stiffness fiber-reinforced angle-ply composite shell are
obtained. Derivation is based on application of the general ho-
mogenization composite shell model. The formulas for the ef-
fective stiffnesses provide corrections to the earlier approximate
effective moduli results.

The design problem for the fiber-reinforced angle-ply com-
posite shell with the prescribed values of stiffness moduli is
formulated and solved using the convex analysis. The set of
prescribed effective stiffness values for which the design prob-
lem is solvable, is described, and the effective method of the
design parameters calculation based on convex analysis is de-
veloped. The sufficient number of reinforcing layers required
for the design of the fiber-reinforced angle-ply composite shell
with the prescribed effective stiffnesses is determined. It is
shown in general case that a fiber-reinforced composite shell
with any prescribed effective stiffness moduli in the tangential
directions to the shell surface that satisfy the solvability condi-
tion, can be designed by using not more than five layers of
reinforcing fibers, In the case of skew-symmetric fiber-rein-
forced composite shell, the sufficient number of layers is six,
so that a skew-symmetric composite shell with any prescribed
effective stiffnesses in the tangential directions that satisfy the
solvability condition, can be designed by using not more than
three pairs of layers of reinforcing fibers with fiber placement
angles +y; and —;, j = 1, 2, 3.

The design problem is generalized on account of minimiza-
tion of the fiber content, It is shown that this problem is solvable
for any prescribed set of effective stiffnesses for which the
design problem is solvable. The effective method of the opti-
mum design parameters calculation is developed.

The effectiveness and advantages of the developed approach
are illustrated by the numerical examples.
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sentation of the random field is discussed. It is shown that a broad class of random
Jields is amenable to a simplified representation. Further, it is shown that a judicious
use of the local and multiscale structure of Daubechies wavelets leads to an efficient
simulation algorithm. The synthesis of random field samples is based on a wavelet
reconstruction algorithm which can be associated with a dynamic system in the scale

domain. Implementation aspects are considered and simulation errors are estimated.
Examples of simulating random fields encountered in engineering applications are

discussed.

1 Introduction

Monte Carlo simulation is a quite powerful, though computa-
tionally costly tool for analyzing systems which exhibit ran-
domness. This method is a statistical sampling experiment (Ru-
binstein, 1981) involving a series of simulations of the random
parameters and subsequent evaluation of the system response
using deterministic methods. Often the randomness inherent in
the problem involves random fields. In this case the implementa-
tion of the Monte Carlo procedure requires sequential synthesis
of random fields, and to a great extent its appeal depends on the
efficiency of the algorithm used for this purpose. The spectral
(Shinozuka and Jan 1972) and auto-regressive-moving-average
(ARMA) (Samaras et al., 1983; Mignolet and Spanos, 1992;
Spanos and Mignolet, 1992) approaches are the commonly used
methods in this regard. However, these methods are not well
suited for random field simulation using nonuniform meshes.
Also, enhancement of local resolution of random field samples
can not be readily achieved using these simulation procedures.

Scale-type methods (Fournier et al., 1981; Lewis, 1987; Fen-
ton and Vanmarcke, 1990) were introduced primarily for com-
puter graphics applications; the simulation is based on linear
estimation principles. The values of the random field for points
within a coarse scale are generated first. Then, the values for
the finer scale are estimated based on the generated samples.
These methods provide an efficient procedure for simulation of
homogeneous and nonhomogeneous fields using nonuniform
meshes. However, they lack a solid theoretical foundation for
estimating the associated simulation errors.

This paper addresses the problem of random field simulation
by using wavelet expansion. Wavelets can be found in several
branches of engineering and science and they appeal to scien-
tists and engineers of various backgrounds (Daubechies, 1992).
The paper provides a basis for evaluating the error of the scale-
type methods and for considering the properties of the generated
samples. The scale-type simulation procedure is viewed as a
realization of a dynamic system in the scale domain. The pro-
posed algorithm for random field simulation requires only O(N)
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numerical operations for the generation of a sample of a homo-
geneous multidimensional random field, where N denotes the
size of the field. Numerical examples are given to elucidate the
theoretical developments.

2 Background on Deterministic Wavelet Analysis

Orthogonal compactly supported wavelet bases of L?(R) con-
structed by Daubechies (1988 ) are used in this study. Generally,
they can be written as

(Pa(x) =272 x —n+ 1);j,ne€Z}, ()
where s(x) is a wavelet function with support in the segment
[0; 2M — 1]; M is an integer parameter. Equation (1) shows
that the entire wavelet basis is derived from a single function by
stretching and shifting. This construction leads to the important
concept of a scale, The scale is given by the parameter j and
describes the measure of stretching of the wavelet function to
capture local signal characteristics.

Also important in wavelet analysis is the scale function ¢(x).
In fact, the wavelet function (x) is related to ¢(x) by the
equation

2M-1
Px) =2 3 gind(2x — k), (2)
k=0
where
2M-1
b(x) =2 3 hd(2x — k), (3)

k=0

where g, and h, are appropriate constants. Closed-form formulae
for the functions ¢(x) and (x) are not available, unless M =
1. Several algorithms have been proposed in the literature for
evaluating these functions numerically. One of them utilizes the
frequency domain relationships

d(w) = my(w/2)d(w/2), (4)

and
P(w) = m(w/2)d(w/2), (5)
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between the wavelet and scale functions, Here, the hat denotes
a symbol of the Fourier transform

1 i )
d(w) = o J.._m P(x)e™""dx,

and the 27-periodic functions my(w) and my(w) are defined as

(6)

2M-1 .
my(w) = E Y hpe™™, (7
k=0
| M-
my(w) = E Y gine M= M Dep(w+ ), (8)
k=1

respectively; the bar denotes complex conjugation. It can be
shown that the functions mo(w) of Eq. (7) and m,(w) of Eq.
(8) represent the frequency response of a low-pass filter and a
high-pass filter, respectively; this makes the wavelet expansion
equivalent to a ‘‘subband filtering algorithm’’ (Daubechies,
1992). These filters tend to the ideal low and high pass filters,
respectively, as M — o, In this case the Daubechies wavelets
converge to the Shannon wavelets which relate directly to the
sampling theorem (Walter, 1994). The latter wavelets have
been also examined by Newland (1993) who defined them as
harmonic wavelets.
Wavelets have a number of vanishing moments. That is,

9)

ym,

r.r“qb(x)dx-——ﬁ, for =0, 1,...

where m = M — 1 for the Daubechies wavelets; this property
of the Daubechies wavelets is particularly useful for random
field analysis applications since the wavelet coefficients can be
associated with the high-frequency components from certain
bands. Also, it can be shown, based on Eq. (9), that dj ~
£ 27/ (k — 1)); that is, the wavelet transformation can be
viewed as a quasi-differential operator (Belkin, 1993). Note
that the scale function satisfies the property

Jm d(x)dx = 1. (10)

That is, the coefficients associated with the scale function cap-
ture the averaged characteristics of the signal.

Any function f(x) can be expanded in a wavelet basis in
O(N) operations without numerical integration. The wavelet
decomposition algorithm can be compared with the fast Fourier
transform which requires only O(N log N) operations to derive
an expansion in the basis of trigonometric functions. First, the
function f(x) is approximated by its projection into the jth
scale of the function ¢(x), where j must be taken sufficiently
small to induce a small approximation error. That is,

F(x) = fi(x) = 2 cldju (11)

where ¢i = [ _: F(x) ¢, 1(x)dx are the scale coefficients of the
function f(x) associated with the scale j. Then, the function
fi{x) can be decomposed into the components fi,,(x) and
6;+1(x), which represent the projection of the function f(x)
into the coarser scale, and the ‘‘details’” which are *‘removed”’
during this procedure. Subsequently, the following expansion
of the function f( x) in terms of the wavelet basis is introduced:

f(x) = fia(x) + & (x) = fu(x) + &1 (x) + ... 6p40(x)
= j+|(x] +ais 6)«‘()5), (12)
where

b = X dithin (13)
k
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and di = |~ f(x)i;,(x)dx denote the wavelet coefficients of
the function f(x). Numerically, the wavelet decomposition al-
gorithm can be represented by the recursive equations
M-
ci = Z h£+|Csz&_+lf—|‘ (14)
=0
and
. 2ZM-1 fi
di= X 8r1Cup.

i=0

(15)

Note that this recursive multiscale procedure represents a mov-
ing average scheme with the moving averages sampled only at
even integers.

The reconstruction algorithm can be expressed as

(—'{nl = {fits Pjrn) = o Cf‘f’p + Y drjiflj.h (LTI

= E{. {f—'fhk—zhz + dfs’n—mz)- (16)

Equation ( 16) defines a dynamic relationship between the coef-
ficients on one scale and those on the next finer scale. Indeed,
the vector ¢/~ is derived by a dynamic system from the initial
conditions in the form of the vector ¢/ and the *‘force excita-
tion’’ d’. The interpretation of the wavelet reconstruction algo-
rithm as a scale linear system is discussed in Basseville et al.
(1992a, b); it is essential to the development of the random
fields representation and synthesis algorithm presented in the
ensuing sections.

3 Random Field Expansion Using Wavelet Basis

3.1 Random Coefficient Description. In the stochastic
case the wavelet coefficients dj in Eq. (13) and the scale coef-
ficients ¢ in Eq. (11), which are associated with a stochastic
process f(x), defined by its auto-correlation function R/(x,,
X,), are random variables. In particular, if f( x) is zero mean, the
wavelet and scale coefficients are zero mean random variables.
Further, the second-order moments of these coefficients can be
found from the equations (Walter, 1994; Zeldin and Spanos,
1995)

rii = Eldidi]
= [ e sopacobuanas,  an

bli = Elcidi] = ” Ry(x1, X2)dbya(xy ) s (xr)dxydx,,  (18)

ati = Blele = [ [ Rn, s dudutdndn, (19)

where E[ | denotes the operator of mathematical expectation.
Note that if f(x) is a stationary random process, the value
r1 depends on the difference in the indices k — 2771, only.
Similarly, higher-order moments of coefficients di can be
found. If f(x) is a Gaussian random process, dik=... -1,
0, 1, ... are also Gaussian random variables. In this case d}
and ¢} are completely characterized by their first and second-
order moments.

In this context the wavelet decomposition algorithm de-
scribed in Section 2 is generalized to circumvent the numerical
integration involved in Eqgs. (17)—-(19). Specifically, one can
write

2M~1
I f=Lj=1
Fig = E Bt 1 B+ 18 2en—1,204m—11 (20)
nm=0
% 2M-1 |
. i=Lj=
by = Z Pyt B 2kint 204m-1 + (21)
nm=0
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and
2M=-1
i J—Lij-1
agi = Z hnl—lhnﬂIa2k+n—l,2.'+m—l )
nm={

(22)

where the procedure is initiated by evaluating first the correla-
tion parameters a;/ for the finest scale. Similar procedures, in
a deterministic setting however, have been previously used to
find a representation of mathematical operators in wavelet bases
(Belkin et al, 1991). Clearly, this computationally costly
scheme requires O(N?) and O(N) operations for nonstationary
and stationary processes, respectively. Alternatively, one can
use the quadrature algorithm

q=1
aif = 2j Z nr:nme(zjn + 2J(k = l)»
nme=(

2'm+ 21— 1)) +¢ (23)

where the coefficients 7, are selected so that ¢ is null if R,(x,,
X;) is a polynomial in x, and x, of order less than g. This implies
that € ~ 0(2/9"V). The coefficients 7, of Eq. (23) can be
found from the following system of equations:

g-1
Y i"y=Tn m=0, 1,...
=0

g- L (24)

Here, I, = fj . x"é(x)dx are the moments of the scale func-
tion; they can be calculated semianalytically as shown in Appen-
dix A. Upon evaluating the parameters a; in the neighborhood
of the main diagonal of the correlation matrix, rj; /"'
and b{;""" can be determined by using Egs. (20)—(22).
Note that usually the auto-correlation function R(x;, x,) de-
creases rapidly with the difference x, — x;, and only a
few coefficients ai/, 717, and b{ corresponding to small values
of [ — k must be evaluated; for more details see Zeldin (1995).
The described procedure requires only O(N) and O(log N)
numerical operations for nonstationary and stationary processes,
respectively.

3.2 Correlation Properties of Wavelet Coefficients of
Random Fields. The correlation of the wavelet coefficients
for certain random processes has been previously addressed.
Specifically, Flandrin (1989, 1992) has studied an efficient
scheme to describe the spectrum of fractional Brownian motions
(Keshner, 1982) which constitute a class of nonstationary pro-
cesses often called 1/f noises. It has been found that for a given
scale these processes are stationary with well-defined scale in-
variant spectra. Further, Wornell (1990) has shown that com-
pletely uncorrelated wavelet coefficients can be used to model
1/f noises. A similar result has been reported by Tewfik and
Kim (1992). Using this result Wornell and Oppenheim (1992)
have proposed a method of estimating parameters of 1/f noises.

This section establishes the correlation properties for a broad
class of stochastic processes which are commonly used in engi-
neering applications. As it has been mentioned previously,
wavelets behave locally as differential operators. This property
simplifies significantly the correlation structure of the wavelet
coefficients for a large class of stochastic processes. Thus, the
variance of the wavelet coefficients decreases rapidly with the
scale of resolution j. In particular, for a sufficiently fine scale
one can prove that

riilaii ~ 2%, (25)
provided that the auto-correlation function is at least Q times
differentiable; 0 = M. Equation (25) indicates that the impor-
tance of scales decays exponentially with j. Using this result one
can argue that a few scales can provide a reasonably accurate
representation of the random field.

In context with the preceding result it is noted that the covari-
ance matrix of the wavelet coefficients is sparse for a large
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class of random fields. For stationary processes the correlation
of the wavelet coefficients from different scales can be evaluated
by using the equation

ri) =2m f S ()i (w) dw, (26)

where S(w) is the spectrum of the stationary process. Since the
functions 1, (w) and ¥, ,(w) correspond to different frequency
bands for i # j, the correlation of the wavelet coefficients from
different scales is small. Thus, by substituting Egs. (4)—(8)
into Eq. (26) one obtains

Irii| = max (S(w)}f Xy-1(w)dw, 27)
0

where

Xe(w)
k=1
= 27D my(w + 7)lImo(2*w + m)| TT Imo(2'w)|. (28)

=0

The function y,(w) is plotted in Fig, 2 for wavelets with M =
1 and M = 7 vanishing moments. Note that the **decorrelation”’
capacity of wavelets increases with the number of vanishing
moments. Germane to this issue is the estimate of the cross-
scale correlation of wavelet coefficients presented by Dijkerman
and Mazumdar (1994 ) for Gauss-Markov processes with expo-
nential auto-correlation functions by using a time domain ap-
proach.

Relying on the similarity between the auto-correlation func-
tion and the kernel of a linear operator, the weakening of the
correlation of the wavelet coefficients from the same scale can
be determined for some stochastic fields. Specifically, for a

Ap (@)

3
FREQUENCY, ©

xk(m]

0 05 I 15 2 25 73
FREQUENCY, &

Fig. 1 Function y,(w) for wavelets with () M = 1 vanishing moment,
{b) M = 7 vanishing moments
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Fig. 2 Correlation parameters a,., for the scale j = -6

stationary random process f(x) having the auto-correlation
function

Ri(xi, x3) ~ |xp — x| 7%, (29)
and with partial derivatives of order 20
[
axronae s Rl X)) = |ay = x| TER9, (30)

where p and v are constants, one can show that for wavelets
associated with M = Q

ail ~ lk=1"* and rii ~ (k—D~*2,

(31)

These stochastic processes form the so-called Meyer-Belkin
class. Equation (31) indicates that the correlation of the scale
coefficients decreases faster, especially for large values of M,
than the correlation of the scale coefficients. Pertinent numerical
examples can be found in Zeldin (1995).

Finally, it has been observed that if the auto-correlation func-
tion of a stochastic process has some irregularities along the
diagonal x, = x,, the covariance matrix of the wavelet coeffi-
cients within a scale resembles a diagonally dominant matrix.
Thus, wavelets whiten Gauss-Markov processes having auto-
correlation functions which are nondifferentiable along the diag-
onal. In this case wavelets act as semidifferential operators,
and point out the diagonal singularity of the auto-correlation
function. For the Gauss-Markov process with auto-correlation
function

Rf(xﬁ_'xl}=exp(|x?._x}|'!g)7 6:0'1’ r (32)

the correlation parameters ai'/ and r1; are plotted for j = —6
in Fig. 2 and Fig. 3, respectively. The wavelets with M = 3
vanishing moments are used. It can be seen that the correlation
of the wavelet coefficients is quite weak.

4 One-Dimensional Random Field Simulation

4,1 Mathematical Formulation. Upon developing the
random field representation by employing the wavelet basis,
numerical simulations can be performed by extending the wave-
let reconstruction algorithm described by Eq. (16) to the case
of random fields. In this case, assume that the stochastic process
f(x) is defined by its auto-correlation function Ry(x,, x,) and
denote by fj(x) the projection of f(x) into the scale j of the
function ¢(x). This projection is specified by the random vector
¢/ = {¢1,...cL), k =2 Note that the number of compo-
nents of ¢ is quite small for a sufficiently coarse scale, Then,
a realization of ¢/ can be generated by performing the Cholesky
factorization of its covariance matrix. This provides a sample
of the projection fi( x) which is used to initiate the simulation
of f(x) for finer scales. Thus, the projection of f(x) into the
next (j — 1)th scale can be found by simulating the random
vector d’ = {di, ... d.}); ¢/ ' can be determined by relying
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on the wavelet reconstruction algorithm, Eq. (16). Next, the
random vector ¢/~* can be simulated based on the realization
of ¢/ and a simulation of d’/~'. This hierarchical procedure
generates a sample of the stochastic process f( x).

For a relatively fine scale, the problem of simulating a large
dimension random vector with correlated components is rather
complex. In this context it is noted that the random variables
¢y and d; are defined as an average of the stochastic process
f(x) over the same domain weighted by the scale and wavelet
functions, respectively. It can be shown using the quasi-differ-
ential properties of wavelets that ck ~ f(274k = 1)) and dk

~ f¥(274(k — 1)). Clearly, the derivatives f‘*(x) can be
approximated reliably by a finite dlffercnce scheme. Thus, one
can approximate the coefficient di by a linear combination of
the components of the vector ¢/ in the form

di = X aiel + Biu, (33)
/
where u,, k = 1, 2, ..., are uncorrelated zero mean, unit
variajnce random variables which are statistically independent
of ¢/.

Equation (33) also reflects the assumption that the compo-
nents of the vector d’ are statistically independent, given a
realization of ¢/, Note that this approximation does not imply
that the components of d/ are unconditionally statistically inde-
pendent, but rather that their dependence is completely reflected
by a linear combination of the components of ¢/. Equation (33)
can be used to simulate efficiently the random vector d/ based
on a realization of ¢/. Alternatively, Eq. (33) can be interpreted
as reflecting the best linear cstimate of the wavelet coefficients
in the jth scale by using the scale coefficients in the same scale.
This interpretation provides an analog between the proposed
method and the scale dynamic linear systems on homogeneous
trees (Basseville et al.,, 1992a, b; Clippingdale and Wilson,
1989; Dijkerman and Mazumdar, 1994; Luettgen et al., 1994).

Note that the summation in Eq. (33) can be confined to
adjacent elements, since the correlation of the wavelet coeffi-
cients decreases rapidly with the difference k — /. The parame-
ters oy, in Eq. (33) can be computed in an optimal way so that
the covariance matrices of the wavelet and scale coefficients
are well approximated. In particular, the variance of the wavelet
coefficients d; and the cross-correlation of the wavelet and the
scale coefficients can be equated to the target values. Thus,
multiplying Eq. (33) by ¢{.;, i = —n, ... n and taking mathe-
matical expectation one finds

L

IR Y ) Aod ¥
Z Wi = bidi, i = —n, ... n.
I=-=u

(34)

The matrix in Eq. (34) is symmetric and positive definite; if
the stochastic process is stationary, this is a Toeplitz matrix.
This system can be solved without significant computational
effort since the number of equations, 2n + 1, is small. Further,

CORRELATIONOF

10 20
TRANSLATION INDEX, (k1)

Fig. 3 Correlation parameters r,_, for the scalej = -6
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the parameter { can be found by squaring Eq. (33) and taking
the mathematical expectation. That is,

n N
. i
;3: 5 Jrit o ): Z Qk.;ﬂfi‘aainn;- (35)

I==n i=—n

Clearly, for the stationary case, Egs. (34) and (35) must be
solved only once for every scale j.

Note that the pyramid structure of the proposed simulation
algorithm breaks down in some neighborhood of the boundary,
In the present study this problem is addressed by incorporating
boundary layers adjoined to the domain of interest. Alterna-
tively, periodic wavelets and functions (Daubechies, 1992) can
be used.

Finally, note that the scale-type simulation methods which
have been previously introduced in the literature are a rather
special case of the proposed approach. Specifically, the Local
Average Subdivision method (Fenton and Vanmarcke, 1990;
Fenton, 1994) can be reproduced by utilizing the Haar basis
(M = 1) in the preceding development, whereas the method of
Lewis (1987) can be formulated based on the Shannon wavelets
(M = ).

4.2 Error Analysis. The error introduced by Eq. (33) can
be assessed numerically in the following manner. Assume that
the process is simulated within the jth scale exactly. Also as-
sume that the wavelet coefficients d/ are found by using the
proposed method, Egs. (33)—(35), and the scale coefficients
on the (j — 1)th scale are determined by relying on the wavelet
reconstruction algorithm. Using these assumptions and per-
forming some rather simple mathematical calculations, one can
derive the estimated correlation of d/ and ¢/~' which can be
compared with the target values. Some numerical results of
performing this analysis for ¢/~' are shown in Fig. 4. The
corresponding auto-correlation function is defined by the equa-
tion

R(xi, %) = 1/(1 + (x; — x2)%16%), (36)

where § = 0.1 is selected, and the Daubechies wavelets with
M = 3 are utilized. The maximum of the absolute error of
estimating the correlation of the scale coefficient normalized
by aii is plotted as a function of j and n. The error is quite
small for fine scales and reaches.the maximum value, equal

RELATIVE ERROR

1

R(x,,x,) =
T  pre

8 L 1 L s i L
m-? £ 5 4 ] 2 B 0

SCALE

Fig. 4 The maximum of the error of estimation of the scale coefficients
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Fig. 5 Auto-correlation function for target and simulated processes

approximately to four percent, for the scale (—2). The mesh
size which corresponds to this scale is approximately equal to
the scale of fluctuation (Vanmarcke, 1983) of this stochastic
process.

Further, note that the wavelet reconstruction algorithm which
is used to determine the wavelet coefficients on the (j — 1)th
scale induces filtering of the wavelet coefficients by a high-pass
filter, see Eq. (16). Then, this filter eliminates the low-fre-
quency error and allows only the high frequency error. Further,
the high-frequency range for the scale j becomes low frequency
for the scale j — 1. Thus, the error induced by Eq. (33) occurs
in different frequency ranges for each scale.

4.3 Algorithm of the Proposed Method. Summarizing
the preceding discussion, the proposed algorithm for synthesiz-
ing random fields specified by the auto-correlation function
R¢(x) can be formulated as follows:

1 Select a wavelet basis; pertinent numerical studies suggest
that the Daubechies wavelets with M =.3 are quite adequate
for forms of Ry(x) encountered in most engineering applica-
tions. Note that these wavelets are differentiable functions and
the generated field can be readily used in applications necessitat-
ing differentiation of the generated field samples.

2 Find the correlation of the wavelet and scale coefficients
as discussed in Section 3,

Rp(xy, %091, ¥5) = EXP(—IOJ{::[ —x2)2+(y1—y2)2J

Fig. 6 A synthesized realization of a two-dimensional random field
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3 Synthesize a sample of the random process for a relatively
coarse scale j by simulating a small-dimensional vector ¢’; the
Cholesky factorization of the covariance matrix of ¢/ is deemed
appropriate for this purpose.

4  Generate the vector d’ by using Eq. (33).

5 Based on the realizations of ¢/ and d”, synthesize a sam-
ple of the random process on the next (j — 1) scale by using
the wavelet reconstruction algorithm of Eq. (16).

6 If the ratio of the variance of the wavelet coefficients to
the variance of the scale coefficients is not adequately small,
proceed to a refined scale and return to Step 4.

Each step of the proposed algorithm requires, at most, O(N)
numerical operations. Moreover, the decorrelation and
multiscale properties of wavelets ensure that the requisite num-
ber of parameters in Eq. (33) is small.

4.4 Numerical Simulations. Samples of a Gaussian sta-
tionary stochastic process with the auto-correlation function

R(x1, x) = exp(—|x, — %]/8) cos (\|x; — x,|) (37)

were generated using the Daubechies wavelets with M = 3; the
values @ = 1 and A = 35 are used. The target auto-correlation
function and its estimate involving 200 synthesized samples are
plotted in Fig. 5. It is clear that the proposed method approxi-
mates the auto-correlation function quite closely.

5 Multidimensional Extension

The proposed random field analysis and synthesis method
can be generalized for multidimensional fields by utilizing mul-
tidimensional wavelet bases.

There are several methods of constructing multidimensional
wavelets (Daubechies, 1992), One of them is based on the
tensor product of -pertinent one-dimensional multiresolution
analyses. In the two-dimensional case it leads to three wavelet
functions defined as

U (x, y) = dx)P(y),
T P(x, y) = P(x)d(y),
and
TP (x, y) = Px)g(y).
Note that the set of functions
U, = 279027 ~ 0y + 1,27y —np + 1)
JimomeZ =123 (38)

1.5 T T T T 3 T T T

~——target auto-correlation function

- average of several estimated

" auto-correlation functions in different |
: directi:_ons [rom the it.:ente.r of the ﬁcld
“(an ensemble of size 200) |

[=]
T

Rt

AUTO0-CORRELATION FUNCTION Rfx)
(=]

'Rf{xl’ Xy é}'[r )’2)-. = exi:(—lOJ(xl _5?2}2 +:‘(}'1 = )'2)2)
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=03

"o 0.05 0.1 015 0.2 0.25 o3 0.35 0.4 0.45
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Fig. 7 Auto-correlation function for target and simulated processes
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Table 1 The number of floating operations to generate a
single random field sample using the proposed algorithms

Size of Number of kflops
Type of random random
fields fields M=1 M=2 M=
Two-dimensional 32 x 32 76 150 246
64 X 64 222 403 607
128 x 128 741 1,269 1,796
256 X 256 2,696 4,451 6,077
512 x 512 10,272 16,643 22,293

is an orthonormal basis for L*(R?). This procedure for con-
structing two-dimensional wavelets can be generalized, readily,
to the n-dimensional case leading to 2" — 1 wavelets,

Then, the developments of Sections 3 and 4 can be properly
adapted for multidimensional field simulation. This procedure
yields a set of equations, similar to Eqgs. (17)-(23), (33)-
(35), involving multiple integrals and sums. These equations
lead to an efficient algorithm for simulating multidimensional
random fields. A sample of a two-dimensional field generated
by implementing the proposed method in conjunction with the
Daubechies wavelets with M = 3 is shown in Fig. 6; the auto-
correlation function

R(xy, %2, Y1y 12) = exp(=V(x — %)% + (0 — y2)2/8) (39)

with € = 0.1 was used. The average of several estimates of the
auto-correlation function in different directions from the center
of the domain of the random field is shown in Fig. 7; the
ensemble size in each direction is 200 field samples.

6 Concluding Remarks

The proposed method is computationally efficient due to the
reduction of the requisite data storage capacity and the small
number of numerical calculations which are necessary for syn-
thesizing a single random field sample.

To perform the synthesis for a given scale, one has to store
the scale and wavelet coefficients from the coarser scale. Thus,
it is required to store 2N elements. Also it is required to store
the coefficients of the equations which approximate the wavelet
coefficients using the scale coefficients. For the homogeneous
case it is further required to store O (log N) numbers, while for
general random fields O(N) additional storage locations are
needed.

The number of calculations for a single simulation is deter-
mined by the selected implementation scheme of the wavelet
reconstruction algorithm, and by the transformation of the scale
coefficients into the wavelet coefficients. Efficient procedures
for the wavelet reconstruction algorithm are discussed in Herley
and Vetterli (1993) which can prove particularly advantageous
for large values of M. In any case, the proposed simulation
method requires at most O(N) operations for synthesizing a
random field sample. Table | compares the number of numerical
operations needed for the generation of a single sample versus
the required resolution level, that is the field size, and the num-
ber M. Clearly, the presented method compares quite favorably
with alternative methods of random field simulation and merits
further investigation.
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APPENDIX

Determination of Moments of the Scale Function

In this Appendix an efficient method for evaluating the inte-
grals ', = [x"¢(x)dx appearing in Eq. (24) is presented.
Using the Fourier transform one can obtain

rm - fxm¢(x)dx = J'x'"(ﬂ)(x)e _Imdxlw=l]
V2

:_-("I)O_ A1)
ER A (
Also, Eq. (10) yields
$(0) = \,% and To=m(0)=1  (A2)
T
Further, differentiating Eq. (4) m times yields
iy _ E E (m}
poo=(m($)8(5)) 7.,
¢ I k (€3] 3, (m—k)
=3 5|, |mP@d00)
k=0
1 " k .
- ( )m&*‘(om‘” ©(0), (A3)
2" — 1,5 \m

where the last equality holds because of Eq. (A2). The value
m§’(0) can be determined from Eq. (7) as

m(0) = (—i) 'k, (Ad4)
where
]. 2M-1
Ky =T Z ’kh:ﬂ- (A.5)
2 =0
Finally, substituting Egs. (A3) and (A4) into Eq. (A.1) yields
1 m k
D=2 (71 P (A.6)
27 =1, \m

That is, Eq. (A.6) defines a recursive algorithm for evaluating
the moments of the scale function.
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Vibration and Coupling
Phenomena in Asymmetric
Disk-Spindle Systems

This paper analytically treats the free vibration of coupled, asymmetric disk-spindle
systems in which both the disk and spindle are continuous and flexible. The disk and
spindle are coupled by a rigid clamping collar. The asymmetries derive from geomeir-
ric shape imperfections and nonuniform clamping stiffness at the disk boundaries.
They appear as small perturbations in the disk boundary conditions. The coupled
system eigenvalue problem is cast in terms of ‘‘extended’’ eigenfunctions that are
vectors of the disk, spindle, and clamp displacements. With this formulation, the
eigenvalue problem is self-adjoint and the eigenfunctions are orthogonal. The con-
ciseness and clarity of this formulation are exploited in an eigensolution perturbation
analysis. The amplitude of the disk boundary condition asymmetry is the perturbation
parameter. Exact eigensolution perturbations are derived through second order. For
general boundary asymmetry distributions, simple rules emerge showing how asym-
metry couples the eigenfunctions of the axisymmetric system and how the degenerate
pairs of axisymmetric system eigenvalues split into distinct eigenvalues. Additionally,
properties of the formulation are ideal for use in modal analyses, Ritz-Galerkin
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discretizations, and extensions to gyroscopic or nonlinear analyses.

Introduction

In circular disk vibration research, the support structure
is normally modeled as rigid. In spindle (rotor) analyses,
components attached to the flexible spindle are commonly
assumed rigid. As mechanical components become lighter
and more flexible, however, a growing number of systems
are not adequately modeled by either of these idealizations.
For instance, a model in which both the disk and spindle
deform elastically is required to capture the coupled vibra-
tory response exhibited by computer disk drives and turbo-
machinery. Disk-spindle coupling allows bearing excitation
to drive disk vibration or disk excitation to drive spindle
vibration. Uncoupled disk and spindle systems are com-
monly idealized further as being axisymmetric, though
asymmetries may be present in the design and are unavoid-
ably generated by manufacturing imperfection. Two experi-
mental observations expose the asymmetry in computer disk
drives (and likely other disk-spindle systems as well):

1 Coupled disk-spindle vibration occurs in disk vibration
modes having any number of nodal diameters while the coupled,
axisymmetric disk-spindle model predicts coupling in only the
one nodal diameter disk vibration modes (Chivens and Nelson,
1975).

2 The degenerate pairs of natural frequencies in the axisym-
metric systemn split into pairs of distinct frequencies. In rotating
disk applications, natural frequency splitting can significantly
alter disk response near the critical speeds (Tobias and Arnold,
1957). The modes in which the natural frequencies split are
also subject to a suberitical speed instability that does not exist
in axisymmetric disks (Yu and Mote, 1987).
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In this work we develop an analytical formulation for cou-
pled, asymmetric disk-spindle vibration analysis, determine the
eigensolutions, identify the asymmetries causing coupled re-
sponse, and derive simple, general rules predicting coupling of
disk-spindle vibration and splitting of degenerate natural fre-
quencies in these nominally axisymmetric systems,

Coupled, axisymmetric disk-spindle systems were treated
analytically by Chivens and Nelson (1975). They concluded
that disk fiexibility significantly affects natural frequencies
but not critical speeds. In a discussion of this work, Klompas
(1975) addresses the importance of modeling support struc-
ture asymmetry because, in the presence of asymmetry, rota-
tion induces traveling waves in the disk that may be of more
concern than critical speeds. Wilgen and Schlack (1979)
show that for ratios of disk mass to shaft mass greater than
those considered by Chivens and Nelson (1975), disk flexi-
bility can dramatically increase or decrease the critical speeds
depending on disk placement. Flowers and Ryan (1993) note
that disk flexibility can play a significant role in superhar-
monic vibration that may be excited by rotating system non-
linearities. The above works focus solely on axisymmetric
systems where only the one nodal diameter disk vibration
modes couple with the spindle modes. Consequently, they
cannot explain the aforementioned expanded coupling and
natural frequency splitting phenomena. Inclusion of asymme-
try in the present coupled model explains these phenomena
with simple formulae. The simple forms of the derived eigen-
solutions are convenient for use in applications. The structure
of the presented formulation can be extended to include gyro-
scopic effects that are not included herein.

Coupled Disk-Spindle Model

The coupled disk-spindle system is shown in Fig. 1. The disk
is modeled as a uniform Kirchhoff plate, the spindle as a uni-
form Euler-Bernoulli beam, and the clamp as rigid. The spindle
can deform in two orthogonal planes. The coupled equations of
motion for disk displacement W( R, ¢, T') and spindle displace-
ments U(Z, T), V(Z, T) are

DECEMBER 1996, Vol. 63 / 953
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Fig. 1 Coupled flexible spindle-rigid clamp-flexible disk system
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where P=a < R < b,0 = 6 < 27 is the disk domain, § =
(0, Z)) U (Z, L) is the spindle domain, D is the disk flexural
rigidity, p, and p;, are the disk areal density and spindle density
per unit length, ET and £EI are the spindle bending stiffnesses
for the U(Z, T) and V(Z, T') deformations, m is the mass of
the clamp plus the mass of the disk, U™ and V™ are the displace-
ments of the clamp center of mass, and J., are the diametral
moments of inertia of the combined clamp/disk about the x and
y-axes with respect to point C. We define the dimensionless
variables
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¢ and i represent the spindle slopes at the spindle/clamp inter-
face and are equivalent to the rotations of the rigid clamp about
the y and — x-axes, respectively. Assuming the exponential time
dependencies

W(r, 6, 1) = w(r, )™ iz, 1) = u(z)e™"
0(z, 1) = v(z)e™

the dimensionless eigenvalue problem is

Viw — N{w —rcosfp —rsinfy] =0 P (4a)

Bi[w] + eCi[w] + ¢*D;[w] =0 r=1v,1
(4b)

Ku,.. — N'pu =0 €Kvy, —X'pv=0 § (4c, d)
u=u=v=v=0 z=0,1 (4e)

Kitye| 3 — Nau™ = 0 €Kvz|2 — Xfav™ =0 (4f, g)

_Kl.uzzlif o d‘)uzzzlzz = dluzuizl]
- X‘[.Iyqb - ff r cos GwdA] =0 (4h)
P
_‘EK[uzzﬁf - d?.“wlzz - dluwlz,]
- x*[m & ff rsin 9wa:4] =0 (4i)
I
u" = ulz. + dl”:'zl = 1‘lz; - d2uz|z;
Ur’:zulz.*'dl”:h, =U|z1'"diuz|zz (4, k)
“zlz, :uz|21=¢ U-‘.Iz. :Uzrz;‘:q:" (41,!’?1)

P is the disk domain y < r < 1,0 = # < 2m; § is the spindle
domain (0, z,) U (22, 1).

The disk boundary conditions (4b) include small, asymmetric
boundary operators €C;, €*D; superposed on classical, axisym-
metric boundary operators B;. We consider three types of inner
boundary asymmetry.

1 Clamped Boundary With Shape Imperfection (Fig.
2).

W+ egw, + 3¢°g*w,, = 0

| dg 2gdg
':}‘—ZEWQ] + € [ 1d9

1 (dg g dg 1,
- g + - e | = 0. 5
2')/ (d9)w 'yadﬂwre 23w 0. (5)

w,+£l:gw,r—
£y

The asymptotic approximations used to reduce the clamped
boundary conditions w = w,, = 0 on the irregular boundary to
(5) are discussed by Parker and Mote (1996b).
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Fig. 2 Inner clamped, outer free annular plate with a geometric shape
asymmetry at the inner boundary

2 Circumerentially Varying Linear Spring. The inner
boundary displacement is restrained by a spring of stiffness k
= kc + Ek(g )

w, =0

- pe=y
(V2w), + -'—rzl (w,” + E’%) + kow + ek(@)w =0 (6)

3 Circumerentially Varying Rotational Spring. The in-
ner boundary rotation is restrained by a spring of stiffness x =
Ky + ex(8)

w=20

==
v
Wy — — W + (?}

¥

v
— Wop — koW, — ex(@)w, = 0.
"

Extended Operator Formulation

We cast the coupled system eigenvalue problem in a struc-
tured form by defining the extended ecigenfunction a and the
extended stiffness (L) and inertia (M) operators

. -~

( w(r, &) Viw
u(z) K“zzzz
v(z) §K Uz
a=4{ u" )La= ¢ Ku, |2
™ EKv,, |2
¢ = K[ty |2 = dti| sy = dihe] )]
2 ';' .._EK[Uz:li:: = d?.”zzzlz; = dlvmlz.]J
(8a, b)
(w — rcos O — rsin G )
pu
pu
au™
Ma = « bl (8¢)

auﬂl
Sy — II r cos BwdA
F

Jaf — J.'r r sin AwdA
L B E

In the sequel, we use £ = 1 and J, = J, = J. The eigenvalue
problem (4) becomes

Journal of Applied Mechanics

La—-X‘Ma=0 (9a)
Bi[w] + eCi[w] + €*Di[w] =0 r=1,1 (9b)
u=u=v=v=0 z=0,1. (9¢)

Equation (9a) is a compact statement of (4a, ¢, d, f~i). With
(4 j~m), (8a) is completely defined by w, u, and v. The ex-
tended eigenfunctions a are elements in the Hilbert space H,

H=LP)DLS)OLES)ODRER®RD®R. (10)

Operators L. and M are mappings from H — H. The form (10)
suggests the inner product for p, q € H,

(p.q) = f p'g = “; piqidA + J; Pagadz

+ L Paq3dz + pags + psqs + Peqge + pagr. (11)

The extended operators L, M are self-adjoint provided the
uncoupled, annular disk eigenvalue problem, (4a, b) with ¢
=y = 0, is self-adjoint. With this specification and proper
normalization

(a', Ma’) = §; (a‘, La’) = (X,)*%; (12)

M is positive definite. The definiteness of L is the same as the
definiteness of the plate bending operator V* with boundary
conditions (9b).

The structure of the coupled disk-spindle eigenvalue problem
(9) is identical to that considered by Parker and Mote (1996a),
and the perturbation method developed therein applies. This
similarity of structure is not evident from (4). The eigensolu-
tions of (9) are represented in asymptotic expansions in the
small parameter e

NE= N+ ep + €lp + 0(Y)
a=ay+ e, + ea + O0(e). (13)

Components of a;, i = 0, 1, 2 are denoted w;, u;, v;, ul", vf",
¢;, and yfr; . Substitution of (13a, b) into (9) leads to a sequence
of perturbation problems governing a,, a;, and a,

La; — \*Ma, = 0 (14a)

Bi[we] =0 r=v1 (14b)

=y, =vp=vy,=0 z2=0,1 (14¢)
La; — \*Ma, = uMa, (15a)
Bi[w,] = —Ci[wy] r=vy1 (15b)
w=u,=vy=v,=0 z=0,1 (15¢)
La;, — \*Ma, = uMa, + nMa, (16a)
Bi[w;] = =Ci{w,] — Di[ws] r=1,1 (16b)
w=m=n=1=0 z=0,1 (16¢)

Problem ( 14) can be solved exactly for the infinite set of unper-
turbed eigensolutions (\*, a,) of the axisymmetric disk-spindle
system. Self-adjointness of (14) ensures orthogonality of the
a,. The normalization {a, Ma) = 1 and (13b) give

(ap, Mag) = 1 (ap, Ma,) = 0. (17)

Unperturbed Eigensolutions

The unperturbed eigenvalue problem (14) is that of an axi-
symmetric, coupled disk-spindle system. The component equa-
tions for wy, Hy, and v, are obtained from (4) with ¢ = 0 and
X% = \*. The coupled system eigenfunctions are characterized
by their numbers of nodal circles m and nodal diameters »n in the
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Fig.3(a) Two nodal diameter disk eigenfunction, Solid and dashed lines
denote the nodal diameters of the sin 20 and cos 26 dependent eigen-
functions, respectively.

—

Fig. 3(b) One nodal diameter coupled eigenfunction. Solid and dashed
lines denote the nodal diameters of the sin # and cos #§ dependent eigen-
functions, respectively.

Fig. 3 Axisymmetric system {unperturbed) eigenfunctions

disk deformation. Two classes of unperturbed, coupled system
eigensolutions exist depending wn n.

1 Disk Eigensolutions (n = 1). Disk eigensolutions have
eigenvalues N and disk deformation wy determined from the
uncoupled, axisymmetric disk eigenvalue problem; the spindle
does not deform, u, = v, = 0 (Fig. 3(a)). The one nodal
diameter (n = 1) disk eigensolutions couple with the spindle
and are excluded from this class. For n = 0, the eigenvalues
are distinet, and the eigenfunction a, is defined by

wy = AyJo(Nr) + Az[o(h?’] + A:Yo(Ar)
+ AKo(Ar) = Ro(r) wp =1 =0. (18)

For n = 2, the eigenvalues are degenerate. The two unperturbed
eigenfunctions ao, and a,, are defined by

wy, = [AJ,(Ar) + Azl (Ar) + AsY,(Ar)
+ A4K,(Ar)] cos nf = R,(r) cos nf

=U0]'_"0

n=2

o, (19a)

wo, = [A S, (Nr) + AL (Nr) + AT, (Ar)
+ A4K,(Ar)] sin nf = R,(r)cosnf n=2
Uy, = Vg, =0 (19b)
where J,(\r), I,(Ar), Y, (\r), and K, (\r) are Bessel functions.
These solutions satisfy (4a). The A; are fixed by the disk bound-
ary conditions (4b) with € = 0, The integrals in (4h, i) repre-
senting the moments that the disk transmits to the clamp vanish
for the solutions (18), (19).

2 Coupled Eigensolutions (n =1). In the coupled eigen-
solutions, one nodal diameter disk deformation transmits a mo-
ment to the clamp and causes spindle deformation (Fig. 3(b)).
For an axisymmetric spindle, all eigenvalues are degenerate.
The two corresponding eigenfunctions are

wo, = [AJ,(Nr) + Ayl (Nr) + AzY,(Nr)
+ ALK, (Ar) + rehg] cos 8 = Ri(r) cos 6
E, sin 8z + E, sinh 8z + E; cos Bz

+ E, cosh Bz 0<z <z
Mo = F, sin Bz + F, sinh Bz + F, cos fz
+ F, cosh Bz n<z<l
v, = 0 (20a)

956 / Vol. 63, DECEMBER 1996

wo, = [A Jy(Nr) + Ayd,(Nr) + AsY,(\r)
+ A4K,(Nr) + rinp] sin @ = R,(r) sin 8

chz{)

E\ sin 8z + E, sinh fz + E; cos Gz

+ E4 cosh gz 0<z<g

Py, =
F\ sin 8z + F, sinh 8z + F; cos (z

+ F, cosh Sz <z<l
4 F 4
==\ 20h
B % (206)

These satisfy (4a, ¢, d). The characteristic determinant and
eigenfunction coefficients A, , E;, F; are readily calculated from
(4b, e—m) using computer algebra software. Two types of cou-
pled eigenfunctions exist. The first are dominated by spindle
deformation with only small disk deformation, The associated
eigenvalues are close to those of a spindle with attached rigid
mass and inertia, The first and third coupled eigenvalues in
Table 1 are of this type; compare these eigenvalues, A, = 2.909
and A, = 8.575, to the fiexible spindle/rigid disk eigenvalues
of Ay = 2915 and A, = 8.204. The second type of coupled
eigenfunction is dominated by disk deformation with small spin-
dle deformation. The associated eigenvalues are close to those
of the uncoupled n = 1 disk eigenvalues. The second coupled
eigenvalue in Table 1, A, = 3.654, is of this type (the n = 1
uncoupled disk eigenvalue is \y = 3.644).

The coefficients A; in (18), (19), and (20) are numerically
different. Because of axisymmetry, however, the A; in (19a)
and (19b) are identical as are the A;, E;, and F; in (20a) and
(20b). Because ¢ = ¢y, R, (r) is the same in (20a) and (205).

For the axisymmetric, unperturbed system, coupling occurs
in only the one nodal diameter disk eigenfunctions and all but
the n = 0 eigenvalues are degenerate. This results from axisym-
metry of the disk; it is unchanged by (1) the type of axisymme-
tric, unperturbed disk boundary conditions, (2) spindle asym-
metry (£ # 1), (3) different spindle stiffnesses in the left and
right-hand sections, (4) specified spindle support conditions,

Table 1 Dimensionless (A) and dimensional unperturbed eigenvalues
of an axisymmetric (¢ = 1, J, = J, = J), cantilevered (no right-hand
spindle section), coupled disk-spindle system. Disk subscripts refer to
the number of nodal circles m and nodal diameters n in the eigenfunction.
The coupled subscript m denotes the numerical order of the elgenvalues.

Dimensional Parameters Dimensionless Parameters
a=0.1016m El=21110, N-m? ¥=05
b=0.2032m ps =9.155 kg/m K =2815.

D=1845N-m m="7.656 kg p=44.89

P4 =8.030ke/m?  J=002822 kg~m? a=92.36

L=2Z,=04064m  d,=001320m J =206
dy =0.0325

r_ K  (radfs) | f(Hz)

hgo = 3.603 476.7 75.87

hoa = 3.842 5419 B6.25

Disk, Ayw | ho3=4325 | 6869 | 1093
Aoy = 5.082 948.2 150.9

Ags = 6.003 1323. 2106

A o=2909 | 3107 | 49.44

Coupled, A, | A3 =3.654 490.3 78.03
Ay =8.575 | 2700, | 4297
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(5) clamp inertia asymmetry (J/, # J,), and (6) different clamp
thicknesses d, and d,.

Solution of Perturbation Equations

Consider the inner boundary condition perturbations (5-7).
The outer boundary conditions are axisymmetric and unper-
turbed. For each unperturbed eigensolution (A%, a,), (15) and
(16) determine the first and second-order eigensolution pertur-
bations.

The boundary conjuncts of the operators L and M (Roach,
1982) are

Ju(p. q) = (Lp, q) — (p, Lg)
Ju(p, q) = (Mp, q) — {p,Mq) =0 (21)

for p, q € H. For elements of H satisfying homogeneous spindle
conditions at z = (, | (such as a,, a,, and a, of (134)), the
boundary conjunct Jy, reduces to the boundary conjunct Jy*
associated with the plate bending operator V*. For example,

N(ag, a) = Jo'(wo, wi) = (Viwg, wi) = (wy, Viwy)
= f [Vzwlwn" = (Viw)awo + wi(Vwq),
ap

—w, Viwylds§ (22)
where 8P denotes the circular plate boundaries and
VA(e) = (e + (/P + (2D

At the outer boundary r = 1, (+), = (=), and (*), = 1/r()s;
at the inner boundary r = 7y, (¢), = —(*),and (»), = —1/r{+)s.
Integration is counterclockwise on the outer boundary and
clockwise on the inner boundary.

Consider a distinct unperturbed eigenvalue A* with eigen-
function a,. The inner product of each side of (15a) and (164)
with a, and use of (21), (17), and (22) give the solvability
conditions

(23)
(24)

Consider a degenerate unperturbed eigenvalue A* of multi-
plicity two having associated orthonormal, unperturbed eigen-
functions a, and a,,. As a result of the degeneracy, the unper-
turbed eigenfunction a, is initially indeterminate

o= —Jy(ag, a;) = —Jot(ws, wy)
n = —Ju(ay, a) = —Jo*(wg, ws).

ap = b\a,, + by, (25)

with b, and b, determined subsequently. In the degenerate case,
two solvability conditions for the problem (15) must be satis-
fied:

by = —Ji(ay,, a)) = —Jot(wy,, wy). (26)

Equations (26) lead to a 2 X 2, symmetric, algebraic eigenvalue
problem (Parker and Mote, 1995a)

Db = pb. 27)

The eigenvalues y;, are the first-order perturbations of the de-
generate unperturbed eigenvalue. If p; = u, the eigenvalue A*
remains degenerate in a first-order perturbation; the two eigen-
vectors b = (b by)" are arbitrary unit vectors. If py # pz, A*
splits into distinct eigenvalues and the eigenvectors b = (b,
by)" fix the two unperturbed eigenfunctions (25).

1 Disk Eigensolutions (n # 1). Consider the degenerate
disk eigenvalues and associated eigenfunctions a,,, defined by
(19). We represent an arbitrary geometric asymmetry g(#) in
(5) by its Fourier series

Journal of Applied Mechanics

g(0) = X gjcosjf + 3 gisinjf = 3 ge"

i=l j=1 e

g = 3(8f —ig}). (28)
Evaluation of (26) yields
2 2 © 2
D:ﬂ(d ‘SN ) Iig?l g'.’;:- ]
2 dr rey Bwm — 8
d*R, 2

= 17r'y( a2 |r=7) | ganl. (29)

Eigenvalue splitting in a first-order perturbation is identified
immediately from (296): An n nodal diameter degenerate ei-
genvalue splits from geometric asymmetry if and only if g, # 0.
The rate of splitting is proportional to | g,,|. The corresponding
results for an arbitrary linear stiffness variation k() in (6) are

k(f) = X kjcos j@ + 3 kisinjd = Y ke” (30)
=1 j=1 j==re

D=-— 121’ m,,(ym[ "‘5"_ ]

2 —k '2::

m = tﬂ‘y[Ru('y)_lzlkZ'll o

The eigenvalue splitting rule is as follows: An n nodal diame-
ter degenerate eigenvalue splits from linear stiffness asymmetry
if and only if ky, # 0. The rate of splitting is proportional to
|k, |. For a general rotational stiffness variation () in (7),

(31)

k(0) = 3, kicosjf + 3 kisinjl =Y xe™ (32)

J=1 j=l J=—

2 g ¥
) Kan K ]
& c
r=y K —Ky
2
) el
rey

The eigenvalue splitting rule is as follows: An n nodal diame-
ter degenerate eigenvalue splits from rotational stiffness asym-
metry if and only if «;, # 0. The rate of splitting is proportional
to IK2n | .

Eigenvalue splitting is independent of the disk outer boundary
conditions, provided they are axisymmetric, Outer edge bound-
ary conditions change the eigenvalue perturbations only through
their influence on R, (r) in (29b), (31b), (33b). For geometric
or stiffness asymmetries in the disk outer boundary conditions
with axisymmetric inner boundary conditions, the splitting rules
are identical to the preceding. Rules for simultaneous perturba-
tion of the inner and outer disk boundary conditions are readily
derived. For a coupled system with geometric asymmetry at the
inner boundary (5) and linear stiffness asymmetry (as in 6) at
the outer boundary,

_ Ty (dRy
R z(dr

( dR,
p=Etry| —
dr

(33)

D= ngm e o l)!ilil'l

2
B2n
r=y

where Dy, is the matrix from (29a) and Dy is from (31a)
with v = 1. kyy = g5, = 0 implies no first-order splitting.
However, k,, + 0 and g,, # 0 does not necessarily cause split-
ting; two asymmeiries, either of which would split an n nodal
diameter eigenvalue if acting individually, may not split the
eigenvalue when present together. Fourier representation of the
asymmetry allows the above rules to be applied to arbitrary

2

d R!!
= & W[R--(’Y)]zkm + Tr')’( drz

n=]\

(34)
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continuous or discontinuous asymmetries, Discontinuous asym-
metries include radial edge slots or discontinuous boundary
supports. All of the above splitting rules are also valid for
uncoupled disks and generalize the rules given by Parker and
Mote (1996a, b).

Orthogonality and completeness of the unperturbed eigen-
functions ag allow expansion of the eigenfunction perturbation
a, in the infinite series

- Jl.(aa1 i)

-n

at= Y eab+3a ¢
i=1i+k

where af denotes the first-order perturbation of the kth unper-
turbed eigenfunction a, i is an index of all eigensolutions, and
A is defined by an arbitrary function w satisfying the inhomoge-
neous boundary conditions (158), #(z) = 0, and 7(z) = 0. The
extended eigenvalue problem formulation and resulting orthog-
onality make the series solution (35) possible. Though the series
(35) converges in the natural metric of (11), its use in calculat-
ing the second-order eigenvalue perturbation 7 may lead to a
divergent series (Parker and Mote, 1996b). Additionally, at in
(35) is approximate, is difficult to use in modal response analy-
ses, may converge slowly, and requires calculation of many
unperturbed eigensolutions.

These difficulties do not arise with the exact solution for a,,
which is determinable from the decomposition

a, = ¢y + ca,, + af +al —

Wy = o\Wo, + Cawp, + Wi + W

Uy = cillg, + Calg, + ui + u)  (36)

v = v, + Cavg, + Vi + VY.

The components w’, u}, and v} defining a’ are particular solu-
tions of the inhomogeneous component differential equations
of (15a); the components wf, u!, and v} defining a} are general
solutions of the homogeneous component differential equations
of (15a); the first two terms are indeterminacies required be-
cause ay, , satisfy the homogeneous form of (15); ¢, and ¢, are
constants. For a; given by (25) and (19), the critical element
al of (36) is defined by

o p‘r
M=

+ AsY, (W) + AK,. (M) (b cos n8 + b, sin nf)

[AyJusr (M) = Axd (W)

+ rcos Oy + rsin 8¢, (37a)

(37b)

uf =vi =0

where ¢, = uy |, and i, = v, _|,. Components of the homoge-
neous solution af are

wh =3 [PJO\) + QL(\r) + BY,(\r)
j=0

+ O;K;(Ar)] cos jO + 3, [RJ,(Ar) + SI(\r)

J=1
+ RY,(\r) + SK;(\r)] sin j#  (38a)
E, sin Bz + E, sinh Bz + E; cos Bz
+ Eicosh Bz 0<z<z
uh = (38b)
F, sin Bz + F, sinh Bz + F, cos Bz

+ Fycosh Bz zn<z<1
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G, sin Sz + G, sinh Bz + G, cos Bz
+ G, cosh Bz

H, sin Bz + H, sinh Bz + H; cos Bz
+ Hycoshfz z<z<l.

0<z<g
(38¢)

With the particular solution (37), the coefficients in (38) are
computed from the boundary conditions (156, ¢) and the clamp
momentum balances of ( 15a). Exact expressions for the coef-
ficients can be obtained using computer algebra software. Rules
to predict when the disk eigenfunctions couple with the spindle
emerge from these expressions.

Consider again the examples (5)—(7). For the geometric
asymmetry and the general g(#) from (28), coefficients E; and
F, of (38b) are nonzero if and only if

bi(ghvi + gn-1) + ba(ghi + gi-t) # 0. (39a)
G, and A, of (38¢) are nonzero if and only if
by(ghe1 — gnm1) — ba(gh1 — gi-1) * 0. (39b)

Thus, the disk-spindle eigenfunction coupling rule for geometric
asymmetry is as follows: If either or both of (39) are satisfied
for an n nodal diameter disk eigenfunction, then the perturbed
eigenfunction couples the disk and spindle deformations; other-
wise the perturbed eigenfunction involves only disk deforma-
tion, For linear stiffness asymmetry and k(#) from (30), «, and
v, are nonzero if and only if

bi(kp + knoy) + balkisy + kiy) =0 (40a)
bi(kysr — kny) — ba(kpy — ki) # 0. (40b)

The coupling rule for linear stiffness asymmetry is as follows:
If either or both of (40) are satisfied for an n nodal diameter
disk eigenfunction, then the perturbed eigenfunction couples
disk and spindle deformations; otherwise the perturbed eigen-
function involves only disk deformation. For rotational stiffness
asymmetry and «(#) from (32), #, and v, are nonzero if and
only if

by (ki + kay) + ba(egn + kuey) #= 0 (41a)
by (k41 — Ku1) — ba(kir — k5—) # 0. (41b)

The coupling rule for rotational stiffness asymmetry is as fol-
lows: If either or both of (41) are satisfied for an n nodal
diameter disk eigenfunction, then the perturbed eigenfunction
couples disk and spindle deformations; otherwise the perturbed
eigenfunction involves only disk deformation. Satisfaction of
the coupling conditions (39)-(41) implies only that a, in-
volves spindle deformation (%, # 0 and/or v, # 0). Absence
of coupling does not imply a, = 0 because w, + 0.

With a; known, the normalization condition (17b) and two
solvability conditions for (16) generate the matrix equation
(Parker and Mote, 1996a)

Dy —p Dy -~ —b €
Dy, Dy — o —b Ca
_b] _bz 0 n

uap,, Mlai + all) + Ju(ao, a;)
= p’(aog! M[ﬂ’; 3 af]) + JL{aDp az)
bi(a,, M[al + a{]) + b.(ay,, M[a] + af])

(42)

where Dy are components of D and Ju(ay, &) = J.(ag,
8,)|,—.,-0. The operator in (42) is invertible if and only if D
has distinct eigenvalues y. In this case, ¢,, ¢,, and 7 are found
from (42). Computer algebra software simplifies evaluation of
the right-hand side of (42). ¢, and ¢, complete the solution (36)
and 7 gives the exact, second-order eigenvalue perturbation. If
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the 4 are degenerate, the b = (b, b;)" are indeterminate. b,,
b,, and 7 are calculable, however, from the first two equations
of (42) and b? + b} = 1. The exact solution for a, utilizes a
decomposition analogous to (36) and requires the particular
solutions w4, uf, and v}. Though not pursued here, determina-
tion of wi, u5, and v4 is achievable (Parker and Mote, 1997).

For the zero nodal diameter unperturbed eigenfunctions (18),
(23) yields 2 = O for the three examples. The solution for a;
is obtained by reduction of the results presented for the degener-
ate n = 2 eigensolutions. The perturbed eigenfunction a, does
not couple with the spindle; this and the result u = 0 arise
because the asymmetries (28), (30), and (32) have zero mean.
The exact, second-order eigenvalue perturbation 7 is calculated
from (24) and is nonzero, in general.

2 Coupled Eigensolutions (n = 1). For the coupled
eigensolutions (20), the matrices D and eigenvalue perturba-
tions p for geometric, linear stiffness, and rotational stiffness
asymmetry are given by (29), (31), and (33) with n = 1.
Eigenvalue splitting is predicted by use of n = 1 in the appro-
priate splitting rule. The eigenfunction perturbation a, is decom-
posed as in (36). The particular solution a* is defined by

wh = — % [A(N) — AsL(AF) + As, (M) + A (Ar)]

X (b; cos 8 + by sin @) + r cos 8¢, + rsin 8y, (43a)
E, cos Sz + E, cosh Bz

u = Mpz} —~ E;s8in Bz + E;sinh fz 0 <z <z
4K F, cos Bz + F, cosh Bz
— Fysin Bz + Fysinh Bz 2, <z <1
(43b)
G, cos B8z + G, cosh fz
, upz — Gysin Bz + Gysinh Bz 0 <z <z

v, =

4kp> H, cos Bz + H, cosh Bz
—~ Hysin Bz + Hysinh Bz 7z <z < 1.
(43¢)

a’ is defined by (38), and again its coefficients are calculable
exactly. Exact solution for 7 is given by (42) as for the disk
eigenvalues.

Example: Geometric Shape Asymmetry

To illustrate the eigenvalue splitting and eigenfunction cou-
pling phenomena, we consider the cantilevered system of Fig.
2 with the parameters of Table 1. The specific shape asymmetry
corresponding to (28) is

g(0)=500s0+§sin0+§c0520
— L1sin 26 — §cos 49 ~ ; cos 6. (44)

The splitting and coupling rules (29) and (39) give the follow-
ing results.

1 Disk Eigensolutions.

n = 21 The eigenvalues split at first-order perturbation (g,
# 0). The eigenvectors of (29a) are b; = (1 0)"and b, =
(0 1)7. Conditions (39) are satisfied for b, and b, so the
perturbed eigenfunctions associated with both eigenfunctions
(25) couple with the spindle.

n = 3: The eigenvalues split at first-order perturbation (g,
+ 0). For the eigenvector b, = (1 0)7, neither of (39) is
satisfied and the eigenfunction does not couple with the spindle.
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Fig. 4 Percent changes in the disk eigenvalues for the geometric shape
asymmetry of (44). Subscripts mn denote the number of nodal circles
{m) and nodal diameters (n) in the unperturbed eigenfunction. Subscripts
1, 2 indicate the split eigenvalue loci. The inset is an exploded view for
small e.

For the eigenvector b, = (0 1)7, (39b) is satisfied and the
asymmetry introduces disk-spindle coupling ( with v(z)) for this
perturbed eigenfunction.

n = 4: The eigenvalues do not split at first-order perturba-
tion (gg = 0). Because g; = gs = 0, neither of (39) is satisfied
and the n = 4 eigenfunctions do not couple with the spindle.

n = 85: The eigenvalues do not split at first-order perturba-
tion (g0 = 0). by, of (29a) are indeterminate. They are deter-
mined with 77 from the equations of (42). They are such that
(39) are satisfied and both eigenfunctions couple with the spin-
dle.

The above results illustrate independent eigenvalue splitting
and disk-spindle vibration coupling. The n = 2 eigensolution
splits and couples. In contrast, the n = 3 eigenvalue splits but
one eigenfunction does not couple. Conversely, the n = 5 eigen-
function couples but the eigenvalue does not split. The n = 4
eigensolution neither splits nor couples, showing that eigensolu-
tions can be remarkably insensitive to certain asymmetry distri-
butions.

Eigenvalue changes as a function of asymmetry amplitude
are shown in Fig. 4. The n = 2, 3 eigenvalues, which split at
first order perturbation, are most dramatically affected, with
changes around 16 percent occurring for e = 0.03. For ¢ =
0.03, the peak-to-peak amplitude of the shape deviation g (9)
is 8.6 percent of the inner radius y = 0.5. Splitting of the n =
2, 3 eigenvalues is evident in the inset of Fig. 4. That splitting
of the n = 4, 5 eigenvalues is a higher order effect is also
apparent from the inset. For small e, the loci associated with
one of the split eigenvalues increases while the other decreases.
For larger ¢ all eigenvalues decrease, a result of the additional
flexibility from spindle coupling.

2 Coupled Eigensolutions. The eigenvalues split at first-
order perturbation because g, + 0. Changes in the first three
coupled disk-spindle eigenvalues are shown in Fig. 5. Coupled
eigensolutions whose unperturbed eigenfunctions are dominated
by disk deformation are more strongly affected by disk clamp
asymmetry than coupled eigensolutions dominated by spindle
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Fig. 5 Percent changes in the coupled eigenvalues for the geometric
shape asymmetry of (44). The first subscripts (1, 2, 3) denote the numerical
order of the unperturbed eigenvalues. The second subscripts (1, 2) indicate
the split eigenvalue loci. The inset is an exploded view for small e.

deformation. The unperturbed X, eigenfunction involves primar-
ily disk deformation with small spindle deformation, and X; is
significantly affected by disk asymmetry. The eigenvalues X,
and A; are associated with unperturbed eigenfunctions domi-
nated by spindle deformation; they change only slightly with
increasing asymmetry.

Eigenvalue Splitting and Eigenfunction Coupling
Rules

From the identical form of the eigenvalue splitting and eigen-
function coupling rules for the boundary asymmetries consid-
ered, it is evident that splitting and coupling are dictated by the
distribution and not the source of the asymmetry. Though only
geometric and stiffness asymmetries were considered, inertia
asymmetry will lead to identical forms for the splifting and
coupling rules. Furthermore, disk eigenvalue splitting and disk-
spindle coupling in other than the one nodal diameter eigenfunc-
tions ocecur only in the presence of disk asymmetry (including
disk nonuniformities such as circumferentially varying thick-
ness). These effects are independent of spindle characteristics.
For a uniform disk, boundary asymmetry is the only asymmetry
that splits the degenerate disk eigenvalues and leads to expanded
disk-spindle coupling. Other possible asymmetries include dif-
ferent spindle stiffnesses in the u(z), v(z) bending planes (&
# 1), different clamp rotational inertia in the two bending
planes (J, # J,), different spindle stiffnesses in the left and
right-hand spindle sections, nonuniform spindle stiffness EI(z),
different left and right clamp thicknesses (d, # ), and differ-
ent spindle boundary conditions. Though these asymmetries al-
ter the eigenvalues and some of them remove the degeneracy
in the coupled eigenvalues, they neither split the disk eigenval-
ues nor induce additional coupling beyond the # = 1 eigenfunc-
tion.

The utility of the perturbation solution, splitting rules, and
coupling rules is enhanced by their simplicity and generality.
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Because the perturbations are derived for arbitrarily distributed
asymmetries, they can be used in design to distribute unavoidable
boundary asymmetries so as to minimize vibrational effects. For
example, if the bearing excitation spectrum is known (even if
only approximately ), asymmetries can be chosen to avoid cou-
pling in eigenfunctions with natural frequencies near the excita-
tion frequencies. A similar process could be used to isolate spin-
dle vibration from disk excitation. Additionally, asymmetry can
be deliberately introduced so as to tune natural frequencies away
from forcing frequencies of disk, spindle, or clamp excitation.
The simplicity of the rules allows them to be utilized with mini-
mal calculation for initial design or for troubleshooting existing
vibration problems. The explicit parameter dependence further
simplifies the process by showing which parameters have maxi-
mal influence on the eigensolutions.

Conclusions

1 The eigenvalue problem for coupled disk-spindle-clamp
vibration is cast in a self-adjoint form (9) by incorporating
the disk, spindle, and clamp displacements into an extended
eigenfunction (8a). This formulation preserves the orthogonal-
ity of the coupled system eigenfunctions and provides a concise
framework for coupled disk-spindle vibration analysis.

2 Exact eigenvalue and eigenfunction perturbations are de-
rived for coupled disk-spindle systems with geometric shape,
stiffness, and combined geometric/stiffness asymmetries in the
disk boundary conditions. Eigensolution approximation results
only from truncation of the asymptotic series (13). Fourier
representation of the asymmetries allows treatment of general
continuous or discontinuous asymmetry distributions,

3 The unperturbed, axisymmetric system eigenfunctions are
exactly calculable and are of two types: disk eigenfunctions
with no spindle deformation and coupled disk-spindle eigen-
functions. Only the one nodal diameter disk eigenfunctions cou-
ple with the spindle.

4 Splitting of the degenerate, unperturbed eigenvalues and
coupling of the uncoupled, unperturbed disk eigenfunctions
from disk boundary condition asymmetry are predicted by sim-
ple, general rules based on the Fourier distribution of the asym-
metry. Both splitting and coupling depend on the distribution of
the asymmetry and are independent of the source of asymmetry.
Coupling is caused solely by disk asymmetry; spindle asymme-
try does not induce coupling.

5 Asymmetry-induced coupling of the unperturbed, disk
eigenfunctions with the spindle provides a mechanism for en-
ergy transfer from bearing/spindle excitation to disk vibration
and vice versa. Coupling also introduces additional flexibility
that can significantly reduce the system natural frequencies.

6 The self-adjoint formulation of the coupled system eigen-
value problem and the complete, orthonormalized set of ex-
tended eigensolutions are well suited for modal response analy-
ses. Generalized coordinates p; (¢) of the modal representation

a(r,0,z,t) = 2, pi()a‘(r, 8, z)

decouple as a result of orthogonality. Disk, spindle, clamp, and
bearing excitations can be incorporated in an extended forcing
vector analogous to (8a). The coupled system eigenfunctions
a’ are also well suited for use as expansion functions in Ritz-
Galerkin discretizations or as basis functions for nonlinear per-
turbation analyses.
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Exact Time-Dependent Plane
Stress Solutions for Elastic
Beams: A Novel Approach

We consider an elastically isotropic beam of narrow rectangular cross section gov-
erned by the dynamic equations of linearized plane stress theory and subject to typical
boundary and initial conditions associated with flexure. We use one of the three
stress-displacement relations to express the axial stress o, in terms of the axial
displacement U and the normal stress o. Assuming this latter stress and the shear
stress T to be given functions of position (x, z) and time t, we write the remaining
two stress-displacement equations as a nonhomogeneous hyperbolic system for U
and the normal displacement W. This system has a simple, explicit solution in terms
of o, 7, and V, the value of W on the centerline of the beam. Introducing certain
body forces f, and f,, we obtain explicit formulas for o, v, U, and W valid in the
interior of the beam and satisfying any imposed tractions on the faces of the beam.
We satisfy initial conditions by adding certain explicitly computable increments to
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Che rlnllesvmemwnz;;&g the initial displacements and velocities. Satisfaction of end conditions of displacement
Fellow ASME or traction yields a certain consistency condition along the centerline in edge zones

( “‘boundary layers’' ) of width J;H, where v is Poisson's ratio and 2H is the depth
of the beam. In particular, if V is taken as a solution of the equations of elementary
beam theory, then outside these end zones the body forces f, and f, and the incremental
initial conditions are ‘small.”’ If V within the edge zones is also identified with the
solution of elementary beam theory, then a certain increment of the order of the
dominant longitudinal stress o, must be added within the edge zones to the prescribed
value of T on the face of the beam. (This is consistent with the neglect of two-
dimensional end effects in elementary beam theory.) These results should be of use
as analytical benchmarks for checking numerical codes.

upper and lower faces of the beam, but only within a distance
from the ends of the order of the depth of the beam.

It is very natural to identify V with a solution of elementary
(Euler-Bernoulli) beam theory and o and 7 with the associated
two-dimensional stresses inferred from the exact equations of
motion. In doing so, we find that the incremental loads and
initial conditions are ‘‘small’’ away from the end zones, as
expected. Within the end zones, the incremental loads are of
the order of magnitude of the (dominant) axial stress, again
consistent with known asymptotic solutions of plane stress the-
ory (e.g., Duva and Simmonds, 1992). Thus, our method of
constructing exact solutions not only gives us a way to measure
the accuracy of beam theory, it also provides standards against
which to compare two-dimensional numerical solutions.

Introduction

Our motivation for this paper is the question of how to evalu-
ate the errors in approximate solutions to initial/boundary value
problems in the linearized theory of (two or three-dimensional )
elasticity, such approximations arising either from numerical
solutions or from exact solutions of simplified structural models
such as beam, plate, or shell theories. In attempting to assess
the accuracy of the stress fields inferred from such models,
especially from so-called *‘higher-order’’ theories, many au-
thors use as their standard of comparison very special bench-
marks. Not only are such exact solutions usually static, they
nearly always satisfy periodic boundary conditions (i.e., condi-
tions of simple support) and thus fail to exhibit edge zones
(boundary layers) where the accuracy of various structural mod-
els is apt to be the worst.

As a first (and perhaps novel) step towards obtaining exact,
time-dependent, realistic benchmarks, we construct exact plane
stress solutions for elastically isotropic rectangular beams, as
described in the abstract, in terms of a normal and shear stress,
o(x, z,t) and T(x, z, t), and a function V (x, t), where x and
z are axial and normal distance, respectively, and ¢ is time,

To obtain these exact solutions we must impose certain ex-
plicitly computable incremental external loads and initial condi-
tions. In particular, incremental shears must be imposed on the

The Equations of Plane Stress Theory

To avoid distracting details, we confine attention to an elas-
tically homogeneous isotropic beam, subject to certain body
forces and boundary/initial conditions specified below. Thus,
in aregion 0 < x < L, —H < z < H of the xz-plane, we have
the three displacement-stress relations

EU,=0,—ve, GUU,,+W,)=1, EW,=0— ()

Vo,

plus the two equations of motion
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Here, U and W are displacements in the x and z-directions,
respectively, o, is the axial stress, 7 is the shear stress, and o
is the normal stress. Further, E is Young’s modulus, G = E/
2(1 + v) is the shear modulus, p is the constant mass density,
Jf. and f, are body forces—destined to be taken as error loads—
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and a comma followed by a subscript denotes differentiation
with respect to that subscript.
The boundary conditions on the face of the beam are

o(x, 2H, 1) = +5p(x, 1), 7(x, =H, 1) = 3(x, 1), (3)

where p is prescribed and g is to be chosen later as a certain
error load. The initial conditions are

U(x,z,0) = U*(x,z), U,(x,z,0) =UHx,2) (4)

W(x,z,0) = W*(x, 2), Wulx,2,0)=WZHx, 2), (5)
where U*, etc., are prescribed.
Using the notation
F=flE, «=EIG (6)
and following Duva and Simmonds (1992), we rewrite (1), as
o, =U,+vo (@))]

and henceforth use this relation to eliminate the axial stress in
favor of U and 7. The two remaining displacement-stress rela-
tions may now be given the form

U.+ W, =«7, W, +vU,=(-vHo. (8)

If we assume that & and 7 are known, then (8) represents a
simple first-order system of partial differential equations for U
and W, hyperbolic in the spatial variables x and z. As the time
t enters the system (8) only as a parameter, we shall often
suppress ¢t when writing down the arguments of a function.
To integrate (8) we introduce the characteristic coordinates

E=x+Vuz, {=x~1uz (9)

so that

9.8 @ 8 _a .
=i g, a_z_‘{;(é_gqﬁ)' (10)

If we add to or subtract from (8), Eq. (8), multiplied by Vv
and introduce the notation'

A* = (1 — v))7 = Yok, (11)

our hyperbolic system takes the form
WU + W) = A*(€, §) (12)
Wo(olU = W) = A(£, §) (13)

which may be integrated to yield

Wo(oU + W) = J:(DA*(E, 0)dE + VwF ()  (14)

Wl — w) = _r

a(§)

A& DT + G, (15)

where F and G are unknown functions of integration and

—¢, €€ [~VvH YvH)
a(f) =

. (16
¢ —2/vH, ¢eWvH, VvH + L) 1e)

(See Fig. 1.)

'In (11) and what follows, we take the spatial arguments of A= to be (£, §),
but those of 7 and T to be x and z. If we wish to write A™ as a function of x and
z (with ¢ suppressed )}, we shall use (9) to write A¥(x + vvz, x — Vrz), ete,
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t (L-v% HL+yV H)
A
L+ IV HL-YVH)
Z=H
1 (S 113)]
nr
- — -f —_—
1, I g
oN_ | »

(VWWHAVH)

Fig.1 Geometry and integration paths for a rectangular beam in charac-
teristic coordinates

To proceed further, we henceforth confine attention to the
flexure problem in which

W, r _— even in
U, o odd | M
(The parity is reversed in the complementary extension prob-

lem.) From (9) we see that replacing z by —z is equivalent to
interchanging £ and C. Thus, by (11) and (17),

AT D) =-A7(, 0. (18)

Substituting (18) into (14) and again using (17), we further
conclude that

(17)

G(¢) = —F(¢), —VvH =¢. (19)

Finally, by adding and subtracting (14) and (15) and changing
the dummy variable of integration from £ to , we obtain the
following explicit formulas for the horizontal and vertical dis-
placements in terms of &, T (via A7), and the unknown func-
tion F:

4 _ 13
wv = [ A6 T - J'mﬂt;.t)dﬁ

a(f)

+ VW[F(C) — F(€)] (20)
A& Q)dt - f{mA‘(c, §)dg

+WWIF(L) + F(&)]. (21)

If v = 0, (20) and (21) no longer hold (because our hyper-
bolic system degenerates to a parabolic one). However, re-
turning to (8), we readily obtain by direct integration

oW = —.fc

a(f)

W= J.za‘(x, 2)d7 + F(x) (22)
0

U= J:[(Z— 2)Tu(x, 2) + kT(x, 2)1dZ — 2F"(x), (23)

where F(x) is an arbitrary function of integration and where
the argument ¢ has been suppressed. Henceforth, we shall as-
sume that v * 0.

Motion of a Cantilevered Beam

Our aim is to construct, a posteriori, error loads and incremen-
tal initial conditions such that (20) and (21) represent exact
solutions of the dynamic equations of linearized plane stress
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theory. This requires that we specify #(x, z, t) and T(x, 2, 1)
(so that we may compute A" ), and that we insure that the
displacement and/or traction conditions on the ends of the beam
are satisfied exactly. As a first step in this direction we set

F=F(x2,0) +3q(x, 1) (24)

W= W, zt)+ ik f g(x, t)dr, (25)
1]

where, from (3),, %q‘ is the value of 7 on the faces of the beam.
Under this change of variables, (8) continues to hold with W
and 7 replaced by W and #, respectively, This, in turn, implies

that (20) and (21) continue to hold with W replaced by W and
A~ replaced by

A=(1=-v)7 - okt (26)
That is,
e sar  F —
vl = j A&, TydT - f A DT
(£} e L)
+ VUIF() - F(&)]
=vU(x,z,1) (27)
) 3 _ 3
oW = «f AEDE - | A, DT
alf) ail)
+VUIF(L) + F(8)]
= W W(x, z, 1), (28)

where, for later use in the initial conditions, we have restored
the independent variable 7.

For simplicity, we now consider a cantilevered beam attached
to a rigid wall at x = 0 and traction free at x = L. If we note
(7), (24), and (25) and assume that

q(L,1) =0, (29)

we have the boundary conditions
U0,z,t) =0, W(0,2,0)=0 (30)
Loz, t) =0, U.(L,z,1)+ va(L,z,t) = 0. (31)

On the left end of the beam, ~¢ = ¢ € [~VvH, Vo H].
Thus, by (16), (27), and (28), the zero displacement condition
(30) will be satisfied providing we set

F(¢) =0, €€ [—vH JvH]. (32)

On the right end of the beam, 2L — ¢ = ¢ € [L — yuH, L
+u H] and (31), leads to a formula for F '(£) on the interval
[L, L + \/;HJ in terms of F'(£) on the interval [L — \/;H,
L] and values and integrals of # and #. The details are as
follows.

From (10), and (27), we have, using Leibniz’ Rule for differ-
entiating integrals with variable limits,

U, = 4v(U, + Uy

6 =
= —A( a(£))a’ (§) +I A (&, §)d

alf)

- A{g' £) + A(E! C)
+ A a@)a ) - |

[

4
A\(C, ©)dT
(L)
+Vu[F'(§) — F'(&)], (33)

where A means the partial derivative of A with respect to its
first argument. If (€, {) are the characteristic coordinates of a
point on the right end of the beam, then from (16),
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Q"(fJ = a’{C) =1,

and from (3), (26), (31),, and Fig. 1 (and with the argument
t suppressed),

A(E, a(€)) = 3(1 — v*)p(€ — VvH)

(34)

(35)

A6 D) — AL, &) =21 — v)a(L, ENv — LIp), (36)

where the last relation follows because 7 is odd and # is even
in z. Thus, rewriting (31), in the form

U, = —4v% (37)

and setting { = 2L — £, we obtain

VWF'(€) =wF'(2L - €) - L(1 = »?)

X [P(2L ~ € = vH) + p(¢ — VvH)]
+2(1 + v¥a(L, v — LIWv)

2L—€
+ A& 0)dt -
[ acoa

- uH-£
AQL~ 60T, €€[L, L+ vH]. (38)

An integration now determined F(£) within a constant on the
interval [L, L + J;H], in terms of F'(£) on the interval [L
- VuvH » L], the prescribed value of 7, and the yet-to-be-deter-
mined values of & and 7,

To obtain a useful formula for F(£) on the interval [\f;H,
L], let

V=W(x01 (39)

denote the vertical displacement of the centerline of the beam.
If we set z = 0, i.e., if we set { = £ = x, then, in view of (25)
and (39), we obtain from (28), upon setting £ = Vvn and
suppressing the argument ¢,

'3 n‘r;
F(€) =2V (£) — xfc?(mﬂf A Vun)dn,
al,

0 e
¢eWvH, L]. (40)

This relation, of course, also must hold on the interval [0,
vH] in which case it must agree with (32). This yields the
consistency condition
13 el
« [amar=2ve) + [ s Voman,
0 ety

£ € [0,VvH], (41)

where we have used (16) to set a(£) = —&£. Differentiating
this_relation with respect to £ and noting that A(£, £) =
. (€, 0) (because 7 is odd in z), we have the altzrnative
consistency condition

e

k() = 2V,e(€§) — 267 (£, 0) + f{ J_AI(Ev Von)dn,

£ €10, VuH]. (42)

Given any (sufficiently smooth) choice of 7(x, zZ 1), #(x,
z, 1), and V(x, t), we may compute F(&) from (32), (38),
and (40), and thence U(x, z, t) and W(x, z, 1) from (25),
(27), and (28). We may then choose g according to (42) —
the value of 7 in the interval [\/;H, L] being arbitrary—and
choose the body forces £, and £ so that the equations of motion
(2) are satisfied identically.
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To meet the initial conditions (4) and (5), we must add to
the given initial data for U, U,, W, and W,,, the respective
incremental displacements and velocities—see (27) and

(28)—

i

AU(x,z) = U(x,z,0) — U*x, z) (43)
AU(x,z2) = U (x,2,0) — Uk(x, 2)

AW (x,z) = W(x,z,0)

(44)

+ 3K J”q(r, 0)dx — W*(x, z) (45)
(1]
AW, (x,2) = W,(x, z,0)
+ 3K J‘xff.,(i. 0)dx — Wi(x,z). (46)
0

All of the machinery that we have developed permits us
to evaluate a posteriori, but explicitly, the errors we make in
approximating @, ¥, and V, such errors being reflected in the
error loads f., f., and &, and in the incremental initial dis-
placements and velocities AU, AW, AU,, and AW,. We now
consider the simplest possible choice of 7, ¥, and V.

Elementary (Euler-Bernoulli) Beam Theory

Here, the vertical centerline displacement satisfies the well-
known equation of motion

(G HVyus + 29HV, = P(x, 1), (47)
where, from (3),, %ﬁ is the prescribed value of the normal stress
on the faces of the beam, divided by Young’s modulus E.
Further, we choose 7@ and 7 to be the associated dimensionless
normal and shear stresses—see Duva and Simmonds (1992) —
which satisfy

=2V + For = 0, 7.+ 0, = ﬁv’ﬂ (48)

together with the face traction conditions &(x, *=H, t) =
+ ip(x, t) and #(x, = H, t) = 0, That is,

F=2H*(£% = 1)V,o(x, 1) (49)

7 = (Z)[2pH(L* = 1)Vou(x, 1) + (3 = £)p(x, )], (50)
where

i =2z/H. (51)

At the built-in end of the beam we impose the classical condi-
tions

V(0, 1) = V,(0,1) =0. (52)

The first condition is a necessary consequence of the fact that
V(0, 1) = W(0, 0, t). The second condition could be conceiv-
ably modified, say

V. (0, 1) = k¥(0,0, 1) = —;xHZVw,(O, ), (53)
which, by (42), would yield (0, ) = 0. However, we shall

use (52) for simplicity.
By (24), (29), and (49), the absence of shear stress at the
right end of the beam leads to the classical condition
Ve Ly 1) = 0. (54)

To satisfy the condition of vanishing normal stress at the free
end, we differentiate (31); with respect to z and then use (8),
to write the resulting condition in the form
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Wu;x(Lv Z, f) = KTM’(L; zZ, I) T Uf.!‘,z(L, Z, f}. {55)

Setting z = 0 and recalling (24), (39), (48),, and (50), we
obtain

VialL, 1) = 3(3k — v)PV,u(L, 1)

— (DH (k= VIP(L, 1) + (L, 1), (56)

In the classical theory of beams, the right side of (56) is zero.
Note that choosing F' (&) according to (38) insures that (55)
is satisfied for z € [—H, H] and is automatically consistent
with (56).
The initial conditions (5) on W and W,, imposed, in particu-
lar, at z = 0, require that
Vix, 0) = W#(x, 0),

Vilx, 0) = WH(x,0). (57)

It only remains to satisfy the equations of motion. Dividing
(2) by E and substituting (7), (24), and (48), we obtain the
error body forces

j‘: = ;(_?Um L (ZV;.\- T U)'n — VD,
ﬂ = ‘_%q—u' =¥ ﬁ(w == V}m-

(58)
(59)

All error loads and incremental initial conditions have now
been expressed in terms of the solution of the governing differ-
ential equation of elementary beam theory, (47). This solution
satisfies the boundary conditions (52), (54), and (56), together
with the initial conditions (57). Since the applied face shear %
g remains arbitrary outside an edge zone at the left end of the
beam, we set, for simplicity,

gx,1)=0, xe [vH,L]

so that, in particular, the term %xqu.([,, t) disappears from the
boundary condition (56).

(60)

Example

To run through the mechanics of computing the error loads,
let us consider the simple static solution for a beam under a
constant face traction p(x, t) = py.

Equation (47) of elementary beam theory—with the slightly
modified classical boundary conditions (52), (54), and (56) —
has the solution

V = (Bl 1I6H£2{6[1 — (k — v)e?] — 4% + £%), (61)
where
£=x/L and €= H/L. (62)

From (49) and (50), the dimensionless (modified) shear and
normal stresses follow as

# = BpLI4H)(1 - £)(1 — ) (63)
7 = (Pol4)E(3 — £2). (64)

To compute the error load g, we first need A, which follows
from (26), (63), and (64) as

A = —(WukpLI4H)[(1 — £)(1 - £2) + O(e)]. (65)
Thus, from (9),
A=A = GIvE)(veA  + Ay

= (3KPI,L!4H2)[(1 — %)+ 0(e)). (66)
Inserting (66) into (42) and setting
,_EtE L _E-C
X= 3L " Z m 5 (67)
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we obtain from (61), (63), and (66)
kg = (Pl 12H*)[3% = 32% + 22 + 0(e?)]
x H(ve - £) = O(pL*H?), (68)

where H is the Heavyside step function. Thus, in the edge zone
where £ € [0, J;c], the shear error load on the faces of the
beam is of the same order of magnitude as the dominant axial
stress in the interior of the beam, consistent with the well-
known edge effect at a built-in end. (See, for example, Duva
and Simmonds, 1992.)

The error body force f, follows immediately from (59) and
(68) as

fi = —(3pL*4xH?)
X [H(ve — £)— Vveb(x — Jve) + 0(e)], (69)

where 6 is the Dirac delta. Thus, L times the vertical body force
is of the order of magnitude of the dominant axial stress within
a boundary layer of width VvH , with a concentrated force at x
= yuvH, but is zero elsewhere. The appearance of the delta
function in (69) is easily avoided by taking  on the interval
[\GH. 21/;H] to be not zero but

7= q0vH, )eGxvH - 1), (70)

where (@) is a function such that ¢(0) = 1, ¢'(0) = ¢(1)
= ¢'(1) = 0, and which smoothly and monotonically decreases
as o decreases. With this choice,

O(pLYH?Y), x € [0, 2{vH)

¥ 71)
% [0, x € [2/vH, L] (

In computing the remaining error load f, from (58), we note,
according to (27) and Fig. 1, that the horizontal displacement
U has a different representation in each of the regions labeled
I to VIL As the major errors in elementary beam theory can be
expected to occur at a built-in end, we compute f; for region I
only. Thus, by (16) and (32), (27) reduces to
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4l = j:m(g, ) = A(G, —n)ldn,

& ¢ € [—VvH JvH]. (72)

But in region I, £ = O(J;s) and £ = O(1). Hence, from
(65), A = O(J;ﬁQL!H). Moreover, because £ + { =
O(VvH), (72) yields the estimate

U=0(mL), & §€[—JvH JvH]. (73)
On the other hand, (61) shows that in region I
zV = O(pL?). (74)
Thus, in region I, (58) takes the form
fo = 0(p/L) (75)

80, in this region, the horizontal error body force is smaller by
a factor of H*/L* than the vertical error body force.

Conclusions

We have presented a scheme whereby, given (dimensionless)
fields of normal and shear stress &(x, z, ¢t) and 7(x, z, t), and
the vertical centerline displacement V (x, ), we may compute
exact two-dimensional displacement fields in an elastic beam,
provided that certain explicitly computable error loads and in-
cremental initial conditions are imposed. The simple example
of a cantilevered beam under a constant normal pressure on its
face shows that, if elementary beam theory is used to relate &
and T to V, then, as expected, the largest error loads occur
within an edge zone of O(H) near the built-in end.
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Three-Dimensional Finite
Element Analysis of Subsurface
Stresses and Shakedown

Due to Repeated Sliding

on a Layered Medium

Results of three-dimensional finite element simulations are presented for the subsur-
face stress and strain fields in a layered elastic-plastic half-space subjected to re-
peated sliding contact by a rigid sphere. A single perfectly adhering layer with an
elastic modulus and yield strength both two and four times that of the substrate
material is modeled. Applied sliding loads are equivalent to 100 and 200 times the
initial yield load of the substrate material and sliding is performed to distances of
approximately two times the contact radius. The effects of layer material properties
and normal load on the loaded and residual stresses occurring from repeated load
cycles are examined and compared with stresses produced during the first load cycle.
Results for the maximum tensile stresses at the layer/substrate interface and the
maximum principal stress in the substrate are presented and their significance for
layer decohesion and crack initiation is discussed. Further yielding of substrate
material during unloading is discussed, and the possibility of shakedown to an elastic
or plastic loading cycle is analyzed for the different material properties and contact
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loads investigated.

1 Introduction

Sliding contact is an important technical issue since the life-
time of various machine elements is often controlled by the
wear resistance of repeatedly contacting solid surfaces. Hard or
wear-resistant layers are often used in parts subjected to contact
stresses to improve the functional lifetime without necessitating
major design or load changes, or in parts where the function of
the element requires an unobtrusive means of wear protection,
such as in magnetic storage devices. Hence, analysis of the
stresses and deformation in layered media resulting from sliding
contact is of great practical importance in addition to being of
theoretical interest.

Among the earliest studies of elastic-plastic contact is that
of Merwin and Johnson (1963), who examined the problem
under the assumptions of Hertzian contact pressure and equiva-
lence between the total strain cycle and the elastic strain cycle
due to rolling contact loading, In spite of these simplifications,
this analysis has provided valuable insight into the plastic flow
behavior occurring in rolling contact, particularly the accumula-
tion of residual stresses just below the contact interface and the
threshold load for elastic shakedown of the plastically de-
forming medium. Jiang and Sehitoglu (1994 ) performed a simi-
lar analysis for homogeneous media in which the stress cycle
during elastic-plastic rolling contact was assumed to be equiva-
lent to the elastic cycle. Kral et al. (1993 ) used the finite element
method to analyze repeated elastic-plastic indentation of a ho-
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mogeneous half-space by a rigid sphere. Both isotropic harden-
ing and elastic-perfectly plastic material properties were used,
without other simplifying material assumptions. The contacting
sphere was modeled with contact elements, thus removing the
need for assuming a particular contact pressure distribution.
For all the cases investigated, an elastic steady-state cycle was
achieved, to within numerical accuracy, after four loading cy-
cles.

Several finite element analyses of elastic-plastic deformation
of layered media have been presented in recent years. Komvo-
poulos (1989) investigated the plane-strain problem of a rigid
cylinder indenting an elastic-plastic layered medium with a
layer harder and stiffer than the substrate. Significant flattening
of the contact pressure profile was found, especially with in-
creasing plastic deformation, and the maximum pressure moved
outward toward the contact edge. Tian and Saka (1991a) con-
sidered the plane-strain indentation of a multilayered half-space
exhibiting linear isotropic strain hardening. Elastic-plastic in-
dentations produced relatively uniform pressure distributions
with a slightly higher pressure near the contact edge for suffi-
ciently deep indentations or a sufficiently thin interlayer. Kral
et al. (1995a, 1995b) have analyzed repeated elastic-plastic
indentation of a half-space with a single harder and stiffer layer.
Expressions for an effective modulus and representative flow
stress were derived based on layer thickness, material proper-
ties, and contact dimensions. A nondimensional strain parameter
was formulated which allows comparison with indentation re-
sults for a homogeneous half-space. Kral et al. (1996) have
also used finite element simulations of three-dimensional elas-
tic-plastic sliding contact to verify scratch hardness models used
to interpret the results of scratch tests performed on layered
media.

Of particular interest in elastic-plastic contact are the condi-
tions under which the permanent deformation, residual stresses,
and conforming contact geometry may result in purely elastic
response under repeated loading, known as elastic shakedown,
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Applied loads above the shakedown limit will result in either
a continuous increase of plastic strain with each load cycle
(ratchetting) or a closed cycle of alternating plastic strain (plas-
tic shakedown). Merwin and Johnson (1963) and Johnson
(1985) have reported shakedown limits for repeated sliding of
line and point contacts, respectively, on homogeneous media.
Johnson (1986) and Bower and Johnson (1989) have investi-
gated the shakedown limits of elastic-perfectly plastic and kine-
matically hardening materials under both line and point rolling
contact. The shakedown limit and deformation characteristics
were found to depend primarily on the applied load and contact
friction. Above the shakedown limit, repeatedly deforming ma-
terial remained confined to a subsurface region under low fric-
tion conditions (p < 0.25), while a thin surface layer was
repeatedly deformed when higher tractive loads were applied
(g > 0.25). Conversely to the condition with line contact,
Ponter et al. (1985) have shown that a protective system of
residual shear stresses may arise in point contact that will pre-
vent ratchetting. Bhargava et al. (1985) analyzed repeated
plane-strain frictionless rolling contact at and above the shake-
down limit by the finite element method. In this analysis, a
significantly larger peak of incremental shear strain per cycle
was found in the steady state than that predicted by Merwin
and Johnson (1963). Kulkarni et al. (1990, 1991) have also
performed finite element analysis of repeated rolling contact on
a homogeneous half-space both at and above the shakedown
limit for elastic-perfectly plastic and kinematic hardening mate-
rials. Hertzian pressure loads were applied for several passes.
At the shakedown limit, the steady state was attained quickly,
within one cycle for the perfectly plastic material. For loads
above the shakedown limit, plastic strain accumulated in a sub-
surface region of the hardening material, and up to the surface
for the perfectly plastic material. In addition, the hardening
material achieved a steady cycle of plastic deformation immedi-
ately, while the perfectly plastic material exhibited incremental
plastic strain growth.

In the above analyses, only loading on homogeneous materi-
als has been considered; however, the situation for layered me-
dia is significantly more complicated due to the stress and strain
discontinuities induced by the material interface. Nevertheless,
some analyses of elastic-plastic contact on layered media have
been amenable to a shakedown analysis. For instance, in the
finite element study of Kral et al. (1995b) it was shown that,
based on the pattern of reyielding during unloading, certain
cases could not reach elastic shakedown under repeated indenta-
tion loading and would continue to deform plastically with sub-
sequent load cycles.

The objective of this study, therefore, is to utilize finite ele-
ment simulation techniques to analyze the effects of the layer
material properties and normal load on the subsurface stress
and deformation behavior due to repeated sliding contact on an
elastic-plastic layered half-space without requiring simplifying
assumptions on either the contact pressure or the stress and
strain cycles. In the present analysis, the sphere was modeled
by contact elements, thus eliminating the simplification of an
assumed pressure profile. A single layer thickness was consid-
ered, and the effect of layer material properties was assessed
by modeling layers two and four times stiffer and stronger than
the substrate. In addition, the significance of subsurface stresses
on cracking and reyielding upon unloading and the likelihood
of shakedown to an elastic or plastic loading cycle will be
examined. Finite element results for loaded and residual stresses
and deformation at the surface of a layered medium have been
reported previously (Kral and Komvopoulos, 1996),

2 Modeling Procedures

2.1 Finite Element Mesh. A detailed description of the
finite element mesh and contact and friction formulation has
been presented elsewhere (Kral and Komvopoulos, 1996). A
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brief synopsis will be given here for completeness. The three-
dimensional finite element mesh used in the present study is
shown in Fig. 1. The figure shows half of the mesh correspond-
ing to the region x = 0. The mesh consists of 8146 eight-node
linear interpolation reduced integration elements comprising a
total of 10,347 nodes. The reduced-integration elements use a
Gaussian integration scheme one order less than the usual 2 X
2 linear integration, resulting in one integration point per ele-
ment. The mesh extends from —1120 to 1120 nm in the x
direction, from zero to 960 nm in the y direction, and from zero
to 1070 nm in the z direction. A rigid spherical indenter with
a radius, R, of 1500 nm was modeled, giving normalized mesh
dimensions of —0.747 = x/R = 0.747, 0 = y/R = 0.640, and
0 = z/R = 0.713. The plane y = 0 is a plane of symmetry,
and sliding proceeds in the positive x direction. The plane of
symmetry and the bounding plane y/R = 0.640 are constrained
against displacement in the y direction, the bounding planes
x/R = —0.747 and 0.747 are constrained against displacement
in the x direction, and the plane z/R = 0.713 is constrained
against displacement in the z direction.

The finite element mesh models a single layer with thickness,
t, equal to 30 nm, thus yielding a normalized thickness t/R =
0.02. The inset of Fig. 1 shows the layer and the finer mesh
region at the sliding interface. The dimensions of the smallest
cubic elements are 5 nm, which is roughly equivalent to the
contact radius at initial yielding of the substrate material, The
mesh was refined by using linear constraints for the corner
nodes of two elements lying on the edge of a larger element,
or bilinear constraints for corner nodes lying on the face center
of a larger element. Results for elastic indentation of a homoge-
neous half-space represented by the mesh shown in Fig. 1 com-
pared favorably with analytical results (Kral and Komvopoulos,
1996), and elastic-plastic indentation results were in good
agreement with results from the axisymmetric indentation simu-
lations (Kral et al., 1995a, 1995b).

Fig. 1 Three-dimensional finite element discretization of the layered
half-space
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The indenting and sliding sphere was modeled by 429 two-
node rigid surface contact elements. One node of each contact
element corresponded to a common master node through which
loads and displacements were applied to the sphere. Hard con-
tact was modeled, in which normal traction is applied only when
the clearance between a surface node of the deformable layered
medium and the rigid sphere surface reaches zero.

2.2 Material Properties and Plasticity Models. Ac-
cording to the von Mises yield criterion, the yield condition is
given by

3.5 a
ou =[5 8;8;1"* = o°,

where oy, is the von Mises equivalent stress, S; are components
of the deviatoric stress tensor, and ¢ is the uniaxial tensile
yield stress. The material model for plastic deformation is based
on the usual associated flow rule, and the assumption of negligi-
ble plastic volume change is maintained. To account for bound-
ary nonlinearities due to the contact elements, an updated La-
grangian formulation is used in the analysis. Elastic-perfectly
plastic material behavior is adopted throughout. The equivalent
plastic strain, ef,, is defined as

€, = L 13 detdel]'?,

where S is the strain path. The plastic flow rule applies only to
yielding material for which oy = o°. When o, < ¢°, the usual
elastic constitutive equations apply.

Stresses were normalized by the yield stress of the substrate,
oy, and loads and distances by the load, P, and contact radius,
a,, respectively, corresponding to the initial yield condition of
a homogeneous substrate with an elastic modulus equal to 684.6
times o,. Results are presented in terms of the parameter 3,
which is the ratio of both the layer-to-substrate elastic moduli
and the layer-to-substrate yield stresses.

2.3 Simulation of Indentation and Sliding. The analysis
was performed with the multipurpose finite element code ABA-
QUS. Simulations were performed for layers both two and four
times stiffer and stronger than the substrate (i.e., 8 = 2 and 4,
respectively ). The layer and substrate were modeled as elastic-
perfectly plastic. The simulations consisted of an incremental
indentation to the specified normal load, P, followed by sliding
at a constant normal load and friction coefficient equal to 0.1.
Sliding was performed in 2-nm increments to a total distance,
Ax,of 60 nm (i.e., Ax/a, = 12), which is equivalent to approx-
imately two to three times the initial contact radius, The simula-
tion was completed by incrementally unloading the sphere in
the same steps as for the loading. The layered media were then
subjected to a second load cycle identical to the first. Table 1
summarizes the material properties and normal loads used in
the simulations. Typical CPU times for a 2-nm sliding increment
were approximately 36 to 44 hours on an IBM RS/6000 Model
540 workstation and 16 to 18 hours on an IBM RS/6000 Model

Table 1 Summary of three-dimensional simulations

p=2 p=4
=0.1 p=0.1
P/P, 100 100 200
Ax/a, 12 12 12
(x/ay); -8 -8 -8
(x/ay) 4 4
# load cycles 2 2 2

(xfa,); = initial x coordinate of sphere center
(xfay)r= final x coordinate of sphere center
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1..-1.00 2..-067 3..-0.33 4 ... 0.00
5..033 6.. 0.67 7..1.00

Fig. 2 Contours of o, shear stress for § = 2 and P/Py = 100 in the
region —-12 = x/a, = 12,0 = y/a, = 12,1 = z/a, = 12, at sliding distances
Ax/a, equal to (a) 2, (b) 4, (c) B, and (d) 12

580 workstation. The convergence tolerance for most runs was
set to 10 %a,, although a smaller tolerance was used for some
runs,

3 Results and Discussion

In the subsequent discussion, it will be understood that either
“‘stiffer’” or “*harder’” refers to the layer with the larger elastic
modulus and yield strength (or hardness) ratio (i.e., 8 = 4),
while ‘‘softer”” or ‘‘more compliant’’ refers to the layer with
the smaller elastic modulus and yield strength ratio (ie., § =
2). The effect of increasing the stiffness and hardness of the
layer will be shown by comparing results for § = 2 and 4 with
otherwise identical loading conditions (i.e., P/P, = 100 and pu
= 0.1), while the effect of normal load will be demonstrated
by comparing results for the material cases with 8 = 4.

Contours of the o,, shear stress as a function of sliding dis-
tance for the first load cycle are presented in Fig. 2 for the
material case with 8 = 2 and P/P, = 100. Results are shown
in the subsurface region given by —12 = x/a, = 12, 0 = y/a,,
and 1 = z/a, = 12 in order to show the distribution of the o,
stress near the surface as well as on the plane of symmetry.
The dotted lines in the figure indicate the contact surface plane
(z/a, = 0). The location of the layer interface is shown by a
solid line and the sphere center is denoted by an arrow. The
shear stress results for this material case and the first load cycle
are qualitatively representative of all the material cases and load
cycles. The extreme values of the o, shear stress occur in
elements on the plane of symmetry within the layer at approxi-
mately half the layer thickness and exhibit no sensitivity to the
sliding distance. A maximum negative shear stress occurs in
front of the sphere center, followed by a maximum positive
shear stress in the wake. This pattern is commonly seen in
plane-strain elastic-plastic analyses of sliding cylinders (Tian
and Saka, 1991b; Bhargava et al., 1985), and also occurs in
the sliding of a sphere on a layered elastic half-space (O’ Sulli-
van and King, 1988). The reversal of subsurface shear stress
coupled with the plastic deformation produces an offset in the
stress-strain cycle so that the strain is not completely reversed
upon passage of the load (Johnson, 1985). This produces a net
forward surface displacement with each load cycle during which
the layer is plastically deformed (Kral and Komvopoulos,
1996). In all the present cases, the maximum o, shear stress
on the plane of symmetry corresponds to the shear yield stress
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Fig. 3 Residual equivalent plastic strain at x/a, = O and y/a, = 0 as a
function of depth and load cycle

of the layer, given by k = ,80,!\6, and is also the only nonzero
shear stress. The maximum positive shear stress is slightly
closer to the center of contact than is the maximum negative
shear stress due to the effect of friction, For frictionless sliding,

the locations of the two maxima are approximately evenly’

spaced about the center of the spherical slider, depending on
the amount of residual pile-up material in front of the sphere.
A similar shift in the maximum shear stress points due to friction
may be seen in the plane-strain finite element simulation of
sliding contact on a two-layer half-space by Tian and Saka
(1991b).

Results for subsurface plastic strain fields (Kral and Komvo-
poulos, 1997) indicate that substrate yielding occurs in a region
from the interface to some distance into the substrate. Since
substrate yielding occurs at the interface, the maximum possible
shear stresses at the substrate interface are bounded by the shear
yield stress of the substrate. The o,, interfacial shear stress
reaches the substrate shear yield stress on the plane of symmetry
since it is the only nonzero shear stress. The o, stress never
reaches the shear yield stress at the interface, with maximum
magnitudes of typically 0.43¢, to 0.450, for # = 4 and 0.490,
for 8 = 2. Therefore the maximum interfacial shear stress in
the substrate is the o,, stress component, which reaches the
shear yield stress of the substrate. The largest interfacial shear
stress in the layer is the o, stress (Kral and Komvopoulos,
1997). These maximum o,, and o,, shear stresses would be
expected to most greatly influence the adhesion of the layer to
the substrate and the likelihood of a shear rupture at the interface
during sliding.

A second load cycle was simulated in order to assess the
effect of repeated loading on the stresses and plastic strains and
the likelihood of shakedown to an elastic loading cycle for the
various material combinations and sphere loads investigated. In
each case the first load cycle was simply repeated, i.e., the
sphere was replaced at the initial indentation location, reloaded
to the same normal load with the same load history, translated
a distance Ax/a, = 12 at a constant normal load as before, and
then unloaded by reversing the load steps. In the following
graphs, the line types correspond to the material and load case,
and the line thickness indicates the load cycle for which the
results are given, with the thin and thick lines indicating results
from the first and second load cycles, respectively. In addition,
all the comparisons with results from the first load cycle are
done at a sliding distance Ax/a, = 8 to avoid any influence of
the residual pile-up material in front of the contact groove on
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the results for the second load cycle. Thus, the figures compare
the stress and strain fields for approximately steady-state sliding
with prow formation (first load cycle) with those for sliding in
the residual groove in which the frontal material has been re-
moved (second load cycle).

Contours of the equivalent plastic strain, €f,, at a sliding
distance Ax/a, = 12 during the second load cycle for the three
repeated cases exhibited identical qualitative features to those
occurring during the first load cycle (Kral and Komvopoulos,
1996), though quantitative features differ. Figure 3 shows re-
sults for the residual equivalent plastic strain as a function of
depth after each load cycle at x/a, = 0 and y/a, = 0. For all
cases, the plastic strain in the layer increases significantly during
the second load cycle. This incremental increase is related to
the phenomenon of forward surface flow that was discussed
with reference to the surface displacements in a previous publi-
cation (Kral and Komvopoulos, 1996). Forward flow, or a
steady increment of permanent forward surface displacement,
occurs because the increment of forward shearing due to the
subsurface positive shear stress is slightly greater than the incre-
ment in backward shearing due to the subsurface negative shear
stress, as mentioned previously with reference to Fig. 2. The
largest increase of plastic strain in the layer occurs in the region
1 = z/a, = 2, with a much less significant increase below
zla, =~ 3 for f = 4 at P/P, = 100 or z/a, =~ 5 for the other
two cases. The localized accumulation of plastic strain in the
layer and the pattern of localized shear stress maxima shown in
Fig. 2 indicate that continued plastic deformation under repeated
loading may occur in only a portion of the plastically deformed
layer. A similar phenomenon was reported by Merwin and John-
son (1963) for repeated line contact on a homogeneous half-
space. It was shown that a repeatedly deformed layer exists
slightly under the surface extending to a depth of approximately
1.6 times the contact radius, while the depth of the plastic zone
produced during the first load cycle is approximately 2.6 times
the contact radius. In the present analysis, all the material cases
show a decrease in the accumulation of plastic strain in the
layer below z/a, =~ 4; this is most pronounced for the case with
B = 4 and P/P, = 100. In the substrate, only the higher load
case exhibits a significant accumulation of plastic strain during
the second load cycle. The two lower load cases exhibit only
very small increases in substrate plastic strain both during and
after the second load cycle, indicating that the substrate may
be approaching elastic shakedown in these cases. The maximum
equivalent plastic strain in the layer and substrate at the end of
each loading cycle is given in Table 2 as a function of the layer
material properties and normal load. The increase of plastic
strain in the layer is significant in all cases, while the growth
of the maximum plastic strain in the substrate is very small for
the lower load cases but still quite large for the higher load
case.

The pattern of accumulation of plastic strain in the layer and
substrate raises the question of whether the layer and/or the
substrate will shakedown to an elastic deformation cycle under
repeated sliding. The ratio of the peak contact pressure to a
representative shear yield stress (p,/ k. ) assumes values greater
than 6 for all the repetitive loading cases (Kral and Komvo-
poulos, 1996), which is well above the shakedown limit for
point contact on a half-space, given by p,/k = 4.7 (Johnson,
1985). However, since the layer and substrate consist of differ-

_ Table 2 Maximum equivalent plastic strain versus load cycle

First Load Cycle (%) Second Load Cycle (%)

B P/Py layer substrate layer substrate
2 100 2.26 1.34 339 1.38
100 1.29 0.77 2.01 0.78
4 [ 200 1.92 3.02 283 4.28

Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ent materials, it is reasonable to consider that there may be two
shakedown loads. Indeed, the patterns of increasing plastic
strain shown in Fig. 3 indicate that the layers show no proclivity
toward purely elastic deformation, while the substrates under
the lower load show a definite tendency toward mitigation of
plastic deformation with subsequent load cycles. Since the di-
mensions of the contact groove do not change significantly after
the first load cycle (Kral and Komvopoulos, 1996}, the contact
pressure distribution during the second load cycle may be as-
sumed to have reached a steady state. According to Melan’s
theorem (Merwin and Johnson, 1963), if any residual stress
state may be found which, when coupled with the stresses due
to the repeated load, produces an elastic cycle, the material will
shake down to an elastic state, Conversely, if it can be shown
that no such system of residual stresses exists, then the material
will not shake down to an elastic cycle but will continue to
plastically deform during each subsequent load cycle. In such
cases, the material may shakedown to a steady cycle of plastic
deformation (plastic shakedown) or may continue to accumu-
late plastic strain on each successive load cycle (ratchetting).

Although the stress state in three-dimensional contact is very
complicated, insight into the shakedown state can be obtained
by restricting attention to the stress state on the plane of symme-
try. As discussed previously, the o,, stress is the only shear
stress present on the plane of symmetry, and thus its maximum
values can be expected to control the ability of the material to
reach elastic shakedown. The features of the o,, stress during
the second load cycle remain identical to those during the first
cycle shown in Fig. 2, i.e., a maximum negative shear stress
occurs in front of the sphere center and a maximum positive
shear stress arises in the wake. In all the repeated load cases,
the maximum and minimum shear stresses in the layer are the
positive and negative shear yield stresses, Therefore, since cer-
tain layer material points yield at both the negative and positive
shear yield stresses as the contact load passes, the load path
encompasses the diameter of the yield locus, and hence there
is no residual stress state that can be added to these stresses to
inhibit further yielding. Thus, the layer will continue to plasti-
cally deform on each passage of the load and will not shake
down to an elastic stress cycle. If the region of continuing
plastic deformation is contained within the subsurface, the even-
tual steady state must be one of reversed plastic flow, or plastic
shakedown, due to the constraint of surrounding elastic material.
As discussed by Johnson and Jefferis (1963), a residual o,
shear stress arises on the surface due to the restraint of the
undeformed elastic material on the sides of the contact groove.
Equilibrium under residual conditions requires a nonzero sub-
surface o, shear stress component, which resists forward flow.
After sufficient load passes to build up these residual o, shear
stresses, the increment of forward flow would be expected to
gradually decrease to zero, resulting in a closed cycle of plastic
deformation (plastic shakedown) in the layer subsurface region
undergoing repeated plastic deformation. However, if the re-
peatedly deforming region reaches the free surface, then the
mechanism of incremental collapse, or ratchetting, is enabled
(Ponter et al., 1985). In the present analysis, the softer layer
(B = 2) exhibits a pronounced increase in plastic strain up to
the surface (Fig. 3), indicating that raichetting is a possibility
in this case. The two cases with the harder layer (8 = 4) also
show an increase in plastic strain on the surface after the second
load cycle, but with a profoundly smaller increase in magnitude
(Fig. 3). It is therefore considered likely that these two cases
will exhibit plastic shakedown in the layer with further load
cycles.

A similar stress state exists in the substrate, with a maximum
negative shear stress occurring on the plane of symmetry in
front of the sphere center and a positive maximum occurring
behind the sphere center, as shown in Fig. 2. For the high load
case, the maximum shear stresses attained in the substrate dur-
ing the second load cycle are equal to the shear yield stress,
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and hence by the same reasoning as before, the substrate will
not exhibit shakedown for this case. However, for both the
lower load cases, the maximum o,, shear stresses on the plane
of symmetry in the substrate, although still the only nonzero
shear stresses, are well below the shear yield stress. Thus, a
residual shear stress which will inhibit yielding in the substrate
could be devised, and it is therefore expected that the substrate
will attain an elastic steady-state cycle for these cases.

A comparison of the o,, and o, stresses in the layer at the
layer/substrate interface for the two load cycles is shown in
Fig. 4. For both normal load cases, the o,, stresses (Fig. 4(a))
at the layer interface are qualitatively similar, but the peak
tensile stress (for the 8 = 4 cases) decreases during the second
load cycle. The o, stress for § = 2 is compressive throughout.
The a,, stresses are also qualitatively similar between the two
load cycles (Fig. 4(b)). For this stress component, the magni-
tude of the local maximum tensile stress in the wake (x/a, =
—12 to —16) does not change significantly with the load cycle,
while in front of the sphere it exhibits a decrease during the
second load cycle. Since these tensile stresses are associated
with the hoop stress constraining the plastic zone (Kral and
Komvopoulos, 1997), the decrease in magnitude may be associ-
ated with the smaller increment of accumulated plastic strain
in the layer during the second load cycle.

The effect of load cycle and sliding distance on the maximum
value of the maximum principal stress in the substrate, o, is
shown in Fig. 5. In all cases, the maximum remains relatively
constant with sliding distance during the second cycle, main-
taining approximately the magnitude attained after unloading
from the first load pass. The maximum principal stress in the
second load cycle exhibits a slight decrease in maximum magni-
tude with distance for § = 4, and all cases exhibit a final
maximum stress slightly below the value reached after the first
load cycle. Thus, the propensity for crack initiation in the sub-
strate does not change significantly, at least over the first two
load cycles. Stress results (not shown here for brevity ) indicate
that in all cases, the maximum ¢,, interfacial shear stress during
the second load cycle is slightly less than or comparable to the
maximum attained during the first cycle (Kral and Komvo-
poulos, 1997), For the lower load cases, the maximum o,
interfacial shear stress decreases during the second load cycle,
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Fig.4 Stresses at the layer interface (z/a, = 6~) on the plane of symme-
try (y/a, = 0) at a sliding distance Ax/a, = 8 as a function of load cycle:
(a) o\ stress and (b) o, stress
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Fig. 5 Maximum value of the maximum principal stress o, in the sub-
strate as a function of sliding distance and load cycle

as evidenced by the general lack of continued substrate yielding.
The maximum interfacial o,, shear stress actually increases by
about five to ten percent for these cases, but is still below the
shear yield stress of the substrate. For the higher load case, the
magnitude of the o,, interfacial shear stress in the second load
cycle is equal to the substrate shear yield stress due to the
continued yielding of the substrate, while there is virtually no
change in the maximum o, interfacial shear stress,

Figure 6 compares the residual o,, and o,, stresses at the
layer interface as a function of load cycle. The results for the
o, stress, shown in Fig. 6(a), are very similar for all the load
cases, with the residual stress remaining compressive along the
entire layer interface. The o,, component, shown in Fig. 6(b),
also exhibits similar characteristics between load cycles, but
with a slight increase in the tensile residual stress in front of
the contact groove at the end of the second load cycle. However,
the maximum tensile residual o,, stresses are still less than or
comparable to those arising during sliding in the same region
(Fig. 4(b)). Thus, the tendency for crack initiation at the inter-
face remains greatest during sliding for repeated load cycles.
Finally, the tensile residual o,, stresses at the interface after
the second load cycle assume magnitudes comparable to those
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Fig. 6 Residual stresses in the layer at the interface (z/a, = 6) on the
plane of symmetry (y/a, = 0) as a function of load cycle after unloading
at a sliding distance Ax/a, = 12: (a) o, stress and (b) o, stress
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Fig. 7 Contours of residual von Mises equivalent stress oy, in the sub-
strate after unloading from P/Py = 200 for B = 4: (a) first load cycle and
(b) second load cycle

occurring after the first load cycle (Kral and Komvopoulos,
1997) for all the load cases.

Figure 7 shows contours of the residual von Mises equivalent
stress, revealing the actively yielding region in the substrate as
a function of load cycle for the higher load case. It is shown that
unloading after the second load cycle again produces significant
reyielding of the substrate material. In addition, the reyielding
occurs over a larger region than in the first cycle. However, the
layer exhibits no yielding points in the residual state. The case
with 8 = 4 at P/P, = 100 exhibited no reyielding in either the
layer or the substrate after the second load cycle, while the £
= 2 case exhibited reyielding in the substrate at only three
integration points after the second cycle, which is not considered
significant. It may be inferred that the reyielding of substrate
material during unloading from P/P, = 200 will make the
achievement of an elastic steady-state cycle less likely for the
higher load case.

4 Conclusions

The subsurface stress and strain fields resulting from repeated
sliding contact on a layered half-space were examined with the
finite element technique. A 30-nm-thick layer was modeled,
with stiffness and yield strength both two and four times that
of the substrate. Elastic-perfectly plastic material was assumed
throughout the simulations. Sliding was simulated for loads 100
and 200 times the yield load of the substrate material in order
to determine the effect of normal load on the subsurface stresses
and strains.

The o, stress in the layer on the plane of symmetry exhibited
a region of high negative shear stress in front of the sphere
center, followed by a reversal to a high positive shear stress in
the wake of the sphere. The o,. interfacial shear stress reached
the maximum possible value, i.e., the shear yield stress of the
substrate, for all cases during the first load cycle, but fell below
that during the second load cycle for the low load cases. The
o, stress at the interface was below the shear yield stress of
the substrate for all cases. The maximum principal stress in the
substrate arising under repetitive loading was similar for all
cases considered, indiuating that the propensity for crack initia-
tion in the substrate is not greatly affected by the layer material
properties or normal load.

All cases exhibited a substantial accumulation of p]asuc strain
in the layer during the second load cycle, but only the higher
load case exhibited significant accumulation of plastic strain in
the substrate. It was shown based on the shear stresses on the
plane of symmetry that the higher load case will not shake down
to an elastic cycle, whereas the shear stresses indicate that the
lower load cases will shake down only in the substrate. The
tensile o, and o, stresses along the layer interface during the
second load cycle were less than those during the first cycle,
while the residual o, and o,, stresses were very similar to those
occurring after completion of the first load cycle. The o, and
0. interfacial shear stresses were generally less than or compa-
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rable to those occurring during the first cycle, while the o,
interfacial shear stress increased slightly in the second cycle.
Reyielding in the substrate after the second load cycle occurred
only for the highest contact load, and resulted in a larger plastic
zone than that produced in the first load cycle.
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Velocity and Acceleration
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During manipulation and locomotion tasks encountered in robotics, it is often neces-
sary to control the relative motion between two contacting rigid bodies. In this paper
we obtain the equations relating the motion of the contact points on the pair of

contacting bodies to the rigid-body motions of the two bodies. The equations are
developed up to the second order. The velocity and acceleration constraints for
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1 Introduction

In robot manipulation tasks, when the robot arm interacts
with an object or the environment, it is beneficial to be able to
control the contact motion, For example, when exploring the
environment by feeling or touching, it is necessary to be able
to move the robot arm while in contact with the environment
and estimate the geometric properties of the environment (Ma-
son and Salisbury, 1985; Montana, 1988). When grasping an
object it may be desirable (Brock, 1988) to roll or to slide the
object over one or more fingers in a specified manner. A similar
situation also arises in an actively coordinated vehicle traversing
uneven terrain where it is efficient to maintain rolling contact
with the ground at all contacts (Kumar and Waldron, 1989).
In all these examples, it is necessary to control the motion of
an actively coordinated system relative to the contacting object
or environment in order to achieve a desired motion of the
contact point on the surface of the object and on the surface of
the robot effector.

While extensive work has been done on contact between
planar rigid bodies (see, for example, Beggs, 1966; Paul, 1979;
Hall, 1966; Rosenauer and Willis, 1953; Whittaker, 1988), the
work on the kinematics of three-dimensional contact is much
more recent and much less is known in this area. Pars (1968)
describes the configuration space associated with the relative
motion between two rigid bodies in point contact. He shows
that it is five-dimensional. For the special case of a sphere
rolling over a plane he shows that the configuration space is
completely accessible. In other words, from any point in the
configuration space it is possible to reach any other specified
point.

Cai and Roth (1986; 1987) study the relative motion of two
contacting bodies in point contact. In Cai and Roth (1987) they
derive expressions for the motion of the contact point on each
contacting surface in terms of the relative motion and the local
geometric properties of each surface. However, their focus is
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contact, for rolling, and for pure rolling are derived. These equations depend on the
local surface properties of each contacting body. Several examples are presented to
illustrate the nature of the equations.

limited to the motion of the contact points and hence their study
is restricted to a subspace of the configuration space. In Cai and
Roth (1988) they extend their work to line contacts. Montana
(1988), like Pars (1968), considers the five-dimensional space
but his parameterization is somewhat different than Pars’ (see
Section 2). He derives the equations relating the velocity of
the contact points on the rigid bodies to the relative velocities
of the rigid bodies. It is also worth mentioning the work of
Kirson and Yang (1978) who developed equations for moving
and fixed axodes with a relative rolling and sliding motion.

This paper derives the velocity and acceleration equations
relating the rigid-body motions of the contacting bodies and the
motions of the contact points on the surfaces of the rigid bodies.
The papers by Montana (1988) and Cai and Roth (1987) are
most closely related to this work. We use Montana’s definition
of the configuration space but our approach is quite different.
Although Montana does derive the velocity equations, as seen
later in the paper, they do not lend themselves to straightforward
differentiation. Our approach and results differ from those of
Cai and Roth because we do consider the entire five-dimensional
configuration space.

2 Preliminaries

2.1 Notation. In Fig. 1, we consider two rigid objects
(obj 1 and obj 2) contacting at a point. The contact point is the
coincidence of two points, p, fixed to obj 1, and p, fixed to obj
2 at time ¢. ¢, and ¢, are a pair of points, which do not belong
to either body but move along the surface of obj 1 and obj 2
respectively so that they are instantaneously at the point of
contact. We choose reference frames on obj 1 and obj 2 at point
o0, and o0,, respectively. These reference frames are attached to
the objects. We attach coordinate systems at points ¢, and ¢,
which move with the contact points. Finally, we define object-
fixed coordinate frames at points p, and p, in such a way that
they coincide with ¢, and ¢, frames, respectively, at time ?.
Note that the same symbol is used to denote either a point or
a reference frame attached to this point. So far our notation is
identical to that in Montana ( 1988).

r is used for position vectors, V is used for linear velocities
and w, for angular velocities. a and a denotes linear and angular
accelerations, respectively. (2 is used to represent the skew sym-
metric matrix form of w. R denotes rotation matrices.

A leading superscript is used to denote the reference frame
in which the quantity is observed. A vector g with two trailing
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obj 2

Fig. 1 Two rigid bodies with point contact

subscripts, a and b denotes the difference between g at point a
and ¢ at point b, For example, r.,, is the position vector from
o) to ¢;. “V,,, represents the difference between the velocity
of point ¢, and that of point o, as observed in reference frame
0,. On the other hand, when there is only one trailing subscript
then it denotes the reference frame attached to that point. Thus,
“w,, or “€2, denotes the angular velocity of reference frame
¢; when it is observed in the reference frame o,. Note that,
unless otherwise specified, we refer to the vectors themselves
and not to their components in a particular coordinate system,
When we do refer to components, we denote these with sub-
seripts x, v, and z and explicitly specify the coordinate system.
When components are considered, “ R, is a rotation matrix which
transforms components of a vector in frame b to components
in frame a.

In the case of position vectors, a leading superscript is not
used because a position vector does not depend upon the frame
in which it is observed. However, any derivative, and therefore
any velocity or acceleration, does depend on the reference frame
in which the differentiation operation is performed. We follow
a notation that is similar to that used in Kane and Levinson
(1985). For example, consider the derivative of r, ,,. Since the
point o, is fixed to the reference frame o,

0 "d
Wepoy = 3 Tero
is the velocity of point ¢, in frame o,. Similarly,
“id

df (ﬂlvcr'y.) = n'ar1p1
is the acceleration of point ¢, in frame o,.
Thus, the derivative of r., in frame p, is not v, , . Instead,
" 1]

Pagl P

o s e o P.
dt Foypy = dr Few, i+ Wy, X Teup

- M P.
= MYpp, T MWy, X ey,

The development here is identical to that presented by Kane
and Levinson (1985, p. 23).

2.2 Local Properties of Surfaces in it*. Here we briefly
discuss a few definitions and concepts that will be used later in
the paper to derive the contact kinematic equations. Detailed
discussion can be found in any standard differential geometry
text (e.g., Millman and Parker, 1977, Stoker, 1969; Lipschutz,
1969).

DeriNITION 1. Coordinate System: Let S, be an open and
connected subset of the surface S containing the point p. Then
the pair (f, U) is called a coordinate system of S, if there exists
an open subset U of W? and an invertible map fU - S, € W
such that the partial derivatives (Of(€)/0€') and (8f(&)/0€*)
are linearly independent for all £ = (£', £?) € U. The open
connected subset S, is called a coordinate patch.

It may so happen that not all points of § can be represented
by a single coordinate patch. In such a case, we can construct
a set of coordinate patches which cover all the points of S, that
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is, § = Ui, §;, where S;'s are coordirate patches for S. The
set {8; )L, is called an atlas for §.

In what follows we will need to compute derivatives of fin
order to characterize the local properties of S. We will assume
that £(£', £€2) is at least of class C?.

DEFINITION 2. Natural Basis and Unit Normal: x; = (8f/
O¢') (i = 1, 2) are linearly independent at a given point and
are called the natural basis of the surface. x; and x, minimally
span the tangent plane at that particular point. A unit normal
n is a unit vector which is perpendicular to the tangent plane
at a given point and is defined by (x; X x,)/(lx; X x,l|).

If {x;, x2) = 0 where (,) is the symbol for inner product,
then (f, U) is called an orthogonal coordinate system. It should
be noted that x; is not necessarily a unit vector.

DEerRINITION 3. Contact Frame: This is a local reference
frame at the contact point consisting of the unit vector triad
(x /W), (xa/llxall), and n.

We choose the coordinate system (f, U/) in such a way that
n is an outward pointing normal.

DEFINITION 4. Metric Tensor: A metric tensor G is a 2 X
2 symmetric, positive definite matrix whose coefficients g; are
defined as

ihj=1,2.

The gy are coefficients of the first fundamental form. G is
diagonal for an orthogonal coordinate system.

DEFINITION 5.  Christoffel Symbols: There are two rypes
of Christoffel symbols. Christoffel symbols of the first kind,
denoted by [ij, k], are defined as

. al' P
[q‘k]=<-§,xk> Lhk=1,2.

8 = {xi, x;)

Christoffel symbols of the second kind, T}, are defined as

2 2
rj=2 <%,x;>g’* =Y [ij, lg* i,j. k=12
{=) =1

where g" are the components of the inverse of the metric tensor
G.

It is clear from the definition that both kinds of Christoffel
symbols are symmetric in the paired indices ij, that is, [if, k]
= [ji, k] and T'§ = T'%.. Note that all the Christoffel symbols
vanish when the coordinate system is Cartesian.

It is useful to note that the derivative of the components of
the metric tensor can be expressed in terms of the Christoffel
symbols.

98y

o = [jk, i] + ik, j] = g:’fr_:ﬂ + gl

(1
DEFINITION 6. Gauss's Equations:
basis vectors are given by
6.7:;

— = Lyn + 2 Ff—‘-xg.
3£J ] = )

The derivatives of the

The L; are related to the coefficients of the second fundamen-
tal form only through the metric tensor. They measure the nor-
mal component of (dx;/9¢’) while the I'} measure the tangen-
tial components.

Higher Order Derivatives: 1If f is at least of class C*, we
can differentiate L; and T'%. By straighforward differentiation,
it can be shown (Lipschutz, 1969, p. 224) that

dx, e
W = ¥ [T%&;+ % — LyL21x, + [T§Las + Lysln
o fF=]
where ['fy; = (9T'4/8¢7) and Ly, = (OL;/9€*).
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&1 constiiy

Fig. 3 Coordinate curves for a plane

& 1= constant

Fig. 2 Coordinate curves for a sphere

2.3.2 Geometric Properties of a Planar Surface. Consider
the plane (Fig. 3) with the coordinate system:

FrUCR-M: (€, €3 (£, €2,0),

The following results are obtained from the definitions in the
previous subsection,

2.3 Examples.

2.3.1 Geometric Properties of a Sphere. For a sphere with
radius p, let us define a coordinate system (Fig. 2),

3 I 2 l 0 0
fiU-R: (LD n=10| m=1]1 n=1|0
- 1 2 5 I a% 2 1 0 0 l
(psin§ cos £, psiné siné°, pcosé').
The natural basis for this coordinate system and the correspond- gn=1 gn=0

ing unit normal are
81 =0 gp=1

2 sooal i g2
_ s EI. cos 62 = P .Sm$ o ‘52 Since the natural basis vectors and the components of the
xn=|poosf Sm,E n=| psin{ cos metric tensor are constant for a plane, all other higher order

—psing derivatives are zero.
o " 24 Contact Coordinates. We now define five contact
sin § o5 £ 2 coordinates that characterize the motion of the point of contact.
n=| sin§ sin 3 First for obj i, we let £' = ; and £2 = v; as shown in Fig. 4.
cos £ The point of contact is uniquely defined by the four coordinates
Uy, vy, Uz, and v,. The fifth parameter is i, the angle of contact
which is the angle between th

S0 thecontact rame is defned by [ (/) Gafll) . o58). Tn Fig. . i i th angle between (v, (angent to o
The components of the metric tensor G are given by v; = constant curve) and (x), (tangent to the v, = constant
.5 curve). The sign of ¢ is defined in such a way that a rotation
gu=p" 82=0 of (x,); about the outward pointing unit normal (n), to the
=0 255 amiEh surface at point_p. through — ¢ aligns the axes (x;), and (x,),.
&x Baa =R ' We use a trailing subscript i to denote obj i. For example,

G is diagonal because the coordinate system is orthogonal ((x;, ?:::) Iiontact frame for obj i is denoted by [(xi/llxill)i (xa/l|x:ll):

x;) = 0).
The Christoffel symbols and the coefficients L; are f
3 Closure Equations

In Fig. 1, using the triangle law of vector addition (Paul,
1979), we can write

I'i=0 T} =0

' =0 T% = cot ¢!

TH=0 T} =coté
I =—siné'cosé' T =0

Ly==-p Lp=0

Ly =0 Lyp=—psin(£')> Uy= m"m“tJ
V; = constant” (1),
The derivatives of I'§; and L; that are not zero are
Fhy = —ese? €' T3, = —esc? ¢!

I"_!zJ = —CO0s (2{‘) Lq_z_| = _2P sin 51 COs €I

Note that although the Gaussian curvature and the mean curva- i, = constant

ture of a sphere are constant, the coefficients, g;, '} and L; are Y

not. Fig. 4 Coordinate curves and contact frames on two contacting bodies
976 / Vol. 63, DECEMBER 1996 Transactions of the ASME
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Fig. 5 The definition of angle

¥,

o = r“i."‘i £ r-"i“f‘ (2]
Note that, in this notation, we implicitly assume that Eq. (2)
can be written in component form in any convenient coordinate
system. (At this point we are only concerned with vector equa-
tions and not their components in a particular coordinate sys-
tem.) Differentiating each term of Eq. (2) with respect to time
t in the reference frame o;, we get

Ve, = "Wep, + 10y X Fep + V. (3)
Differentiating Eq. (3) in the reference frame o;, we get
Dia"f"f e Pia‘rﬂ: + "fwf’l X P'V‘i."i + n'wﬂr X Feim

+ ":w!‘i X {pfvﬁﬂx + nfwﬂi x r".l’.') + O!aﬂi“i' (4}

Applying the addition theorem for angular velocities (Kane and
Levinson, 1985, p. 24), we get

Yiw,, = Awy, + Tiw,. (5)
Differentiating each term in Eq. (5) in the o; frame, we get
U, = i, + Pl + %y, X P, (6)
where “w, denotes the time derivative of “w,, in frame a.
Since p; and o; are fixed in body i,
U, =0, %y, =0, °%V,,=0.
Substituting these in Eqs. (3)—-(6) we get
Ve, = "V, )
Y, = Pl (8)
Y, = N, (9)
Ui = Pl (10)

Consider the closed loop: p, =+ ¢; = p; = p,. The triangle
law of vector addition applied to position vectors yields

(11)

Fepy = Ty + Tpipy

Differentiating each term of Eq. (11) in the reference frame p,
two times, we get

ny

iz

=NV + Prwy, Xorg, + 2V, (12)

Journal of Applied Mechanics
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2 P Py » P
Wy, = Mg, "2, X Py + P2y, X (2w, X 1)
+ 2p2wf’| X plvfu’l + Pzamm'

(13)

Note that r.,, = 0 in the above equations. Similarly for angular
velocities, we obtain the velocity and acceleration equations:

(14)
(15)

Now consider the closed loop: p; = ¢; = ¢; = p,. The transla-
tion closure equations are

f’z.-_.)q = Ju""""'fl + p’wpl

Pyt e Py " " -
W, = Mg, + 2wy, X Piw, + My

Tem = Yooy T Yoy (16)
"WV = Wepe, + MW, X Yoy + MV, (17)

P2y = e, T "2y X Fepe, + 2w, X (2w, X re,)
+ 2P, X V. + P2a.,. (18)

By definition, the vectors r,,.,, V.., and “a,,, vanish in the
above equations. The loop equations for the angular velocities
are

P, = 2w, + ",

(19)
(20)

Pae, = 2 + Mwe, X W + T,

We now manipulate the loop equations to obtain what we
call the contact closure equations. Equating the right-hand sides
of Eqgs. (12) and (17) we get after setting r., , #.,, and V.,
to zero

1€2

1 MV A BV

epy T am Mpat

(21)

From Eq. (3), because "V, ,, = 0 and “w, = 0, Eq. (21) can
be written as

njvf-‘}"z = ”'Vﬁ”l + Piv.ﬂl.ﬂz' (22)

Equating the right-hand sides of Egs. (14) and (19) and then
substituting from Eq. (9), we get

Mwe, + Py, = W + ", (23)

Next, we equate the right-hand sides of Egs. (13) and (18) and
simplify using Egs. (7)—(8) to get

Uy = Ny, + 20wy X WVey + PGy, (24)

Finally, equating the right-hand sides of Egs. (15) and (20)
and simplifying using Egs. (9)—(10), we write

[ 3 P o Pyt
W, + Mrw,, X “w,, + T,

= 2w, + 2w, X 2w, + 20, (25)
In summary, the velocity contact closure equations are (22)
and (23) and the acceleration contact closure equations are (24 )
and (25).

4 Contact Equations: Velocity Analysis

Let the components of the relative linear and angular veloci-
ties of the contacting rigid bodies in the frame p, (also in the
frame ¢, ) be given in vector form by

V‘ w‘
P - P =
Vo, = | Vy Wpy, = | Wy
| w
z z

In this section we find expressions for the remaining terms in
Eqgs. (22) and (23) in terms of the contact coordinates and their
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derivatives and thus relate changes in contact coordinates to the
relative linear and angular velocities defined above.
The position vector of the contact point ¢; of obj i in o; is

Too = Fee (€', €7 i=1,2. (26)

Next we consider the transformations between o; and ¢;, and
between ¢, and ¢;. The rotation matrix “R,, is quite simply

n-[(), () o)

VG 0,
=[xk L) (n).—][(o‘) 21']. (27)
1x2

Note that since the coordinate system is orthogonal, all the
elements of the metric tensor, G;, are positive and the square
root operation is a valid one. From the definition of ¢, “R,,
can be seen to be

—sinygg 0

cos i 2 0
2R, =| —singg —cosyy O | = [ * 2><|:| .
0 0 -1 Oe =1

We now proceed to obtain expressions for the velocity terms.
Differentiating Eq. (26) in the o; frame, we get the velocity of
the contact point ¢; in that frame. The resulting equation is

L,,,,=—[f"rc,,,,(e )]=3 (é! i=12 (28)

J=1

Expressing the velocities of the contact points in contact frame
¢, (using Eq. (28)):

oy

cjey = r,zlil'f.‘lc"R(J|[(xl)lal + (x!}]ﬁll = (29)

g

Wy = 2R, [(x0)athy + (12)a] = (30)

VG,U,
Catiy 0
where U, = [u; v,]" and U, = [u, 1,]".

The skew symmetric matrix representation of the angular
velocity is directly obtained from the rotation matrix (McCar-
thy, 1990). For any rotation matrix ‘R, its derivative in frame
fis given by

Q. = BRT.

978 / Vol. 63, DECEMBER 1996
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Therefore,

) 0 ¢ 0
2, = 2R RL=| = 0 0 (31
0 00

Here "qu is the angular velocity expressed in the contact
frame ¢, in matrix form. Similarly, %41, in the contact
frame c¢;, can be simplified to (see Appendix for intermedi-
ate steps):

=1 (x)]
{’qu g "‘Rcr,""R'r,. = [(JOG_-') Ozlxl:| { 2)3
1=2 (n)‘

012 0
(@) (@) =(2)¢]
x[(\/a-)" ozx.]}_

01)(2 1
We introduce Christoffel symbols, [ij, k] and "}, and the coef-
ficients of the second fundamental form, Ly, and after some
algebraic manipulation we get

0){1
x{[(x.),- () (ay] [((J_) ) G ]

[z

——([ll 1, + [12, 11,4) 0 0
(guh
ﬂIQC e
3 0 ([21, 1] + [22, 1]i0) O
(g2
0 0 0
_ i 4 X
— ([11, 1}ay + [12, 1],0,) s ([11, 2]y + [12, 2)30y) — —— ((Lyyhity + (L) iy )
(guh (guh (gzz)l ||}|
+ -2 ([11, 2]y + [12, 2]110y) I ([21, 1], + [22, 1]y1) {(Lo )ity + (Laa)i0y )
(guh (822)! &2 ( 22)
l
{(Ly ity + (Ly2)piy ) { (Lahthy + (L) ) 0
(Su)l (Szz)l i

which can be simplified to -

0 (- UD .
I A R

a'Qc, = (U|F|U|) 0
(VG LU )i 0

(32)

where o; = {(g22)i/(gu): }'"* for i = 1, 2 are the ratios of the
norms of the natural base vectors. For an orthonormal system,
o= 1.T, and L; are 1 X 2 and 2 X 2 matrices consisting of
the Christoffel symbols of the second kind and the coefficients
of the second fundamental form, respectively, for obj i. I" and
L are defined as follows:

I'= [r-’;l F%z]
L - [Lll Lt:!] )
L‘ZI !-'22
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Similarly,

0 (—o.LU,) .
7 (= (Ga) " Loth) Jax

"’ﬂc, = (ffzrzUz) 0
((Gy) ' LU, ) 0

(33)

Substituting for V., and "IVLI,,, from Egs. (29)-(30) in
Eq. (22), expressing each vector in the ¢, frame, we get

VG,U, = RAG\U, + [:’;‘]
¥

V.=0.

In Eq. (23), after substituting for “1w,, from Eq. (32),
from Eq. (33), and “w,, from Eq. (31), we get

Rw(\/(_;l)_'hﬂ] + [f}:) ] = "(\!62)'4[1202

a
2
wr_-l

_U|rlU| + w, = _ljf + 021‘2{}2‘

Simplifying the above equations we obtain the first-order con-
tact kinematics relating the rate of change of contact coordinates
to the rigid-body velocities:

Uy = (G 'Ry(A, + Hz)"[“( w:) ) —Hz(:‘)] (34)

U, = (VG) ™' (A, +Hz>—'[~(_” )+H (V )] (35)

JIZJIF|(}| +0'2r2[}2‘—w (36)

V,=0 37)
where H, = (VG;)'L,(YG,) " and A, = RyH\R,.

These equations are the velocity contact equations which
were first presented by Montana (1988). However, our notation
and derivation are slightly different. First, we use standard dif-
ferential geometric notation (g, ', and L,) to describe the
surface properties. Second, we resolve all vectors in the frame
c; and not in ¢, like Montana.

5 Contact Equations: Acceleration Analysis

Let the components of the relative linear and angular acceler-
ations of the contacting rigid bodies in the frame c; be

[ oy
P e Pyt _
zal'lﬂz = dy iwm = oy ‘
a, o,

In this section we find expressions for the remaining terms in
Egs. (24) and (25) in terms of the contact coordinates and their
derivatives in order to relate changes in contact coordinates to
the relative linear and angular accelerations defined above.

It is convenient to define other matrix functions of the surface
properties (analogous to I and L).

f‘= F:I 21—‘}2 FZZ
rh 2oy T

Journal of Applied Mechanics

L=[Ly 2L, Ly]
— (T3 -Tior?, +%L; 17
T=|(@h-THrL+TL-ThHTh+ 661;.I2 %1;2,
i (- z)rm%‘;z |
[ Bl %I:El_l' 1
TlLg + Thly — % _ ?9?;
) ThLy - ?9?;
L=
(3L - a?' '
T4 La+ Toly — f‘;Tlm _ %;;
\_ 4L, - a‘?z |

We first consider the linear accelerations of the contact points.
In the o; frame,

z (xj).“g + Z

z (3¢

o s 0%
fac;o, et dt[ Vcla,

Expressing this in the contact frame c,,

‘:1Rc1can|[(xl)ld1 + (x2 )ity + ('g'ﬂ) (th)?
U/

0.
w2 G) e () )

S m [RMT.{U. +F.W1)]

—E|W|

o 0
Voo, =

(38)

where W, = [(;)? (i;t;) (0;)*]7 represent the nonlinear veloc-
ity terms.
Similarly,
g Ja( U, + TuWs)
L Izw2 *

We next find an expression for %), , the skew symmetric
matrix for the angular acceleration of the frame ¢; relative to
the frame o; which is attached to obj i, in the contact frame ¢;.

al,Qc‘ o "“R:afﬁc{- = (n'R:;""Rq.) (O‘REO‘R-:,)
"‘Ri"‘ﬁq _ o‘Qc‘"’Qc,

We substitute from (32) for %{), and from (27) for %R, and

€

after considerable simplification (see Appendix) we obtain
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0 (o, (LU, + Tw))
A (o (T, U, + ffwi)J 0
(VG (LW, — LU))a

'Y

Note that the 1 X 3 matrix " and the 2 X 3 matrix L representing
third-order surface properties enter into the equations,

Other terms in Eqs. (24) and (25) in the ¢, frame are as
follows:

L\'JZE| R,;,\[G_|U|

(h”’) R,(/G)™'U,
Wy

"’1;.,1_0] X GIV"|"| =

_Rw(\!G_l)_!nglwz + Ulr1g|(_wy)

w.\’
P"wm X % w"] =

-0 T
—( ) RE(G) LU,

Wy

(W/C_;z)_]laUzJ’]
0

e [—g-:&]
g = [? ‘0‘] .

Substituting the relevant expressions in Eq. (24) we get

VG, (U, + TaW,) = RNG, (U, + T\W))

"zwq > "zwcl = [

where

+ 2w, ERNGU, + [:] (39)

¥

—w,

-
LW, = =L\W, + 2( ) Rw\/aUl * b (40)

Wy

And from Eq. (25), we get
RE(G) (LW, — LU)) - R,(G) "' LU\w,
+ alF.U.(_w’) + [Z] = (VG,) "' LUy
X ¥
+ E\(NGy) (LW, — LU,) (41)
i

_UI(FIUI + f\lwl) - ( w

X

¥
) RwEl(Ja)—lLlyl + a,

=~ + o0, + TyWy). (42)

Solving Egs. (39), (41), and (42), we obtain the five second-
order contact kinematic equations relating double derivatives
of the contact coordinates to the rigid-body velocities and accel-
erations:
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(VG @W, = L))

0
o] aie o)
U,] | REHNG, -EHNG,
[ RNG,T, ]W+[ VG, T, W
R:EGGYE | E.(JcTzr'iz] #

. I:~2szlR,,1.[CTl 0 ][U,]

_sz-;eHl‘jG—J _J’Hz‘fa; L?z

02x1 02x1
O’|FLUI( % ) i (‘Ix)
— Wy a,

W= o (U, + TW) + ou(TU, + rwy)

(@)
- ay (43)

2%

y
+ (_w[: ) RE(G) 'L U, — o, (44)

Equation (40) is an acceleration constraint equation which can
be rearranged in the following manner:

T
a, = LW, +I,,_w2+2(_“" )RN(T.U.‘ (45)

¥
Wy

6 Examples

6.1 Two Spheres in Contact. Here we derive the first

and second-order contact kinematic equations for two spheres
in contact (obj 1 and obj 2). The choice of coordinates and

notation is according to Section 2.3. Using Eqs. (34)-(36) we
obtain the following first-order contact kinematic equations:

i, = —L2 [y sin W+ w, cos ]
P+ pa2
. [V, sin ¢y — V, cos 1] (46)
P+ p2
. 1 i
e . COS U —
"+ ) sin uy Wil s g =i
+ (Vesin gy + V,cos ¢)]  (47)
by = nw, + V, (48)
Pt P2
. _Thw t .Vv (49)
(p1 + p2) sin u,
b=t [p. 2 (08 ¥ = wy sin )
4 Yesingr +V, cos rﬁ] (50
Pt pa

At the acceleration level, Eq. (43) can be written in the form
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1y paSIn Sin i, Sinu, P, COS Y SIN Uy SiN Uy COS 1 8in wy Sinuy  siny sin i, sin u, Q,
i 1 p2COS I Sin U, pasin i sinuy sin s sin u, cOS i sin i, a | 44 (51)
| A 0 £ 8in u, sin u, sin i, sin u, 0 a,
1y Py Sin iy 0 0 sin u, a,

where A is a nonlinear function of the rigid-body velocities and the rates of change of contact coordinates given by

Yy + Wty €OS Y — wyly COS Uy — ty) COS I COS Uy + Uls COS Uy — weby sin ¥ sin u,,
Wyl COS Uy — wythy Sin W + thi, cos u, sin ¥ — wb, cos ¢ sin uy + b, sin u,,
Quw,pytiy Sin i — 2pythd, €os w, sin i + 2w.pl, cos i sin u, — py0F cos ¥ cos u, sin u, + py03 cos u sin u,,
2w,p ity €OS i — 2p\tD COS i COS 1y — 2patialy COS Uy — 2w, pyly Sin Y sin u, + 10} cos iy sin ¢ sin u,

h_-'_

and
A = (p1 + p2) sin u, sin us.
From Eq. (44), we get
= —a, + i cos u; + i, cos u
— wy(d, sin ¥ + Uy sin 4y cos ) — uyy sin u,

— Uyl Sin wy + w, (D) sin w; sin ¢ — u, cos ) (52)
and the acceleration constraint from Eq. (40) is
a, = —(pu? + p, (0 sin u;)? + pyui}
(53)

The development in Cai and Roth (1987) deals with the
special case in which the coordinate curves on the two surfaces
are aligned so that the angle ¢ is zero. For this special case,
we get the same results by substituting

+ p2(0 sin u3)* — 2pwyiy + 2pywidy Sin ).

=0, ﬁ’l:%‘ vy =0, = v, =0

al
2 Ll
in our equations above.
i, pawy — Vi
Pt op2
pow, + V,
W=
P+ pa
+ V,
Uy = Py {
Pt p2
G o — Py il vy
Pt opa
=0y + @ypy —~ WPy — 2w,
o1t pa
a, + a,p; + wyw,p; — 2w,
Pt o

ﬁ|=

ij'|=

_ @t ayp + wwp
Pt p2

it

a, — a,p + Wwp
Lt op2

The paper (Cai and Roth, 1987) does not deal with the rate of
change of s which evolves (at ¢ = 0) according to the equations

'2’=_wz

b= we(wypr + vy)
pit+ p2

i:l'2=

Journal of Applied Mechanics

6.2 A Sphere Contacting a Plane. We consider the ex-
ample of a plane (obj 1) contacting a sphere (obj 2). The
velocity equations are

iy = p(wy cos Y + w, sin  — V, cos f + V, sin )

Uy = p(—w, sin ¢ + w, cos ¥ + V,sin ¢y + V, cos i)

Uiy = wy
Uy = —w, C8C Uy
g = —(wecol iy + w,).
The acceleration equations are
iy = pi (ty sin f + v, sin u; cos )
— Plizly COS Uy Sin 4 — p()? sin u, €OS Uy €OS Y — 2w,
+ pla, sin  + a, cos ) — (a, cos i — a, sin )
;= pi (1 cOs b — By sin u, sin a;‘-;)
— Pl COS Uy cOS i + p(;)? 8in u, €OS w, sin f + 2w i,
+ pla, cos  — a, sin ) + (a, sin ¢ + a, cos )
iy = Ut Sin uy + o,

1, = tiyfr cSC Uy — Uiyl COL ty — cr, CSC Uy

i = 1, sin uy — Uz, COS Uy — @,

7 Kinematics of Rolling Contact

Two bodies are said to be in a condition of rolling contact if
the velocity of the point of contact on one body is equal to the
velocity of the point of contact on the other body. In other
words, the sliding velocity (Cai and Roth, 1986; Cai and Roth,
1987) or the relative velocity between the points of contact is
zero. This definition is well known and can be found in standard
kinematics texts (see, for example, Paul, 1979). Because this
definition imposes a condition on velocities (and not on higher
order derivatives), it defines rolling contact up to the first order
(Cai and Roth, 1987). We will refer to this as the first-order
condition for rolling.

However, if the relative velocity between the points of con-
tact, in addition to being zero, stays constant through a small
time interval, the two bodies are in a condition of rolling contact
up to the second order. In other words, the derivative of the
sliding velocity is zero. We will refer to this as the second-
order condition for rolling.

In Fig. 6, p; and p; are points attached to obj . p, is the point
of contact at time ¢ while g, is the contact point at time 7. ¢t and
I are considered to be time instants that are separated by a small
interval At,

For the first-order condition for rolling we have
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at time at time ¢

Fig. 6 Reolling motion of two rigid bodies

PV, (1) = 0. (54)
In the contact frame ¢, this is
V.

v,| =o. (55)
vV,

[
a, | =
a (o1t
"V (1) = BV (D)
lim iy iy =0 (56)

(—Fy0 t—1

We rewrite Equation (56) to get

PV oy (1) = "2V, ()

lim -
t—1

(=0

pzvf'lf'l(i) -5 Iilf’z(f) _

-1

+ lim 0. (57)

(-0
The first term of the above equation is nothing but *2a,, ().
Recognizing that "2V, = 2V, , the second term can be writ-
ten as lim (~"w, X Prg,/t —1). As Ar—=0

(1=Fr+0
c.-l—in"~1~o % == Van,

Thus, we get

Py (1) + Py, X (MY, ) = 0. (58)
Because

Ve = Wens
Eq. (58) simplifies to
Pray, o, (1) = =T2wy, X AV, (59)

This is the second-order condition for rolling. In the contact
frame c,, it becomes

(~ERNG,U))w,

ay

' _ T
RIS G
z -ty

where we have substituted the expression for V., from Eq.
(29) and "w,, = [w, wy w,]".
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It can be shown (Sarkar, 1993 ) that the third scalar equation
is actually the same equation as (45), provided the first-order
condition for rolling is satisfied.

In addition to the rolling conditions defined previously, if we
impose another condition known as the no-spin condition, we
achieve what is called pure rolling (Johnson, 1985, p. 242).
The pivoting component of the angular velocity is zero for pure
rolling (Neimark and Fufaev, 1972, p. 18). In other words, in
the frame c,,

(61)

w, = 0.

For pure rolling up to the second order, the derivative of the
pivoting velocity or the z component of the derivative of the
relative angular velocity must vanish (Sarkar, 1993).

(62)

a, =0

7.1 Example: Two Spheres in Contact. In the previous
section we considered the example of a sphere contacting an-
other sphere. The conditions for rolling up to the first order are

Vo=0 V,=0 V,=0
For rolling up to the second order, from Eq. (60),
—(pydy sin i + pab, cos r)w,

—(pity cos f — paiy)w,
sin ¢ + pa0; €os P)w, + (py cos P — po0; sin Yr)w,

(63)

where 4; and v; are given by Eqgs. (46)—(49). Further, for pure
rolling, we have

(64)
(65)

w, =0
a, = 0.

This yields, upon substitution for 4; and o; from Egs. (46)—
(49),

a.=0 (66)
a,=0 (67)
2 2

s (Wi + wy)pps (68)

Pt p

8 Discussion

We have derived and presented in this paper the velocity
equations (Eqs. (34)—(37)) and the acceleration equations
(Eqs. (43)—(44)) for contact between two three-dimensional
bodies. This is the first time that the equations have been pre-
sented in this general form. The work by Cai and Roth (1986,
1987) comes closest to the work presented here. They derived
similar equations that are valid for a Cartesian coordinate system
whose origin is coincident with the contact frame. However,
because of this assumption, their coordinate covering of the
contacting surfaces changes as the contact point moves and as
the relative orientation between the two rigid bodies changes. In
our approach the surface coordinates are independent of where
contact occurs and the relative orientation between the two
bodies. Also, our coordinate systems are, in general, curvilinear,
and include the special case of a Cartesian coordinate system.
Finally, the equations derived by Cai and Roth predict the mo-
tion of the contact point over each surface. However, they do
not consider the evolution of the fifth contact coordinate .

The special case of pure rolling is particularly interesting
in robotic applications. Rolling contact is generally preferred
because it is more efficient and also because rolling motion is
easier to control. In order to maintain a condition of rolling the
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relative motion between the two contacting bodies must be such
that the relative acceleration at the contact point is given by
Eq. (60). In general, this acceleration includes tangential (a,
and a,) components as well as a normal component (a,). This
is unlike the planar case in which the tangential acceleration
must be zero for rolling. In three dimensions, only in the special
case of pure rolling do the tangential components have to be
zero. The application of the rolling constraint equations to the
derivation of the equations of motion and the controller for a
two-arm manipulation system is presented in Sarkar et al.
(1993) and Sarkar (1993).

The acceleration level equations depend on first, second, and
third-order properties of the contacting surfaces. In other words,
we encounter upto the third derivative of the coordinate map,
f, for each object in these equations. Similarly, the velocity
equations depend on first and second order properties. It is
worth noting that while an object such as a sphere can be
described by a second-order equation in the Cartesian space, it
does not mean that all third-order partial derivatives are zero.
In fact, as shown earlier in the example of a sphere, the coeffi-
cients, g;, ', and L; are not constant and the partial derivatives,
(8%x,/66%D€Y), are, in general, nonzero.

Finally a comment about the two examples considered in the
paper. At first sight they may appear trivial and may not serve
to provide adequate justification for the theoretical development
in this paper. But Eqgs. (34)—(36) and Eqgs. (43)-(45) are
completely general, and they work for any contacting surfaces.
The only information needed are the local differential geometric
surface properties ( the coefficients of the first and second funda-
mental forms and their derivatives). The main motivation for
presenting these *‘simpler examples’’ is because for these exam-
ples, the equations are well known for planar motions, and for
spatial motions under the condition of pure rolling. Therefore,
for these examples, there is some opportunity for comparing
the general contact kinematics equations derived here with these
special equations. And in fact, it can be seen from Section 2.3.1
that, even in these ‘‘simple’” cases, the derivatives of gy, I'}
and L; do not vanish and that a spherical surface does not really
simplify the second-order equations.

Current work addresses the application of these equations to
better understand the stability of multi-contact grasps and the
optimization of fixtures for restraining three-dimensional ma-
chine components.
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APPENDIX

A Expressions for ), and *SY,

For any rotation matrix ‘R,,, its derivatives in frame fis given by

Q, = RR"

0, = RRT - QQ

Thus in contact frame ¢;,

".‘ﬂr‘ =
G 0n | 01
i, = O'R?;"'Rq = [(J;} 21 ] (x2); {[{xi)i (x2)i (H)_.][
!

2

o pTo
‘R"‘l 'Rq—

((VG))

™) Ole]
OI)(Z 0

2o $()e 5 ()]G ]}

We introduce Christoffel symbols, [ij, k] and '}, and the coefficients of the second fundamental form, L;, and simplify the
derivative of the metric tensor through Eq. (1). After some algebraic manipulation we get
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-—-—([1] 1ty + [12, 1]41) 0 0

(guh
Y —
! ([21, 1)y +[22, 1]9,) O
(g2
0 0
T |1)| ([rL, e + [12, 1],0;) — Fll)l @ ([11, 2], + [12, 2]10y) — (2 Ill}l { (Lihty + (Li2)y }
—l' ([11, 27,8, + [12, 2]10y) — ([21, 1], + [22, 1]10)) { (Lo iy + (Lag)yiny )
(guh (gzz)l ( 22)1 (822]1
—1_ {(Ly)uy + (L)t } {(Layhtdy + (Lo hiin ) 0

(guh ( 22)I
which can be simplified to

0 (=0 _
S () T LU b
%0, = | (aTW0y) 0 (69)

(G LU, )T 0

where o; = ((g2):/(gn)i}""* for i = 1, 2 are the ratios of the norms of the natural base vectors.
In order to obtain an expression for "IQE‘ we start with Eq. (69).

o, - (JG_p)l I0‘:2><| (x]}f: 2 dxl i 5)(2 j = _(?1 i ((JC_;;}H) 02>c|
0, [ o] G| (3 (&)e £ () £ ()]G %]
& B8 s o B Bxy S 0% sz w (On)y
+[Z (a:s«')‘E tZ (aafaa)éf Z( ) t2 (3&135*).-“ Z (ae‘)f

" ):( a_'n*)_gf][(r) ozx.]ﬂ{xlh s {n)f][«@—} ozx.]

Jk=1 aEI0E 0152 1 01x2 0
() Z(2)e (@[5 %)
i [Z. (65!‘ ¥ = > O O
0 (- C"FU) 0 (_JIFEL}}) %
(~(G) "L Uy Yoy . {(~(G) LU, )
- | (T 0)) 0 X | (e:I'iU;) 0
{(VG) ' LU} 0 (G ' LUi Y 0
After simplification, we finally write "!ch_ in the following compact form:
0 (—o; (U + W) _ .
_ _ (G TW; — L))
af), = | (a:(TU; + TiW,)) 0 B e
((VG) ' TW, — L)) 0
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Curvilinear Coordinates and
Physical Components: An
Application to the Problem of
Viscous Flow and Heat Transfer
in Smoothly Curved Ducts

Expressions are derived for the gradient, divergence, Laplacian, curl, and material
time derivative in terms of general curvilinear coordinates using physical components
of all vector quantities. The results are conveniently expressed in terms of two new
coefficients, involving physical and reciprocal base vectors. An application to the
problem of viscous flow and heat transfer in arbitrarily smoothly curved ducts is

C. J. Bolinder

Division of Fluid Mechanics,
Lund Institute of Technology,
Box 118,

221 00 Lund, Sweden

presented. In particular, helical ducts are considered.

Introduction

When analyzing a flow problem, it is desirable to have a
coordinate system that follows the boundaries of the flow do-
main smoothly, i.e., a boundary-fitted coordinate system. The
reason for this is that the boundary conditions then may be
applied easily and in an exact manner. In CFD, a boundary-
fitted grid is often generated by some numerical technique ( see,
e.g., Thompson, 1984). This is required to be able to handle
arbitrary complex geometries. For particular geometries, how-
ever, it might be possible to find a simple analytical expression
(according to Eq. (2) below) for a curvilinear coordinate system
that fits the boundaries exactly. This is the case for example
for smoothly curved ducts, which are considered in this paper.
The governing equations may be derived in terms of the curvi-
linear coordinates in an exact manner, and the equations may
then be solved by any convenient analytical or numerical tech-
nique. An advantage of this approach, compared to CFD em-
ploying numerical grid generation, is that no approximation is
introduced in the formulation of the flow problem, which is
attractive at least from an academic point of view.

The main motive for writing this paper is to present a method
for deriving the governing equations for the flow and heat trans-
fer in helical ducts, even though the obtained results are more
generally applicable. A helical duct is characterized by the cen-
ter-line having a constant curvature and a constant torsion,
which, for example, enables the study of fully developed flow
conditions. A finite torsion of the center-line implies a finite
pitch of the duct, and it also makes the associated coordinate
system nonorthogonal.

Among the first to analyze, from a theoretical point of view,
the flow in helical ducts with a finite pitch or torsion were Wang
(1981) and Germano (1982). They, however, reached different
conclusions about the effect of torsion on the secondary flow.
While Wang found a first-order effect of torsion, Germano only
found a second-order effect. The reason for the discrepancy was
that different velocity components were used for the secondary
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flow. Wang employed so-called contravariant components (to
be defined below), and Germano employed physical compo-
nents, i.e., the velocity vector was expanded in a physical (i.e.,
an orthonormal) basis. From a conceptual point of view, as
argued for below, it is recommended to describe the flow using
physical components, even though full consensus about this
matter not yet exists. Liu and Masliyah (1993), for example,
recommend using contravariant components.

In this paper, a method is presented for deriving the governing
equations directly in terms of the desired coordinates and suitable
physical velocity components, Previous authors on helical duct
flows have used indirect methods to derive the governing equa-
tions, in the sense that a transformation is involved, either of the
coordinates or of the velocity components. In the first section
expressions are derived for some basic vector quantities, e.g., the
gradient, divergence, and curl. In the next section, the derived
expressions are applied to the problem of incompressible flow
of a Newtonian fluid, and in the final section smoothly curved
ducts are considered. No solutions of the derived equations are
presented in this paper. Applications to laminar flow and heat
transfer in helical rectangular ducts may be found in Bolinder
(1993, 1995, 1996) and in Bolinder and Sundén (1995, 1996).

Basic Definitions and Relationships

In this section, expressions are derived for the gradient, diver-
gence, Laplacian, curl, and material time derivative in terms of
general curvilinear coordinates using physical components of
all vector quantities.

The position vector r expanded in the Cartesian basis (e,
e,, e,) reads

(1)

where x, y, and z are the Cartesian coordinates. Curvilinear
coordinates (x', x?, x°) are defined as functions of the
Cartesian coordinates, i.e.,

r = xe, + ye, + ze,

i= 1\ 25 3\ {2)

where the functions are assumed to be smooth, reversible, and
single-valued in some region of space.

The natural base vectors a; and the reciprocal base vectors a'
of the curvilinear coordinate system (', x*, x*) are defined by

x'=x'(x,y,2),

(3)
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Thus, a; is tangent to the y ~coordinate curve, and a’ is normal
to the coordinate surface x'-constant. The components of a
vector v expanded in the natural basis are called contravariant
and are denoted by « ', and the components of v expanded in
the reciprocal basis are called covariant and are denoted by &,
thus

v = 4;a,

(4)

vV= &‘Ia[,

employing the familiar summation convention.

If the natural basis is nonorthogonal, so is the reciprocal
basis, and it is generally not convenient to use either basis to
expand, for example, the velocity vector. Instead, it is often
preferable to use a physical (i.e., an orthonormal) basis for the
velocity. With the terminology of Bowen and Wang (1976), a
basis which is not the natural basis is also called an anholonomic
basis. For a physical basis (e,, e,, e;) it is required that

I, if i=j
€'e = 6,! = A “ (5)
0, if i+j
Expanding a vector v in a physical basis yields
v =ue;, (6)

where v; are called physical components. Only for a physical
basis, the components are obtained as projections of the vector
on the respective base vectors, i.e.,

(7

This property makes physical bases attractive from a conceptual
point of view.

The following relationship is useful (see, e.g., SokolnikofTf,
1964):

v = ¥€;.

(8)

where the Christoffel symbols I'} (also denoted by {§}) are
defined by

da;
It= k.axj , (9)
and where
g = det (gy) = det (a;-a). (10)

gy are so-called metric coefficients. Two new coefficients, in-
volving the physical base vectors e;, are defined by

Eyp=¢-" ')’;j=ef'a‘;- (11)

B¢
ax*’
Obviously, for Cartesian velocity components, all the coeffi-
cients Ej; would vanish. This approach is often taken in CFD,
but for curved duct flows a more convenient choice is made to
distinguish the so-called axial flow from the secondary flow,
and also to be able to assume fully developed conditions, see
further below.,

We are now in a position to derive a variety of vector quanti-
ties. Many of the basic definitions may be found in the book
by Gurtin (1981). In the following a lower index is used to
denote a physical component (and not a covariant component ).

By use of the chain rule and the definition (3),, the following
expression for the physical components of the gradient of a
scalar field fis obtained:

(V) =eVi=2Lyl (12)
X
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For the gradient of a vector field v one obtains

(Vv)y=¢:(Vv)e
ov v
=€- (B_X* ® VXk)e_j = '}’;(a‘; - U:Em-) , (13)

and for the divergence of a vector field v, using Eq. (8),
ov . 1 8 .
divyv =tr (VV) = —Vx' = -=— (Vguy)). (14)
ax J;ax. i Vi

The divergence of a tensor field T is a vector field, which
for any vector field v satisfies (Gurtin, 1981)
vediv T = div (T7v) — tr (T"Vv). (15)

Using this, the physical components of div T may be written

(divT) = leai'x* (\@T.ﬂ’f) = TmEm‘Yf, (16)
where T; are physical components of T, which satisfy
T=Te ®e, T;=e¢-Te. (17)
Note that Eq. (17), requires that Eq. (5) is fulfilled.
For the Laplacian of a scalar field f one obtains
Af=div Vf= Jlgaif (fgi} ym) . 8)

An expression for the physical components of the Laplacian of
a vector field v, Av = div Vv, is easy to obtain using Egs.
(16) and (13).

For the curl of a vector field v one obtains

&
(curl v); = ep(Vv)y = em}(a—xﬁ - v.,,EM) , (19)

where € is the usual permutation symbol.
Finally, expressions are given for the material time derivative
of scalar and vector fields. For a scalar field f, one obtains

f = 3f+v M= f oyl 2L (20)
ox’
where v is the velocity field, and for a vector field u,
du, A, Ou;
(u), = ?; + (Vu)yy, = o + ‘}'f(a—xk = R.-E.-ik)v_n (21)

assuming the physical base vectors e; to be time independent.

Governing Equations for an Incompressible Newton-
ian Fluid

The formulas derived in the preceding section are applicable
to any problem involving partial differential equations. In this
section, the formulas are applied to the problem of incompress-
ible flow of a Newtonian fluid, which is governed by the conti-
nuity, the Navier-Stokes, and the energy equations. In direct
vector notation these equations read

divv =0, (22)
v=—le—ucurl (curl v), (23)

p
T=—AT+—tr (VvIVv + VvVy), (24)

C,
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where the kinematic viscosity » is assumed constant and where
p is a generalized pressure, which includes conservative body
forces. The last term in the energy Eq. (24) is the viscous
dissipation. In component notation, according to the previously
derived expressions, the governing equations read

gvyy) =0, (25)

Fi

o, k( o
TROE Yi

i\ =— —uEy |y =—-— LB
o gyt )Y p Ox’

(8(curl V)i
VE"J“"YJ —_—

B = (curl ")mEm.-)» (26)

o, o _v1d (\F or )
o gy ox’ ~ Prilg o’ %)
1 de an Bu
+ 5| (e B+ onBut i
Oy ] I
= b (‘5; =+ UmE.hm) (a_x;' + UIIEI'HJ)?&?'} ¥ (2?}

where (curl v); in Eq. (26) is given by Eq. (19).

Flow in a Smoothly Curved Duct

In this section, a method is outlined for the derivation of the
governing equations in a form suitable for the flow in arbitrarily
smoothly curved ducts. The results are then applied to the spe-
cial case of a helical duct.

Let the center-line or any other convenient line of the duct
be described by the space curve r.(s), where the parameter s
is the arc length. r, is assumed to be smooth enough, so that
all required derivatives of r. are continuous. It is not always

possible to parametrize r, explicitly in terms of arc length s. If

r,. is parametrized in terms of another parameter 8, then s and

# are related by
dr,. dr,
= lf—‘-—"d&.
de de

From Eq. (28), one cannot generally obtain an explicit function
6 = 6 (s). However, using Eq. (28) and the chain rule, deriva-
tives with respect to s are possible to obtain,

As an example, consider a circular helix, with the parametric
representation

(28)

r.(#) = Re,(8) + Kbe,, (29)

where R is the radius of the cylinder to which the helix is coiled,
and 27K is the pitch (see Fig. 1). R and K are assumed constant.
e,, €5, and e, are unit base vectors of the cylindrical coordinate
system indicated in Fig. 1. Evaluating Eq. (28), one finds that

= yYR* + K*d8 or s=VR*+ K%0 + constant. (30)

Thus, for a circular helix, r. may be explicitly parametrized in
terms of s.

—

Fig. 1 Circular helix with pitch 2nK

Journal of Applied Mechanics

The tangent t, normal n, and binormal b of a space curve r,
are defined by

1
t=r., n=-r!, b=tXxn, (31)
K
where a prime denotes a derivative with respect to arc length
5. Note that t, n, and b constitute a physical basis. The curvature
k and the torsion 7 of r,. are defined by
k=|rll], T=n’"'b. (32)
Using Egs. (31) and (32), the so-called Frenet formulas may
be derived, i.e.,
t'=xkn, n'=7b - «kt, b'=—7n. (33)
For the circular helix described by Eqgs. (29) and (30), t, n,
and b are given by

t(s) = cos aeys) + sin ae,,

n(s) = —e(s), (34)
b(s) = — sin aey(s) + cos ae,.

« is the slope of the helix relative to the plane z = constant

(see Fig. 1). One finds that

(35)

R K
Rk VR K

For a circular helix, x and 7 are constant with the following
values:

R __ K
R* + K*’ R* + K*

K=

(36)

So far, only the center-line r. of the duct has been discussed.
To represent points off the center-line, the coordinates x and y
are used, where x runs in the direction of fi and y in the direction
of b. fi and b are the orthogonal unit vectors obtained by a
rotation of m and b the angle ¢(s) in the n, b-plane, i.e.,

(37)

=

i = cos yn — sin b,
= sin ¢n + cos pb,

(see also Fig. 2). The position vector r of points in the duct is
thus given by

r(s, x, y) = r.(s) + xii(s) + yb(s). (38)

This representation of r is especially suitable for ducts of rectan-
gular cross section. The angle ¢(s) is then chosen such that fi
and b are aligned to the boundaries of the duct. This makes the
boundary conditions easy to apply. For a duct of circular cross
section, it is more convenient to use polar coordinates in the n,
b-plane.

Using the definition (3), and the Frenet formulas (33), the
following expressions for the natural base vectors a; of the
coordinate system (s, x, y) may be derived

%

a =2 - Mt— (r ~ )i + (7 — @b,
os
or
i BN 3
a = fl, Y (39)
[7) .
a,—ay b, i
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Fig. 2 Various vectors related to the center-line of a duct

whcre
(40)

Thus, unless T = ¢, the coordinate system is not orthogonal.
An orthogonal coordinate system is obtained, for example, if
the center-line of the duct lies in a plane, then = = 0, and also
 is constant, i.e., ¢’ = 0.

A suitable physical basis to expand the velocity vector in is
obviously (t, i, b), which yields

M =1 — k(x cos ¢ + y sin ).

v = wt + uii + vb, (41)

where w is called the axial flow component, and u and v are
called the secondary flow components. Accordingly, the axial
flow is the projection of v on the tangent t, and the secondary
flow is the projection of v on the n, b-plane.

The following identifications are made

x'=s, x*=x, x’=Y,
e, =t e=1H0n, e=Dh, (42)
Ly=wW, UL =H, V3=V

Then, the nonzero coefficients Ey and v/, defined by Eq. (11),
are found to be

E;y = —Ep = kcos p, By =—E; =k sin y,
Eypy = —Ep =7 — ¢,
yi=1M, yi=(r— ¢ )M,

—(1 = ¢")xIM,

(43)

i yi=7yi=1
\G appears in the divergence and the Laplacian, Using the defi-
nition (10), one obtains

(44)

The governing Egs. (25)—-(27) may now be expressed in full
detail, in a form suitable for arbitrarily smoothly curved ducts.
In the following, the analysis is restricted to fully developed
flow in helical ducts.

For a helical duct, the center-line is a circular helix, which
implies that x and 7 are constant (see Eq. (36)). We also
require that ¢ is constant. A helical duct with a rectangular
cross section is depicted in Fig. 3. Helical ducts include two
important special cases, namely toroidal ducts, for which 7 is
zero, and straight twisted ducts, for which « is instead zero. If
k and T both are zero, the trivial case of a straight untwisted
duct is obtained.

Often a fully developed flow is considered. The flow is
fully developed when it does not change in the axial direction,

\/E=M-—-1—K(xcosgo+ysintp).
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i.e., the velocity v is independent of the s-coordinate. To be
able to find a fully developed flow, the coefficients in Egs.
(43) and (44) must clearly be independent of s, which im-
plies that 7 — ' has to be constant, and that either « and ¢
are constant, or if « is zero, ¢ may be a function of s, as
long as 7 — ¢’ is constant. However, if x is zero, the duct
is a straight twisted one, and ¢ does always enter in the form
T — " in Egs. (43) and (44). Accordingly, in this case, the
degree of twist 7 — ¢’ can be fully described by 7 only, and
without loss of generality, we may for a fully developed flow
assume that k, 7, and y all are constant. This, in turn, implies
that a fully developed flow is possible to obtain only in a
helical duct, or degenerate helical (i.e., toroidal or straight
twisted ). Further, it is also required that the pressure gradient
is independent of s, and that the boundary conditions do not
change in the axial direction.

For a fully developed flow in a helical duct with «, 7, and
 constant, the continuity Eq. (25) assumes the form

fz (Mu + Tyw) + -,Q(Mv — 7aw) = 0. (45)
Jx ay

Expressions for the Navier-Stokes and the energy equations
may be found in previous papers by the author, referred to in
the Introduction,

A stream function ¥ = W(x, y), which automatically satisfies
the continuity Eq. (45), may be defined according to

o

— = Mu + Tyw, (46)
dy
= %:f- = Mv — Txw.

¥(x, y) = constant defines a three-dimensional surface, and
VW is normal to this surface. For a given s, ¥(x, y) = constant
defines a curve in the n, b-plane, and VWV is orthogonal to the
tangent of this curve. Using Eq. (12), one finds that

e (Q@_E@)HB_‘EH@& (47
ox dy

Denote the secondary flow by V.., i.e.,
Ve = uil + vb. (48)

Then, Egs. (46)—(48) give

AVAE R u@ + vﬂ = tw(xu + yu),
Ox dy

Fig. 3 Helical duct with rectangular cross section
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which means that, unless 7 = 0, so that the above expression
is zero, the curves W = constant do not define streamlines for
the secondary flow. However, one finds that

VEev = VT (wt + v,) =0,

which proves that the velocity is tangent to the surfaces ¥ =
constant. That is, these surfaces define streamtubes for the ve-
locity field. Note also that similar results concerning the stream
function apply, if instead polar coordinates are used in the n,
b-plane.
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linearized equation of motion and continuity equation, and the computation is based
on a discrete singularity method. As examples, simple obstacles such as circular
cylinders, rectangular prisms, and symmetrical Zhukovskii aerofoils are considered.
And it was confirmed that the computed drags agree well with experimental values.

Besides optimum shapes of these geometries, which minimize the drag coefficients,
are also determined at each Reynolds number.

1 Introduction

The modified Oseen method (Lewis and Carrier, 1949) is
really an extension of the original Oseen’s approximation
(Oseen, 1910), in that it employs a proper approximation to
linearize the convective terms of governing equations such as
the Navier-Stokes equations and the energy equations. The
method is featured by the fact that it introduces some empirical
modification parameter into the convective terms. Namely,
Lewis and Carrier (1949) introduced a modification of the
Oseen linearization in which uniform upstream speed of the
convective term in the Oseen’s approximation is replaced with
an appropriate average speed.

This modified Oseen method has been applied to solve sev-
eral outer-flow problems, such as the flow past a semi-infinite
or finite plate (Lewis and Carrier, 1949; Carrier, 1965), the
heat transfer to a melting body in a high speed stream (Carrier,
1958), and the flow past a quarter infinite plate and the related
heat transfer (Carrier, 1965) where their solutions were ob-
tained analytically, not computationally.

As is clear from these papers, the governing equations can
be tackled with comparative easiness owing to its linearity,
analytical approaches being taken in some cases. Whereas, this
method is not considered so effective where a nonlinearity plays
an important role in the flow field. However, the method includ-
ing the Oseen’s approximation is sometimes useful so long as
global characters of flow are concerned. For example, the drag
coefficient of a sphere at an infinite Reynolds number was suc-
cessfully obtained using the Oseen’s approximation (Weisen-
born and Ten Bosh, 1993). This means that such an approxima-
tion is expected to provide useful information at Reynolds num-
bers even much greater than unity.

Combination of singularity methods or boundary element
methods, and the modified Oseen method, enables us to com-
pute the flow past various obstacles efficiently and conveniently.
In this paper, this type of technique is employed to obtain ap-
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proximately the drags of two-dimensional obstacles symmetri-
cal to the main-flow axis, with the Reynolds number varied
from zero to about 100. The obstacle geometries considered
here are circular cylinders, rectangular prisms, and symmetrical
Zhukovskii aerofoils. The numerical results are discussed, being
compared with experimental ones. Besides, using the present
method, we reveal that, at each Reynolds number tested, there
are optimum shapes which minimize the drag coefficients of
rectangular prisms and aerofoils.

2 Basic Theory

2.1 Modified Oseen’s Equation. In this subsection,
based on the basic concept of the modified Oseen method, we
try, in our way, to linearize the Navier-Stokes equation of mo-
tion for two-dimensional flow.

The nonlinear convective term is expressed as

fc = (u-Vu, (1)
where u = (u, v), V = (8/0x, 0/8y), x and y being the
Cartesian coordinates, and # and v the velocity components
along x and y, respectively. Velocity u is a function of space,
and can be written as

S r

u=1+u', (2)
where 1 is the velocity spatially averaged with weight all over
the flow field 2. If we introduce a weighting function N = N(x,
¥), the space-averaged velocity @ can be expressed by

NudA/A,
{1

.1
u=-=

(3)
with
£ f NdA. )
0

Here, in order to simplify the problem, we assume symmetry

of both u and N to the x-axis, viz. the axis parallel to the

direction of the main flow. This assumption leads Eq. (3) to
i =(4,0). (5)
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Substituting both Egs. (2) and (5) into Eq. (1), we get

fe = ddu/ox. (6)
Letting i = BU.., the convective term is
fc = BU.Ou/dx, (7

where U. is the velocity at infinity in the direction of the x-
axis, and 8 a modification parameter. Then we arrive at the
modified Oseen’s equation first suggested by Lewis and Carrier
(1949), for two-dimensional incompressible steady flow,
namely,

BU.0uldx = —Vplp + vV, (8)

where p denotes the density of fluid, » the kinematic viscosity
of fluid, and p the pressure. In addition, V*u = 8%u/8x* + 8%/
Oy*. And the equation of continuity is

oulox + oul/dy = 0. (9)

As is well known, with increasing Reynolds number Re,
inertia force compared with viscous force increases over most
of the flow field. Then, the error in simulations by the Oseen’s
approximation (8 = 1 in Eq. (8)) increases, particularly near
the body surface. In the present case N(x, y), having larger
values near the surface, or an appropriate value of 3, is expected
to provide a more accurate computation, More specifically, the
flow details over the whole flow region governed by Eqgs. (8)
and (9), are not considered to coincide with those by the full
Navier-Stokes equations. However, it can be expected that the
global flow characters, such as a drag acting on an obstacle, are
computed accurately by the present equations, even for Re 2
1, if 8 is properly chosen.

As far as the drag is concerned, # is considered to be a
function of both Reynolds number and the shape of the cross
section. To decide the function, it is necessary to compare com-
putations by Eqgs. (8) and (9) with experiments for a variety
of geometries. In this context, 8 is regarded as an empirical
parameter. Fortunately, it will be revealed in Section 5.2 that
B is almost independent of the geometries tested in this study.

According to the existing drag formulae for the Oseen’s flow,
we have the corresponding formulae for the modified version.
For example, referring to Lamb (1932), the drag coefficient Cp,
of circular cylinders in uniform flow is given by

Cp = 2D/(pUid) = 8n/(ReT), (10)

where T =1 — y — log, (8 Re/8), Re = U.d/v and y =
0.57721 . .. (Euler’s constant), D being the drag per unit length

Uw

and d the diameter of the cylinder. It is found from this formula
that Cp, is reduced as B decreases. In the next section, we shall
present a more general method to obtain the drags of two-
dimensional obstacles, including circular cylinders.

2.2 Discrete Singularity Method. It was shown by Yano
and Kieda (1980) that a discrete singularity method is expedient
to solve the Oseen’s equations. According to this method, the
complex velocity W, = u, — iv, perturbed by a modified Oseen-
let for two-dimensional flow, which is located at the origin of
the coordinate system, is given by

2
W, = X {a®WW®), (11)
k=1

where
W = exp(Ax) { Ky (Nr)
+ Ki(hr) exp(—if)} — 1/(Az) (12)
and
W = i exp(Ax){ —Ko(Ar)
+ K (Ar) exp(—if)} — if(Az) (13)

with A = BU/(2v), r = |z|, 8 = arg (z), i = J(—-l)and z
= x + iy. In addition, K; and K, are modified Bessel functions
of the second kind.

To realize the flow around an arbitrary obstacle in an un-
bounded uniform flow field with the velocity U.., we can dis-
cretely distribute modified Oseenlets of number n on the surface
(see Fig. 1). Owing to the linearity of Eq. (8), the complex
velocity W = u — jv is assumed as

H 2
W=3 3 (aPWh) + U.,

j=1 k=1

(14)

where
Wi = exp(\x) ( Ko(hry) + Ki(\r)) exp(—if) } — 1/(Az),
W = i exp(Ax)) [ = Ko(Ary) + Ki(Nr)) exp(—if)) } — i/ (Az)),

r;= |z, 8, = arg (z) and z; = z — z; (z; denotes the position
of a singularity ). Letting W,, = W¥ and a,, = a'® with m =
j+ (k= 1)n, we get

n
W = Z ('ai;lwr:l) = Um'

m=1

(15)

Control point

Singularity

Fig. 1 Flow around an arbitrary symmetrical obstacle in a stream with uniform velocity U.: e,
the position of a singularity z;; O, the position of a control point §;
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Tank
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Knife edge
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Fig. 2 Side view of experimental apparatus

So as to satisfy the no-slip boundary condition approximately
on the surface, the 2n unknowns a,, have to be determined
numerically from the following system of linear equations:

W(ECIWHE) =0, k=1,2,.. (16)

where the asterisk denotes the complex conjugate and {; is the
position of a control point (see also Fig. 1).

Considering the Filon’s formulae (1926), the drag coefficient
of an obstacle is

Cp = 2D/(pULL)

_—

= —S?TJ’(UQ RC) i (HI;IJI

m=1

(17)
where Re = U..L/v, L being the representative length.

3 Experimental Arrangements

To verify the computed drags, experiments were conducted
with a water tank moving smoothly with a constant velocity on
a horizontal railway. As is shown in Fig. 2, the tank is driven
by a variable speed motor by means of a nut engaged on a lead
screw. The fluid filled is a glycerol-water solution, so as to vary
its kinematic viscosity.

The present technique adopted to measure the drag (exactly
the time-averaged drag, because the drag fluctuates at higher
values of Re) is primarily identical with what is called ‘‘lamp
scale and mirror method”’ by Taneda in 1964. The model is
hung vertically in the tank as a pendulum by a knife edge, and
the drag can be obtained from the inclination angle of the model.
In the original lamp scale and mirror method, the inclination
angle is determined from the image on a ruler reflected by a
mirror which is attached to the model. But in the present experi-
ment the inclination angle was measured using a laser extenso-
meter.

L

Re

Fig. 3 Relationship between modification parameter g and Reynolds
number Re
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4 Modification Parameter 8 for Circular Cylinders

It is obvious from the theory in the preceding sections that
the computational Cp, of a circular cylinder based on Egs. (8)
and (9) is dependent both on 8 and Re, as can be also seen
from the drag formula (10), whereas the experimental C,, de-
pends only on Re. Therefore, under the condition that they agree
with each other, the parameter 8 is assumed as a function of
Re only. More specifically, we determined such a value of 8
that the computational Cp, obtained by a singularity method
with 60 singularities (modified Oseenlets) on the surface of a
circular cylinder at regular intervals as shown in Fig. 1, may
agree with the Tritton’s experimental data (1959) (as will be
shown in Fig. 4).

Figure 3 indicates the relation between the modification pa-
rameter 8 and the Reynolds number Re, which is obtained in
the range of 0 < Re = 100. The blank dots show direct compu-
tations based on the foregoing theory, and the solid line indi-
cates the empirical formula in the form

B =-01621og, (123 Re + 1) + 1
and
B = 0.0310 (log. (Re/12))* — 0.130 log, (Re/12) + 0.553

(12 = Re = 100). (18)

In this figure it is shown that, in Re = 2, there is some scatter
in A values obtained by direct computations due to a scatter in
the original C;, measurements, whereas this formula is reason-
able in this range in that 8 — as Re = 0.

Figure 4 shows computational and experimental drag coeffi-
cients Cp of circular cylinders, plotted against the Reynolds

(0 < Re = 12)

10

Go

=1 ]
[+]
) ) S—T ; ......].ﬂu
Re
Fig. 4 Drag coefficient C; versus Reynolds number Re for circular cylin-
ders: —, modified Oseen's approximation; ----- , Oseen's approxima-

tion; O, experimental resuits (present); ®, exparimental results (Tritton,
1959)
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Y/ Und=025
0.18

(a)

(®)

Fig.5 Streamlines of flow past a circular cylinder at Re = 26: (a) Modi-
fied Oseen’s approximation; (b) flow visualization by Taneda (Van Dyke,
1982)

number Re based on the diameter d. Here two computational
curves for § = 1 and for 8 = B (Re) given by Eq. (18)
are shown. A good fit between the curve for 8 = B(Re) and
experimental data shows that Eq. (18) is a proper approxima-
tion. Additionally, the curve for # = 1 (Oseen) is not so good
over the whole range except in the neighborhood of Re = 1.
Moreover, data from the present experiment are also added to
check their accuracy.

To check the range of the present approximation with 8, we
computed the flow field around a circular cylinder at Re = 26.
Figure 5 shows streamlines of flow past a cylinder. The com-

01 = .....,lm
Re

Fig. 6 Drag coefficient C; versus Reynolds number Re for square-sec-

tion prisms (b/a = 1.0): —, modified Oseen's approximation; - ---= 5

Oseen's approximation; O, experimental results

Journal of Applied Mechanics

N

0.2 1 10 25
b/a

Fig.7 Drag coefficient Cp versus depth-to-height ratio b/a for rectangu-
lar prisms at Re = 10: —, modified Oseen's approximation; - -, B =
B(Re(a)); - -=,p =pB(Re(b));----~ , Oseen's approximation; O, experi-
mental resuits

puted length of the region of closed streamlines behind a cylin-
der (Fig. 5(a)) is somewhat shorter than that of the observation
(Van Dyke, 1982) (Fig. 5(b)).

5 B Independent of Geometry

In the following sections, it will be shown that the present
method is applicable to two-dimensional noncircular cylinders,
using the same 8 as given by Eqs. (18) for circular cylinders.
That is, we shall examine two types of obstacles: rectangular
prisms and symmetrical Zhukovskii aerofoils. (For these com-
putations # is set such that n = 80.)

5.1 Equivalent Diameter d,. To obtain the value of g
for geometries other than circular cylinders we introduce a new
representative length or equivalent diameter d,, which enables
us to use the relationship between 8 and Re for circular cylin-
ders in Eqgs. (18). The equivalent diameter d, can be defined
as

d. = J(4SIm), (19)

where § denotes the area of the cross section. According to this
definition d, = d for circular cylinders. The eligibility of this
assumption will be examined in the next section.

5.2 Drags of Rectangular Prisms. Figure 6 shows the
drag coefficient C, plotted against the Reynolds number Re for
a rectangular prism with the depth-to-height ratio b/a = 1.0 (a
square-section prism) where a is the height (cross-streamwise

10— — B —

Co

2 _Mfm‘::___“h_
—Z~— ]
S i sl
0 L PR PR T |
0.2 1 10 25
b/a

Fig.8 Drag coefficient Cp versus depth-to-height ratio b/a for rectangu-
lar prisms: O, ——, Re = 5; ®, ~---- , Re = 50; ©, - - -, Re = 100; O, »,
0, experimental results
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Fig. 9 Drag coefficient C, versus Reynolds number Re for symmetrical
Zhukovskil aerofoils with /¢ = 0.25: , modified Oseen’s approxima-
tion; =-=~~ , Oseen's approximation; O, experimental results

dimension) and & is the depth (streamwise dimension). Solid
and a broken lines represent the numerical results by the modi-
fied Oseen’s approximation and by the Oseen’s approximation,
respectively. Blank dots represent the results by the present
experiment. Over the wide range of Re from 4 to 100, the
computations almost coincide with the experiments. In addition,
itis obvious that the drag by the present method is more accurate
than that by the Oseen’s approximation.

Figure 7 shows C, plotted against b/a for rectangular prisms
at Re = 10. The definitions of lines and dots are the same as
in Fig. 6. The modified Oseen’s approximation agrees well with
the experiment over a wide range of b/a.

Until the preceding paragraph, the equivalent diameter d, and
the corresponding Reynolds number Re have been used for data
reduction. Here we try to employ two other definitions of length
scales L = a and b and the corresponding Reynolds number
Re(a) and Re(b). In Fig. 7, in addition to the drags calculated
using Re (solid line), those using Re(a) and Re(b) are shown
by a chain line and a two-dot chain line, respectively, where
each Cp is based on d,. It can be seen from a comparison of
these lines with blank dots (for the experiment) that a choice
of the equivalent diameter d, as a representative length L enables
us to predict most accurately the drag within the confine of 0.2
< bla < 20.

Figure 8 shows Cp plotted against b/a for rectangular prisms
at Re = 5, 50, and 100. As well as the drag at Re = 10, the
calculated drags agree well with the experimental ones, over a
wide range of b/a.

Uso

—

— -
1f —>

1 1 -] 1 L 1 1 i 1 | -
0.05 0.1 10

t/c
Fig. 10 Drag coefficient Cp versus thickness ratio t/c for symmetrical

Zhukovskii aerofoils at Re = 10: ——, modified Oseen's approximation; -
----, Oseen’s approximation; O, experimental results
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Fig. 11 Drag coefficient C, versus thickness ratio t/c for symmetrical
Zhukovskii aerofoils: O, ——, Re = 15; @, ----- ,Re =50; ©, ---,Re =
100; C, @, ©, experimental results

5.3 Drags of Symmetrical Zhukovskii Aerofoils. Figure
9 shows Cp plotted against Re for a symmetrical Zhukovskii
aerofoil with the thickness ratio t/¢ = 0.25, where ¢ is the chord
and ¢ the thickness of the aerofoil. A solid and a broken lines
denote the results by the modified Oseen’s and the Oseen’s
approximations, respectively. Blank symbols denote the results
by the present experiment. As in the case of rectangular prisms,
the modified Oseen’s approximation agrees well with the exper-
iment,

Figure 10 shows Cp, plotted against ¢/c for the aerofoils at
Re = 10. The definitions of lines and dots are the same as in
Fig. 6. We can clearly see that the modified Oseen’s approxima-
tion agrees well with the experiment,

Figure 11 shows C, plotted against t/¢ for the aerofoils at
Re = 15, 50, and 100. As can be seen, at each Reynolds number,
there is a good agreement between the modified Oseen’s approx-
imation and the experiment.

After all, we can confirm that the drags of noncircular prisms,
such as rectangular prisms and symmetrical Zhukovskii aero-
foils, can be computed accurately by the present method, in
spite of @ determined for circular cylinders with the use of the
equivalent diameter d. defined in Egs. (18), so long as the
obstacle is symmetrical with respect to the main-flow axis. This
f’s independency of geometry should be further examined theo-
retically, computationally, and experimentally for a variety of
cross section geometries.

6 Optimum Shapes
Again in Figs. 7 and 8, it can be seen that, at each Reynolds
number Re, there is an optimum depth-to-height ratio (b/a)yp

15 T e NS — - 10
\ b
\ Use
\\ —

s R i 8.5
_— \\ E
) % =
— 3 Q

Ay
£ 9 8 60
Y g
\\
\\\
6F . —(bfa)op 4
~(CD)min
S Y
3t s 2
i | P T | L1yl I PO T S S A A |
DI 10 100

Re
Fig. 12 Optimum depth-to-height ratio (b/a) . (solid line) and minimum

drag coefficient (Cp)mn (broken line) of rectangular prisms, against
Reynolds number Re
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(t/ c)opl

Fig. 13 Optimum thickness ratio (t/c): (solid line) and minimum drag
coefficient (Cp)min (broken line) of symmetrical Zhukovskii aerofoils,
against Reynolds number Re

at which the drag coefficient Cp, of the rectangular prism has
the least value ( Cp)min-

Figure 12 shows (b/a),, (solid line) and the minimum drag
coefficient (Cp)min (broken line) plotted against Re for the rect-
angular prism. As Re increases, (b/a),, becomes larger, while
(Cp)min 18 reduced.

In Figs. 10 and 11, we can also recognize that, at each Reyn-
olds number, there is an optimum thickness ratio (#/c)qy at
which the drag coefficient C,, of the aerofoil has the least value
( CD )min .

Figure 13 shows (t/c),y (solid line) and the minimum drag
coefficient ( Cp)min (broken line) plotted against Re for the aero-
foil. (¢/¢)oy as well as (Cp ) decreases with increasing Re.

Additionally, Figs. 14 and 15 show examples of optimum
shapes for the rectangular prism and the symmetrical Zhukov-
skii aerofoil at some Reynolds numbers.

7 Conclusions

In order to obtain approximately the drag coefficients of two-
dimensional obstacles symmetrical to the main-flow axis, the
authors proposed a new simple method of computing the modi-
fied Oseen’s linearized equations, with an empirical parameter
B, on the basis of a discrete singularity method. Namely, the
drag coefficients of simple blunt bodies, such as circular cylin-
ders, rectangular prisms and symmetrical Zhukovskii aerofoils,

Ue l

(@

®)

Yoo ]
(c)

Fig. 14 Optimum shapes of rectangular prisms: (a) Re = 1; (b) Re =
10; (c) Re = 100
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Fig. 15 Optimum shapes of symmetrical Zhukovskii aerofoils: (a) Re =
1; (b) Re = 10; (¢) Re = 100

were computed in a Reynolds number range up to about 100,
The method has advantages of the simplicity of computational
algorithm and of the time saving for computing execution. For
example, for the case of 150 singularities, the time for computa-
tion was about 1/500-1/1000 times that by a finite difference
method.

In the present study, an equivalent diameter d, was introduced
as a representative length, so as to utilize the relationship be-
tween 3 and Re determined for the case of the drag of circular
cylinders. Examinations of the computational and experimental
data for rectangular prisms and the aerofoils lead to the follow-
ing confirmation. This approximation with § enables us to com-
pute an accurate drag of an obstacle with an arbitrary shaped
cross section symmetrical to the main-flow axis,

Besides, it was revealed using the method that, at each Reyn-
olds number, there is an optimum shape which minimizes the
drag coefficient of the rectangular prism or the aerofoil, if the
cross-sectional area is given.

Lastly, it should be added that all computations were per-
formed on a HITAC M-680H computer in double precision,
and that systems of linear algebraic equations were solved by
the Gaussian elimination method.
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Part I: Modal Analysis and
Green’s Function Formula

An analytical method is developed for closed-form estimation of the transient response
of complex distributed parameter systems that are nonproportionally damped, and
subject to arbitrary external, initial, and boundary excitations. A new modal analysis
leads to the Green's function formula for the distributed system and an eigenfunction
expansion of the system Green’s function. The legitimacy of the modal expansion is

also shown.

1 Introduction

This work is concerned with closed-form evaluation of the
transient response of complex distributed damped systems. The
distributed system in consideration is an assembly of multiple
flexible continua, which are subject to various damping and
constraints, are combined with lumped parameter systems, and
are under arbitrary external and boundary disturbances. The
beam structure in Fig. 1 is one example. The structure, while
hypothetic, presents certain commonly used damping models
that are developed and justified in a wide range of engineering
applications, including machine and engine mounting, damping
treatment, vibration isolation, dynamic vibration absorption,
passive and active vibration suppression, and smart structure
design. Structures like that are often termed as constrained and
combined systems.

Constrained and combined distributed systems, because of
their important engineering applications, have been of continued
research interest for years; for instance, see Bergman and
McFarland (1988), Yang (1994a), and the references cited
therein. Due to viscous damping constraints and coupling of
distributed and lumped elements, constrained and combined
systems are typically nonproportionally damped, and mathemat-
ically non-self-adjoint in the original equations of motion. For
a non-self-adjoint system, conventional modal analysis would
lead to an infinite set of coupled second-order differential equa-
tions, whose closed-form solution is intractable. In this case,
modal truncation and other discretization approaches are often
used to estimate the response of the distributed damped system.

Nonproportionally damped systems, mainly lumped damped
systems, have been extensively studied in the past several de-
cades. A summary of the developments is given by Bellos and
Inman (1989). In predicting the dynamic response of damped
systems, modal analysis is one popular technique. The modal
analysis procedure in use is either real-valued (Caughey and
O’Kelly, 1965), or complex-valued (Foss, 1958). The real-
valued method is computationally inexpensive, and thus has
found wide application in many engineering problems. The ma-
jor disadvantage of the real-valued method is that it cannot
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decouple nonproportionally damped systems. Because of this,
approximate real-valued methods using undamped modal data
or proportional damping presumption have been developed.
While being intuitive, these approximate methods can lead to
large errors whose bounds are difficult to estimate, and miss
some important dynamic characteristics of nonproportionally
damped systems, like nonconstant phase in vibration.

The complex-valued method, on the other hand, can decouple
nonproportionally damped systems via bi-orthogonality of ei-
genfunctions in a state-space formulation. In a broader prospect,
state-space formalism is also capable of decoupling other non-
self-adjoint systems with gyroscopic and circulatory effects
(Huseyin, 1978; Meirovitch, 1980). Nevertheless, the complex-
valued modal analysis does have some drawbacks. The method
is computationally intensive because both associate and adjoint
state-space eigenfunctions have to be calculated. Unlike in the
real-valued method, the physical significance of the various
elements of the complex-value modal analysis is not well classi-
fied. Furthermore, in analyzing distributed systems, the conver-
gence of complex modal superposition depends on the com-
pleteness of bi-orthogonal eigenfunctions in an infinite dimen-
sional function space, which may not be true, but is often
assumed. These disadvantages have limited the utility of the
complex-valued method in engineering analysis.

Besides nonproportional damping, closed-form transient
analysis of constrained and combined systems is also compli-
cated by the coupling of distributed and lumped elements, which
is mathematically described by a set of hybrid partial/ordinary
differential equations along with coupled boundary conditions.
In fact, even if damping is ignored, this coupling may render
the spatial differential operators of distributed elements non-
self-adjoint (Friedman, 1956). Thus, these hybrid partial/ordi-
nary differential equations are often solved by approximate
methods. In the literature, no exact and closed-form solution
method is available for transient analysis of constrained and
combined, distributed damped systems,

The current study is motivated by the need for a solution
technique which can efficiently deal with the non-self-ad-
jointnees caused by nonproportional damping, and coupling of
distributed and lumped elements. In this two-part paper, a new
method is proposed for closed-form transient analysis of com-
plex distributed damped systems, In Part I a modal analysis and
a Green's function formula are developed based on a state-
space formulation, which predict the transient response of nonpro-
portionally damped systems in infinite series of vibration modes.
In Part II (Yang, 1996), the solution method is extended to
constrained and combined systems through use of energy func-
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Fig. 1 A complex beam structure: a constrained damping layer in seg-
ment 1-2; a rigid body viscoelastically mounted at points 4 and 5; damp-
ing constraints at point 7 (spring-dashpot) and in segment 10-11 (e.g.,
viscoelastic foundation); a lumped mass at point 11; a combined oscilla-
tor at point 7; and viscoelastically coupling at points 5 and 11 and in the
region 2-3-10-9-2

tionals. Throughout the development, no approximation or dis-
cretization has been made; closed-form solution for the coupled
partial and ordinary differential equations governing the motion
of the complex system is obtained.

The proposed method is different from existing modal analy-
sis techniques in three major aspects. First, a relationship be-
tween modes of vibration and adjoint state-space eigenfunctions
of distributed damped systems is established, which implies that
the calculation of state-space eigenfunctions is unnecessary, and
tremendous computation can be saved. Second, the convergence
of the modal superposition is proven without the completeness
assumption for state-space eigenfunctions. Third, the method
systematically treats constraints and distributed-lumped subsys-
tem interaction in an energy form. These features make the
new solution method more attractive, reliable, and practical in
engineering analysis.

2 Lumped Systems: A Tutorial Example

The main idea behind the proposed method can be obtained
from the analysis of nonproportionally damped lumped systems.
The response of such a system is described by

M (1) + Dx(1) + Kx(2) = (1)
x(0) = (1

where the overdot denotes temporal differentiation, x(¢) € R”
is the vector of generalized coordinates, f(t) € R" is the forcing
vector, and M, D, and K € R™" are the inertia, damping, and
stiffness matrices with the properties

M '=M>=>0, D"=D=0, K"=K>0.

x(0) = x,,

The associate cigenvalue problem is

(MM +\D + K}y, =0 (2)

where N\, € C is the kth eigenvalue, and v, € C" is the corre-
sponding eigenvector. Since the system is nonproportionally
damped, i.e, DM™'K # KM 'D (Caughey and O’Kelly,
1965), the eigenvectors are complex and nonorthogonal. As a
result, the classical (real-valued) modal analysis does not de-
couple the equation of motion.

To derive a modal expansion of the system response, the
equivalent state-space form

(1) = Az(t) + BE(1), 2(0) =2
X 0 1
r= (x) . A= [—M-IK —M"D]
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(3a)

(3b)

() +-()

is used. According to Yang (1994b), the solutions of the eigen-
value problems associated with (3)

Ady = Mp, AT = Nl (4)

can be represented by those of the original eigenvalue problem

(2):
V* Zn ] -_Kv"‘) 2n
= EC" Yy =— € C*,
L (J\m) =3 (MM“

=] FXovo Bl

(5a, b)

where the overbar represents complex conjugation, A, = A,,
and v_, = V,. The eigenvectors ¢, and i, are in the bi-orthogo-
nality relations

('ffj, ¢&} = 25}&» ('f‘}a Ad’k) = 2)9‘5;& (6)

where &, is the Kronecker delta, and the inner product (a, b) =
a*bh,a* =a’, Va,b € C*. By (5) and (6), the normalization
condition for the eigenvectors is

(P, ) = viMy, — évfl{v* =9 (7
Applying (6) to the state space Eq. (3) yields
z(t) = G(1)z, + J:G{f — 7)Bf(7)dT (8)
where
G(1) = 3 Z eN et € R, 9

k=1
By (3h) and (5), the solution to Eq. (1) is given by
x(f) = g()Mx, + g(1)(Mv, + Dx,)

- J" g(t — m)f(r)dr (10)
i

where the Green’s function, an n by » real matrix, is of the
form

b ]

g(1) = L 2 L] eMvvi,

k=x] Tk

(11)

The relationship (5b) between the vibration modes (A, Vi)
and the adjoint state-space eigenvectors i is an important key
to the eigenfunction expansion. With this relationship, the state-
space analysis is conveniently converted back to the original
physical coordinates, and the calculation of the adjoint state-
space eigenvectors is avoided.

3 Modal Analysis of Distributed Systems

The displacement w(x, ¢) of a distributed damped system is
governed by

Mw, (x,t) + Dw,(x, 1) + Kw(x, t)

=f(x,t), x€8 (12a)

'w(x,1) =0, x€& N (12b)

w(x, 0) = ap(x), w,(x,0)=by(x), x€ (12¢)
where ( ),, = 9( )/0¢, £ is a bounded open region in R”

with boundary 092, 1 = m = 3, f(x, t) is the external force,
ao(x) and by(x) are given functions, M, D, and K are spatial
differential operators describing the system inertia, damping,
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and stiffness, respectively, and I'" is the spatial boundary opera-
tor. The M, D, and K are symmetric; namely,

(Mu, v)u@y = (4, M)y ),

<D“‘ U}H((I] = (u, DU)mm‘ (Ku, U)H([I) = <“, KU)H[Q)

where the inner product is defined by (u, vV)y ), = J‘“Eudx, and
u and v are comparison functions from a Hilbert space H(f2).
Also, M and K are positive definite and D is positive semi-
definite. The eigenvalue problem associated with (12) is

{NM + D + K)y(x) =0,

k==1,%2,...,x€el (13)
where \., = \;, and v_; = 7. Without loss of generality, assume
that the distributed system has no rigid body motion, i.e., |\|
#+ 0 for all k,

When the distributed system is nonproportionally damped,
which is often the case in engineering practice, the eigenfunc-
tions v¢(x) are nonorthogonal, and cannot decouple Eqgs. (12).
Consequently, conventional modal analysis is not applicable
here and new techniques are needed for closed-form solution.
In the following, the concepts described in Section 2 are gener-
alized to develop a new modal analysis for the distributed
damped system.

Equations (12) are transferred to an equivalent state-space
form

Agzu(x, 1) =Az(x,1) + Bf(x,1), 2(x,0)=2z(x) (14a)

where

_ (9 _ [ ae(x)
) (I) ) = (bu(x))‘ W
The associate and adjoint eigenvalue problems are
Adi(x) = NAodi(x),  ATY(x) = NAou(x)  (15a, b)

where k = +1, *2, ..., and ¢_, = ¢;. The ¢i(x) of (15a)
are related to v (x) of (13) by

$u(x) = ( e ) :

Ay (x) (16)

It is easy to show that the state-space eigenfunctions are in the
bi-orthogonality relations

(@1, Aot = (Aot i) = 26
(W, Aide) = (AT, i) = 2\;6;

where the inner product is defined by (a, b) = (ay, @)nwy +
(b1, ba)ucay, @ = (a1, @)", b = (b, b)) € HQ) @ H(Q).

It is well known that the state-space eigenfunctions ¢,(x)
can be expressed by the mode shapes v,(x), Eq. (16). However,
what is not known in the literature is that the adjoint eigenfunc-
tions ,(x) can also be represented by v (x), which plays an
important role in the proposed transient analysis. To show this,
write

(17a, b)

x1(x)

) s X1y X2 € H(82).
X2(x)

Pi(x) = ( (18)

Journal of Applied Mechanics

Substituting the above into (15b) gives

1
X1 = - i Kx:, (MM + MD + K)¥%, =0. (19a, b)
Comparing (13) and (195) leads to
1
= — — KT, =T 20
X1 % ks X2 k (20)
Thus, the adjoint eigenfunctions i, are in the form
1 [ —K5(x)
= = , k=12 ... 21
¥el) XE( Nt (x) ) =4

The normalization condition for ¢ and i, by (16) and (21),
becomes

1
(W, Aphr) = (Tes MUy — ¥ (Te, Kvdncay

= f (veMy, — v Ku/ N dx = 2. (22)
1]

Assume that the ¢, and ¢, are complete in the Hilbert space
H(Q2) @ H(). The state-space vector z(x, t) is expressed as

)= 3 q)du(x)

k=%1

(23)

where ¢, are the modal coordinates. {The legitimacy of the
modal expansion will be shown in Section 6.) Substitute the
modal series (23) into (14) and use the bi-orthogonality rela-
tions (17), to obtain

qi(t)
= 5 Mgy, Agto) + %fo eNT Yy, BF(-, TYAT.  (24)
By (23) and (24), the state-space vector is determined as

ol b= fn G(x, & NAwo(€)de

+ J: J:} G(x, &t — T)Bf(E, T)dédr (25)

with the two-by-two real matrix

oo

Gx,&1) =5 X e ()PE(E)

k=1

where ¥ = . By (14b) and (25), the solution to (12) is
obtained as

(26)

W(I, ll") = J.n {gu(x’ Es ‘)MGO(EJ
+ g(x, &, 1)(Mbo(§) + Dao(£)) }d§
+ J; LS(I, &t — 1)f(§ T)dédT (27)

where the Green's function of the distributed system is given
in the eigenfunction expansion

w0

1
g, &) =3 % L eMuu€), x € Q. (28)

k=1 Mk

The Green's function is the impulse response of the distrib-
uted damped system that is subject to zero boundary and initial
disturbances; i.e.,

Mg.u(x, & 1) + Dg..(x, & 1) + Kg(x, &, 1)
= 6(16(x — &),

x,EEQ (29)
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rg(x, Ea r) =0,
8(x,60)=0, g.(x,&0)=0,

where the operators M, D, K, and T act on £,
If the distributed system has repeated eigenvalues, the associ-
ated eigenvalue problem becomes

{NM + N D + K}y (x) =0,
j=1,2 ..

x, £ € 60 (29b)
x, EEN (29¢)

oy Mg, k=l,2,...

where m, is the multiplicity of the eigenvalue ). In this case,
the Green’s function formula (27) is still valid, and the Green’s
function is given by
4+ n,
gx. &0 =3 % Lew X u(Du(8), x,£eq.
k=] M i=l
The distributed damped system ( 12) is non-self-adjoint in its
original equations of motion. Based on a state-space formula-
tion, the response w(x, ¢) and the Green’s function g(x, &, t)
are represented by series of complex and nonorthogonal eigen-
functions describing the modes of vibration of the damped sys-
tem. This new method differs from the existing modal analyses
in that it utilizes the relationship between the vibration modes
and the adjoint state-space eigenfunctions.

4 Laplace Transform

While the Green’s function in (28) is an eigenfunction series,
the Green’s function formula (27) does not depend on the modal
analysis. In this section, we show that the Green's function
formula (27) can be obtained by Laplace transform. The pur-
pose here is threefold: (a) to enhance the usefulness and versa-
tility of the proposed method by relating it to a frequency-
domain analysis tool; (b) to define distributed transfer functions
which have wide application in various dynamics and control
problems of distributed damped systems (Butkoviskiy, 1983;
Yang and Mote, 1991; Yang and Tan, 1992; Yang, 1994a);
and (c) to provide a new way to evaluate transfer function
residues, which are needed for transient response by inverse
Laplace transform.

Laplace transform of Eqs. (12) with respect to time gives

(s*M + sD + K)W(x, 5) = fu(x, 5) = f(x, 5)
+ M(sag(x) + bo(x)) + Dag(x), x € Q (30a)
I'(x,s) =0, x€ N (30b)
where wW(x, s) and f(x, ) are the Laplace transforms of w(x,
t) and f(x, t), respectively, and s is the Laplace transform

parameter. The solution w(x, s) of (30) is of the integral form
(Roach, 1982)

l;'(x, S) = J:l g(xs Ea S)fe!(&s S.}d‘f) X e Q {31)

where the integral kernel §(x, &, s) is the distributed transfer
function of the damped system (Butkoviskiy, 1983 ), The trans-
fer function is the Laplace transform of the Green’s function,
and by (28) is in the modal expansion form

+m

s ly 1
§069) =3 T s umu(©),

The transfer function is the solution of the equations
(’M+5D+K)§(x,€,5)=6(x~€), x,£€Q (33a)
Ig(x, & 5)=0, x,£€00 (33b)

which are the Laplace transforms of Egs. (29).
It is easy to show that inverse Laplace transform of (31)
with £7'[g(x, &, 5)] = g(x, &, 1) retains (27). Hence, without

x£€N. (32)
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modal analysis, the Green’s function formula for distributed
damped systems is derived although one still needs to determine
the Green’s function to predict the system response. Equation
(28) provides one way to determine the Green's function in
closed form.

Theoretically, when the distributed transfer function is avail-
able, the Green’s function can be estimated by residue theorem:

L'4(x, & $)]

3 €M Res {§(x, £, 5))

=My

g(x, & 1)

(34)

f==1

where \; are the poles of the transfer function, or the eigenvalues
of the distributed system. Unfortunately, because the transfer
function of a complex distributed system can only be estimated
numerically and because the singularities of §(x, &, s) at its
poles can lead to large errors in computation, accurate prediction
of the residues of g(x, &, s) is impractical, if not impossible.
The modal analysis proposed herein actually provides a new
way to calculate the residues; i.e., by (32), these residues are

Res {£(x,&,5)) =-21Euk(x)u,-(§), N o 0 7 [N 11 1% |

5=

The eigenpairs (), v;) of a distributed system can be estimated
by many well-developed techniques, and have been obtained in
exact and closed form for a large class of complex distributed
systems ( Yang, 1994a). Thus, the relation (35) warrants accu-
rate prediction of transfer function residues for distributed
damped systems.

5 Boundary Disturbances

The distributed damped system studied in the previous sec-
tions is under homogeneous boundary conditions. In this sec-
tion, the effects of boundary disturbances on the system re-
sponse is investigated. Let y(x, r) be the displacement of the
damped system described by

My, (x, 1) + Dy, (x, t) + Ky(x, 1) = f(x,1),
x€N (36a)
Cy(x, ) =yi(x,1), x€8, j=1,2,...,Nu (36b)
Liy(x, 1) =0, x€ 00,
J=Nu+ 1L, Ny +2,..., N, (36¢)
yulx, 0) = by(x), x €N (36d)

where among the total N, boundary conditions, N,,;, (=N,) are
inhomogeneous, with the functions y;(x, ¢) representing the
boundary disturbances (either external loads or displacement
excitations), and T are the spatial boundary operators. By su-
perposition, the solution to (36) is decomposed into

y(x, 0) = ag(x),

y(x, ) = wix, 1) + u(x, t) (37)

where w(x, t) satisfies Eqs. (12), and u(x, ) is the solution
of

Mu o (x, t) + Du,(x,t) + Ku(x,t) =0, x€ (38a)

Twu(x, 1) =y(x,1), x€8Q, j=1,2,...,Nu (38b)
Tiu(x, 1) =0, x€ a9,

J=Nuw + 1, Nowy +2,...,N, (38¢)

u(x,0)=0, u,x,0)=0 xeq. (384d)

The solution to (12) has been given in (27) and (28). So, only
Eqgs. (38) are to be solved.
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Laplace transform of (38) gives

(s*M + sD + K)ii(x,5) =0, x€Q (39a)

Ta(x, s) = 4,(x,8), x€0Q j=1,2...,Nu (39)
Iix, s) =0, x€ an,

Jj=Nyp+ 1, Ny +2,...,N,. (39¢)

Recall that the transfer function £( x, £, s) satisfies (33). Con-
sider the integral

0= f B(x, & $)(s*M + sD + K)A(E, s)dE
i

= f (€, s)(s*M + sD + K)§(x, &, s)dE
4]

+ B(d, §)| o = @(x, s) + B(&, £)| o

where the boundary conjunct
Nh
B(i, 8)lon = I ; > (=E[g1T4 + EF[a]Tj g)dE.
L I

E; are the boundary operators arising from integral by part, and

E* and I'} are adjoint to E; and I';. Because the operators M,

D, and K are symmetric, E; = E¥ and I'; = T'¥*. It follows that
Nlr

" 2 (B[1Ti — Ea1T;8)d¢

i j=1

Nluh

= 2. Ej[8(x, & )1F,(&, s)dé
a0 oy
where the boundary conditions (33b) for g(x, &, s) and (38b,
c¢) for i(x, s) have been used. Finally, inverse Laplace trans-
form of (40) leads to the convolution integral

! N
ulx,t) = f J.
0 van

2 h(x, &t = T)y(€ T)dédT  (41)
J=1
where the boundary influence functions
h(x, &)= LTHE[£(x, &)1}, j=1,2,...,Nu. (42)
It is seen that the boundary influence functions of a distributed
damped system can be represented by the Green's function of
the system. Once u(x, t) is known, the complete solution to
(36) is obtained by the superposition (37).

As an example, consider a cantilever beam subject to a dis-
placement excitation w,(r) at its left end, and a torque 7,(¢)
at its right end; see Fig. 2. Assume zero external and initial
disturbances. The s-domain response w(x, s) of the beam is
governed by

(s%p + sd)W(x, s) + ((sdy + EDNW, (X, 8)) e = 0,
x€(0,L) (43a)
Ww(0, s) = wy(s), W (0,5)=0
(sdy + EDW | s=1 = T5(5),

H(x, s) =

(40)

['(Sd;, + E‘,)“:’axx)a;r‘x:i. =0 (43b)
w(x,1)
e x T,(t)
Beam
wy, (1) |
t x=0 x=1L

Fig. 2 A cantilever beam under boundary disturbances
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where p is the linear density, EI is the bending stiffness, d, and
d,, are the viscous and material damping coefficients, and W, (s)
and 7, (s) are the Laplace transforms of w,(t) and 7, (t), respec-
tively. The transfer function of the beam satisfies

(5% + sd,)€ + ((sdy + ED)§ ) e = 6(x — £),
x, £ €(0,L) (44a)
£(x,0,5) =0, £.(x,0,5)=0, xe(0O,L)
(sdy, + EI§ ((sdy + ENE ) elamr. = 0,
x € (0,L) (44b)
).e = 0( )/OE. By (43) and (44), it is easy to show

=L = 09

where (
that

O f £(x, & ){ (% + sd)W(E, 5)
L1

+ ((sdy + ENW,ee(&, 5)) e} dE
=W(x, 5) — ((sdy + EIgce) el eco®n(5) + &l e=iFrl(s).

Hence the time-domain response of the beam
"

w(x, 1) = f (i (x, t = 7)we(T)
]

e o hz(x, f el T)Tb(T))dT (45)
where the boundary influence functions are given by
hi(x, 1) = ((d,018t + EDg )¢l e=0s

ho(x, 1) = —geleer (46)

and g(x, &, 1) = L7'[g(x, £, 5)] is the Green’s function of the
beam.

The vibration of the distributed system (36) is excited by
external, initial, and boundary disturbances, The contribution
of the external disturbance is represented by the system Green's
function. Equations (27) and (42) show that the influence of
the initial and boundary disturbances on the system response
can also be described by the Green's function. Knowing this
will greatly simplify the solution procedure: The key step in
the closed-form transient analysis is to determine the impulse
response (Green’s function) of the distributed damped system
under zero initial and boundary disturbances.

6 Legitimacy of Eigenfunction Expansion

The modal analysis proposed in Section 3 has assumed that
¢, and iy, are complete so that the eigenfunction expansion of
the system system response can be derived. The completeness
of the state-space eigenfunctions is difficult to prove for general
damped systems. However, as suggested in Roach (1982), it
is possible to obtain the eigenfunction series through direct
use of the Green’s function, In this section, without assuming
completeness of the state-space eigenfunctions, we show that
the proposed eigenfunction expansion is legitimate,

First, show that the series (34) (residue theorem) is legiti-
mate. Assume that the boundary value problem described by
(12) is well posed and has a unique solution. Assume that the
damped system has a discrete spectrum, which is always the
case for vibrating continua in a finite bounded region. Then,
the Green's function of the damped system exists and the system
response can be represented by the integral (27) although the
modal expansion (28) is not viable yet. Because M and K are
positive definite and D is positive semi-definite, the system
impulse response is such that limg(x, &, t)e™* = 0, Va > 0,

which means that the Laplace transform of the Green’s function,
namely the distributed transfer function g( x, £, s), exists. Be-
cause none of the poles of g(x, &, s) are located in the open
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right-half complex plane and because limsg(x, &, s) = g(x, &,
0) = 0 by (29¢), limg(x, &, s)e* = 0 for Re(s) < 0. Thus,

inverse Laplace transform of g(x, &, s) by the Bromwich inte-
gral is legal, and gives the Green’s function in a convergent
series, which is (34).

Second, show that (34) is an eigenfunction series. For s near
the kth pole (eigenvalue) A, the transfer function given in (34)
can be written as

_ 3 b(x 8 _bix, &)
g(xigss)_z S"hj .Y—A.;‘

i==l

+ R(x, & 5) (47)

where b, (x, £) is the residue of the transfer function at A, and

R(x, &, 5) = Z by(x, £)/(s — \;) is analytic at A;. Substituting
j+k
(47) into (33) gives

lu LEb(x, £)] + LE[R(x, £ 5)] = 8(x — £)

5 —

where L¢ is the operator s’M + sD + K acting on £ The
Cauchy integral

1 L ;e ¢ )
- fn (S L Lilbi(x, ) + LIRG 6. 9)] )ds

2mi Jr,

6(x — E)ds
onthecontour Iy = (s € C: |5 — \| =€, € < [N — Ny for
all \; #+ A} leads to

LS [bi(x, )] = (MM + D + K)by(x, £) = 0 (48)

which suggests that
bi(x, £) = a(x)u(§).

Here v,(£) is the kth eigenfunction of the damped system, and
a(x) is a function of x. Because the operator s’M + sD + K
is symmetric, §(x, £, s) = §(¢, x, s), and therefore

Li[g(x, & 8)] = 6(x = &)

where L is the operator s’M + sD + K acting on x. Plugging
(47) and (49) into (50) and conducting the Cauchy integration
on I'; lead to

Llbe(x, £)] = u(E)(NM + MD + K)a(x) =0

(49)

(50)

which implies a(x) = B, (x), where [, is a constant. Thus,
the residue b,(x, ) = Bwi(x)v(€) and the Green’s function
and transfer function are expressed by the eigenfunction series

g &) = 3 Bue™ulx)u(£)

(51)
k=%1
§r, 6 8) = X Bao(x)i(£). (52)
k=21 S T M

Third, evaluate the constants J,. Let the damped system (12)
be subject zero initial disturbances. By (27), the displacement
and velocity of the damped system are given by

Wi, 1) =J; fng‘*“’ &t - 1)f(6 Tydedr  (53a)
L 4y f f gulr & £ — T)f(6, T)dEdT (53b)
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where (29¢) has been used. By (51) and (53), the state-space
vector z(x, t) in (14a) is

w(x, t) )

W.;(I, f)

z(x, t) = (

= 3 Bb() f MTf(rydr  (54)

k==*1

where fi (1) = f“vk(.f )f (€, t)dE. Substituting the Laplace trans-
form of (54 ) into that of the state-space Eq. (14a), and applying
(15a) leads to

Y. Bf()Awb(x) = ( ?)ﬂx. 5) (55)

j=*1

where f;(s) and f(x, ) are the Laplace transforms of f;(¢) and
f(x, t), respectively. Take the inner product (3, *) of both
sides of the above equation, and use the bi-orthogonality prop-
erty (17a) to obtain

B Aoy = if (56)

The forcing function f(x, ¢) can always be chosen such that
fi # 0. It follows that

1
TN Ao

Finally, show that the Green’s function is uniquely deter-
mined by (51). Although S, can be an arbitrary nonzero con-
stant, depending on how the eigenfunctions ¢, and i, are scaled,
B (x)v,(€) is independent of any eigenfunction normalization.
In fact it is easy to see that for U,(x) = av,(x), with a being
an arbitrary nonzero constant

ve(x)ue(§)  _ _T(x)T(E)
MW, Ao Nldi, Aotl)

where i and ¢, are the state-space eigenfunctions correspond-
ing to . Accordingly, the Green’s function given by the modal
expansion (51) is uniquely determined. Furthermore, by letting
(i, Aothe) = 2, which is just the normalization condition (22),
the coefficients 8, = 1/(2\;) and the series (51) is identical to
(28). Therefore, the modal analysis presented in Section 3 is
indeed legitimate, and does give convergent eigenfunction rep-
resentation of the system Green'’s function and system response.

B (57)

(58)

7 Conclusions

The distributed damped system in consideration is non-self-
adjoint in its original equations of motion; conventional modal
analysis cannot yield closed-form solutions. In this work, by a
new modal analysis and a Green’s function formula, the re-
sponse of the distributed system to arbitrary external, initial, and
boundary disturbances is given in a closed-form eigenfunction
series. The main results presented in this paper are summarized
as follows:

(i) A relationship between the modes of vibration and ad-
joint state-space eigenfunctions of the distributed damped sys-
tem is established. Because of this, the analysis in the state
space can be conveniently converted back into the physical
coordinates and the modal space where the physical meaning
of eigenfunctions has been well classified. It is based on this
relationship that the proposed modal analysis and Green’s func-
tion formula are derived.

(ii) The legitimacy of modal expansion for general distrib-
uted damped systems is proven, without assuming completeness
of the system eigenfunctions. Previous modal analyses for non-
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self-adjoint systems usually adopt the assumption of complete
eigenfunctions, which may not be true, and are difficult to ver-
ify. The proof given in Section 6 guarantees the convergence
of the new modal analysis for distributed damped systems.

(iii) The proposed method does not necessarily need to '

calculate state-space eigenfunctions. Although a state-space for-
mulation has been used in the development, the closed-form
transient analysis presented only needs to know the eigensolu-
tions (vibration modes ) associated with the original equations of
motion, This feature indicates potential savings in computation.

The relationship between modes of vibration and adjoint
state-space eigenfunctions has two other implications. First, the
modal representation of the systern Green’s function, Eq. (28),
provides a physical insight into certain dynamics and control
problems of distributed damped systems, such as eigenvalue
inclusion phenomena and modal controllability and observabil-
ity (Yang, 1992, 1994b). These problems are directly related
to the mode shapes of vibration of given physical systems, and
would be difficult to solve in a state-space formulation if the
physical meaning of the adjoint eigenfunctions is not clear.
Second, the proposed method can be applied to systems with
unidentified damping. Many existing methods require a com-
plete knowledge of damping operators, and would fail to predict
the damped response if any damping parameter cannot be identi-
fied, The Green’'s function given in Eq. (28) is a superposition
of vibration modes, which does not explicitly relate to damping
operators. With modern modal analysis equipment, say struc-
tural analyzers, the eigenvalues and mode shapes that are domi-
nant in vibration of an uncertain damped system can be obtained
experimentally in many practical applications. Accordingly, the
proposed method may provide a new way to study dynamics
of uncertain distributed damped systems. These subjects are
interesting future research topics.
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Part Il: Energy Formulation
for Constrained and
Combined Systems

The transient response analysis presented in Part I is generalized for distributed
damped systems which are viscoelastically constrained or combined with lumped
parameter systems. An energy formulation is introduced to regain symmetry for the
spatial differential operators, which is destroyed in the original equations of motion
by the constraints, and the coupling of distributed and lumped elements. As a result,
closed-form solution is systematically obtained in eigenfunction series.

1 Introduction

The closed-form solution method given in Part I (Yang,
1996) assumes that the operators D and K are symmetric, which
is true for “‘purely’’ distributed systems. When a distributed
damped system is viscoelastically constrained at discrete points
or combined with lumped parameter systems, the operators lose
symmetry. Consequently, the closed-form analysis cannot be
directly applied to constrained and combined damped systems.
Developed in this part is an equivalent augmented formulation
in which the generalized or augmented operators retain symme-
try in their domain. With this augmented formulation, closed-
form solution for the transient response of complex systems is
achieved. '

It is worth mentioning that generalized or augmented methods
for certain undamped combined systems have been proposed
(Friedman, 1956; Meirovitch, 1967; Ramkrishna and Amund-
son, 1974; Mote, 1977; Bergman and Nicholson, 1985). In the
previous study, orthogonality relations for system eigenfunc-
tions are derived through inclusion of the boundary conjunct
that is from the integration of the system governing equations,
and as such, closed-form solutions are obtained in modal series.
No closed-form solution methods for the transient response of
general damped constrained and combined systems are available
in the literature.

Unlike the existing methods, the augmented formulation pro-
posed in this work is based on the energy functionals of con-
strained and combined damped systems. These energy function-
als are used for three good reasons. First, the functionals serve
as guidance for obtaining augmented operators whose symmetry
and definiteness are automatically guaranteed by the quadratic
form of the functionals. Second, by Hamilton’s principle, the
functionals conveniently lead to the augmented equations of
motion. Third, the functionals naturally give the normalization
condition for the augmented eigenfunctions, which is needed
for the closed-form transient analysis. These features make the
proposed energy formulation systematic and efficient in describ-
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ing various constraints and coupling of distributed and lumped
elements.

2 Energy Formulation and Augmented Operators

A distributed damped system is constrained at point x, by
an attached spring-mass-damper system; see Fig. 1 where the
displacement of the lumped mass is identical to w(x,, t) of the
distributed system. The equations of motion of the constrained
system are

Mwm(x, r) L Dwu(x, f) + Kw(x, f}

=f(x, 1) = 6(x —x)q.(1), x€Q (la)
IT'w(x,t)=0, xe o (1b)
wi(x, 0) = ap(x), w,lx, 1) =by(x), x€Q (lc)

where ¢q.(t) is the constraint force, é(x) is the Dirac delta, and
all other symbols have been defined in Part I (Yang, 1996).
The constrained force is described by

MW (X ,8) + dyw (X, 1) + kew (xe, 1) = q. (1) + q.(1) (1d)

where ¢,(¢) is the external force applied to the lumped mass
(not shown in the figure).

The constraint renders D and K asymmetric; i.e., {Du, v)y )
# (u, Dv)ycqy, and (Ku, v)ycny # (4, Kv)yy. As a result, the
modal analysis developed in Part I is not directly applicable
here. To overcome the difficulty, a new function space whose
inner product permits symmetric operators is defined by intro-
ducing the following functionals:

Iy (u, v) = (M"u, mehrm) i+ -’mT‘le‘.
[p(u, v) = (D'"u, DY)y q) + drit- v,

Mg(u, v) = (K"%u, K"}y, + kit |, (2)
where the inner product {u, v}y, = f,, wdx u, v € H(Q),
M'"?M'* = M, D'*D"* = D, and K'?K"* = K. It is seen
that Ty, (w,., w, 12, Ip(w,,, w,)/2, and [Tx(w, w)/2 are the
kinetic energy, Rayleigh dissipation function, and potential en-
ergy of the constrained system, respectively.
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Distributed System

]

Fig. 1 A distributed damped system subject to a constraint

Integrating the energy functionals by part yields
[y, v) = (Mu, v)yq) + mavl,,
Iy (u, v) = (Du, vV)u@y + Dit-v|, + drit-vl,,
Hx(u, v) = (Ku, Vg + Kt vl + kegev|,  (3)

where the operators Dy and K describe the jumps of the internal
forces at point x., and are related to the constraint force by

4)

Consider the function space H = H(Q2) @ C, whose element
U has the form U = (u(x) u,)". The inner product on F is

U, ve H (5)

qc(t) = = Dpw,(x., t) — Kyw(x,, 1).

(U, V)ar = (u, VIuay + @y,

Define augmented operators based on (3)

= M 0 - D
M = , D= 0 3
0 m 0 Dy+dy

- K 0
= [0 K7-+kr:| (6)

with the domain
D= {UIU=(u(x) ux),ue€HQ)}CH (1)
It follows that for VU, V € D
My (u, v) = (MU, V)sr= (U, MV )y
Mp(u, v) = (DU, Vs = (U, DV )y
Mg(u, v) = (KU, V)sr= (U, RV )y (8)

Therefore the augmented operators are symmetric in D under
the inner product defined in (5). Also from (2), M and K are
positive definite, and D is positive semi-definite.

With the symmetric augmented operators, the modal analysis
developed in Part I is now extended to the constrained system.
The system response and external force in the augmented form
are Wix, 1) = (w(x, ), w(x., )" € DXT, T={t|0 =t
<o}, and F(x, 1) = (f(x, 1)q.(1))", respectively. The gener-
alized Hamilton’s principle for the constrained system teads

f2 (Ty(wop, 6w,) = Tlk(w, w) — Tp(w,, bw)

+ (F, 6W)pdt = 0. (9)

By (8), (9), and (1b, c), the augmented equation of motion
for the constrained system is

MW . (x, 1) + DW,(x,t) + KW(x,1) = F(x,t) (10a)

Journal of Applied Mechanics

with the initial conditions

W(x, 0) = Up(x) = (“"(” ) ;
ao(x:)
_ _ [ bo(x)
Wau(x, 0) = Vo(x) = (bn(xc-)) . (105)
The eigenvalue problem associated with (10a) is
(MM + D + K)Vi(x) =0, V, € D,
=1, £ (11)

where Vi(x) = (u(x)v(x.))", and \; and ve(x) are the eigenso-
lutions associated with the original equations of motion, (1)
and (4). The normalization condition for Vi, by (22) of Part
I, is

- 1 5
(Vo MVi)a — v Vi, KVi)as
k

= (i, w) — énx(m, w) =2 (12)
Following (27) of Part I, the solution to (10) is
Wix, 1) = L (Gu(x, & NEMU(E)
+ Glx, & EMV,(€) + DU(E)) ) dé
+ J: -[1 G(x, &t — 7)EF(E, T)dedr (13)

where E = diag {l &(x — x.)}, and

4o

1

Gnén=> 3 ie"ﬂvk(xwrm
k=x]

£ v () ue(x,)

E Ve X v ()

g [ v(X)ve(€)

3 . 14
L ouce) ] (14)

T 1
2& 1 e
The legitimacy and convergence of the above eigenfunction
expansion can be proven following Section 6 of Part 1. Thus,
the displacement of the constrained system is given by

wix, ) = L (8u(x, & t)Map(£)
+ 8(x, & 1) [Mbo(£) + Day(€)]}dE

+ g.(x, X, Dmag(x.) + g(x, x., t)[mbo(x.)

+ (Dy + dy)ag(x.)] + J; fn g(x, &t — 1)f(& T)dédT

+ J. glx, x, t — m)g.(7r)dr (15)
4]

where the Green’s function

glx, & t) ==

=1
5 > }‘—*e"*'u;((x)vg(ﬁ), x,E€Q (16)

k==

Equation (16) has the same form as (28) in Part I although
the two systems are different. This means that the energy formu-
lation is valid for general distributed systems. In other words,
given a damped system, either purely distributed or constrained,
one only needs to derive proper operators based on the energy
functionals; the eigenfunction normalization, the integral repre-
sentation of the system response, and the modal expansion of
the system Green’s function have the same form as (12), (15),
and (16).
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In summary, the proposed energy formulation takes three
major steps: (i) derive the energy functionals IT,,, I,, and
Ily; (ii) define symmetric, augmented operators based on the
functionals; and (iii ) apply the modal analysis developed in Part
I to derive the eigenfunction expansion of the system response.

3 Energy Functionals for Other Constrained Sys-
tems

The energy formulation is applied to distributed damped sys-
tems with other types of constraints. In Fig. 2 is a distributed
damped system with a rotational constraint at point x,, where
I, dg, and kg are the rotational inertia, damping, and spring
parameters, respectively, and 7 is a unit directional vector de-
scribing the orientation of the constraint. The energy functionals
for such a constrained system are

I 1 or o
i, v) = (M"*u, M “U)H(m + [R.__._an 1

3 oF
p(u, v) = (D", DY )y + dy _.3.?} .

nx(u, U) = (K”zﬂ, KI'QU)H{Q) +. kR g:'_a'v-‘ B (17)

where du/8n is the directional derivative of u in the direc-
tion 7. For an n-dimensional region £, x = (xy, ..., x,), 7 =
(s .. M), and 8/9n = Z‘. n;0/0x;. Through integration of

(17) by part, the augmentcd opcrators are found as

a<[M 0] s_[p o©
“lo Rl T T lo Dp+dr]’

K 0
K"[o KR+kR]

with the domain D = {U|U = (u(x)du(x.)/dn)",u € H(Q))
C H = H(2) @ R. The operators Dy and K describe the
jumps of the internal forces at x., and are in the relation

(18)

0
Tc(t) i a (Dﬂw:r(xr, f) i KRw(xci I))

where 7.(r) is the constraint torque at x.. The Green’s function
formula for the constrained system can be obtained following
the steps in the previous section, and therefore is omitted.
Now consider a distributed system subject to both transla-
tional and rotational constraints at n. points x;, xz, ..., Xy s
with the parameters (m;, dr;, kr;) and (lz;, dr;, kgj, Uy,
j=12, ..., n, where n is the unit directional vector

Distributed System

Fig. 2 A distributed damped system subject to a rotational constraint
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of the jth rotational constraint. The energy functionals of the
constrained system are written as

Ty, v) = (M"u, M)y,

+ 2 (m_,ﬂv+fm

i=1

oo v
3 (¥} 37?(1'!

Mp(u, v) = (D", D”zl-’)mm

or au)

+ Z (dn-u_'v + dRJ T e
b 37?(;: 3,,?U>

Mg (u, v) = (K'"%u, K"y,

or &
+Z(ku‘w+k )l (19)
i g RJ@ o on? 4

The function space for the augmented formulism is H = H(Q)
@ C?" with the inner product defined by

2n
G

(U, Vyge ={u, Wy + X @y, U, VeH (20)
j=1

where any element U of JH has the form U = (u(x)

Uy ... U )". The augmented operators are

M =diag (M m Izi...m, Ip}

D = diag {D Dy, +dry D+ dpi ...
Dy, + dpy, Dgy + dga }

K =diag (K Kp + kry Kay + kgy o ..
Ky, + kyy, Kg,, + kro } (21)

with the domain
D= (U|U = (u(x) u(x)) Ou(x)on"...
u(x,) Ou(x,)/on"N)", ue H(Q)}.

Here the operators Dy, Dg;, Kr;, and Kg; characterize the jumps
of the internal forces at x;. The symmetry of the augmented
operators is automatically guaranteed by the quadratic form of
the energy functionals. The Green’s function formula can be
derived following Egs. (9) to (16).

The energy formulation is also applicable to distributed sys-
tems subject to viscoelastic constraints on a curve or in a subre-
gion. The energy functionals in these cases are

HM(u, U) = (M”zﬂ, Mlul})ﬂ(n)

Hp(u, v) = (D", D)y + I d(x)a(x)v(x)dx

Tk (u, v) = (K", KIHU)H(Q) + f k(x)a(x)v(x)dx

where o, C Q) is either a curve or a subregion, and d(x) and k(x)
are the damping and stiffness distributions of the constraint. The
Green’s function formula can be similarly derived.

The energy formulation is illustrated on an Euler-Bernoulli
beam subject to both translational and rotational constraints at
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point x,; see Fig. 3. The displacement w(x, t) of the constrained
beam is governed by

Pw,r.- + dnwsr + (dbwml')rxx + (Elwwrx)axx
= £ ) = g (D8(x — x) + Tol8) 3—3x B(x—x) (22)

where d, and d, are the viscous and material damping coeffi-
cients, respectively, and g.(¢) and 7.(z) are the constraint force
and torque. The energy functionals for the beam are

L
pitvdx + mir-v|, + I vy,

Iy (u, v) = f

0

A
Mp(u,v)= f (d 10 + Ay, 0,0 ) dX 4 driT v |+ dpily V| o,
]

L

Tg(u, v) = f EIit, vy dx + kil vy, + kel Voel oo (23)

]

Integrating I, and Iy by part gives
Mp(u, v) = f: (A + (dyil,) ) vddx + (Dpif + diit) ],

+ (Dgit,; + i) Ve s,
Me(u, v) = J: (EIT ) v + (Kol + knid) 0],

+ (Killye + ki) vl (24)

where
Dyt = [(diil 1) )i, Dallye = — (il ]l
Kot = [(Elf,) kb, K = —[Elf]3E (25)

with [a(x)]%! = a(x.+) — a(x.—) describing the jump of
a(x) at x,. The operators Dy, et al. are related to the constraint
force and torque by

q-:'(t} = = Dpw,(x., f) - K‘!w(xr, 1,
Tr(r) = _'Dﬂwul(xcv I) - KRwM'{xr; r)'

The augmented function space is H = H([0, L]) @ C* with
the inner product (U, V)sr = J: ivdx + @y, + @v,. The
augmented operators, by (23) and (24), are

M=diag{p m I}

< a? a*
D=diag{d.,+—~(dh ) Dy + dy D,,+dR}

ox

Ox?

w(x,f)

ANNNAN

=
1]
=]

Fig. 3 A constrained Euler-Bernoulli beam
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2 2

B i {% (E! e%?) Kr+ ke Kn+ kn} (26)

with the domain D = {U|U = (u(x) u(x.) u.(x))", u €
H([O0, L])}. The augmented equation of motion takes the form
(10a) with F(x, t) = (f(x, 1) q.(t) T7.(2))". The normalization
conditions for the system eigensolutions (A, and v,(x)) is

L
f puidx + (mvi + i),

1]

1 18
-5 {f ERE dx + (keo? + kguﬁ,‘)],rr} —2 @27
(¥

k i}

Following Egs. (13) to (15), the response of the constrained
beam is expressed by

1L
w(x, t) = J; {g.(x, & t)pao(€)

+ g(x, & Dpbo(§) + diao(€) + (dndoee(€)).ec] 1 dE
+ g.(x, x., ymag(x.) + g(x, x., t)[mbo(x.)

+ (Dr + dr)ag(x)] + gaealx, %, t)ag(x,)

+ 8l X, X, 1) [ b (X)) + (Dg + dr)aonu(xc))

& f _L glx, &t — 1) f(&, T)dédr
0

+ f glx, x., t = 1)g.(7T)dT
1]

"
=+ f 8u(x, x t — )7 (T)dT (28)
4]

where ( ),; = d( )/0€, and the Green’s function has the form
(16).

4 Combined Systems

A Combination of a Distributed System and a Lumped
System. Shown in Fig. 4(a) is a schematic of viscoelastic
connection of a distributed damped system and a lumped sys-
tem, where the connecting points of the lumped system are y,,

.+ ¥r, and those of the distributed system are x,, ..., x,. The
lumped system also has p other points z,, ..., z, that are not
connected to the distributed system. The displacement w(x, t)
of the damped system is described by

Mw .. (x, ) + Dw,(x, t) + Kw(x, t)

__'f(xs f) - E 6{x - x})ch(r)! X € Q (29)
j=1
where g,;(t) are the constraint force at point x; due to the con-
nection. The equation of motion for the lumped system is

£ d a(n)\ _ (400 + £()
[ML e Tt KI‘] (ﬂ(r)) B ( fs(1) ) ()

where e(t) € R" and B(t) € R” are the vectors of displacements
at points y,, ..., ¥, and zi, . . ., 2, respectively, f,(¢) and f4(¢)
are the external force vectors, and g.(t) = (g1 (¢) ... g {t))"
is the constraint force vector. Assume that M, = M’ > 0, D,
=D! = 0, K, = K] = 0. The lumped system itself may be
nonproportionally damped. The constraint forces are in the form

q.(1) = Do(w(r) — &(1)) + Ke(we(r) — a(1)) (31)

where w.(¢) = (w(x;, 1) ... w(x,, 1))” € R", and D, and K,
are two symmetric, positive semi-definite matrices describing
the connection.
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Lumped System Distributed System 1

Connection 2., K.

Distributed System

Distributed System IT
(a) (b)

Fig.4 Multipoint viscoelastic connection of (a) a distributed system and
a lumped system; (b) two distributed systems

The energy functionals for the combined system are of the
form '

My (u, v; b, ) = (M'%u, MY ™)y 0y + G*Moth
Mp(u, v; @, ) = (D"?u, D)y,
+ ¢*Duf + (u, — b)*D.(v. — Y1)
Ig(u, v; &, ) = (K"%u, K"¥)yy
+ K + (u, — h)*Ko(ve — ) (32)

where u, v € H(Q), u, = (u(x)) ... w(x)", v.= (v(x)
Loulx )T, ¢t =7, and
¢ = (i:) W= (iﬁ) D Pl €C, o€ C.

The kinetic energy, Rayleigh dissipation function, and potential
energy of the combined system are represented by Iy, (w,, w,;
X x)12, p(w,, wis X, X)/2, and Ig(w, w; x, x)/2, respec-
tively, where x(t) = (a’(t) B7(1))".

Integrating of the functionals Il and Ik by part gives

Tp(u, v; @, ) = (Du, viue
+ (Dru ) *v, + ¢*Dogf + (w0, — ho) *D.(Ve — o)

[, v; @, ) = (Ku, v)ya
+ (Kru)*v, + ¢*Kefr + (0 — @) *K (v, — ¢p)  (33)

where Dy and K; are matrix differential operators presenting
the jumps of the internal forces of the distributed system at the
connecting points x,, . . . , x,, due to the viscoelastic connection.
Define the function space
H = {U|U = (u(x)u")’,

u(x) € H(SY), ue C¥"} (34)

with the inner product (U, V) = (u, v)yw, + u®y, U, V
€ H. Partition the parameter matrices of the lumped system
corresponding to the displacement vectors a(t) and B(¢):

v - [ME M7 D Dy
LT M?Q Mfﬁ L] L= Dfﬂ Dfﬁ ]

KL = I:K?m KE‘J:’ .

Kf* K (35)
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With (32), (33), and (35), the augmented operators are ob-
tained as

MO0 0 0
. oo o o
M= 0 0 Mg« M?’B »
0 0 M M
D 0 0 0
5.0 Dr+D.  -D, 0
0 -D. D®+D, D¥
0 0 D/ DY
K 0 0 0
;|0 Kr+ K, -K. 0
K=19 —K  Ke+K K& (36)
0 0 Kf« K%

The domain of the operators is defined by
D= (UlU=(ux)ulx)...u(x)u")7,
u(x) E H(QY), uecC*r}c i

It is easy to see that the augmented operators are symmetric in
D;ie, forany U, Ve D

Iy (u, v;u, v) = (MU, Vs = (U, MV )5
Tp(u, v;u, v) = (DU, V)sr= (U, DV)s

Og(u, viu, v) = (KU, V)sr= (U, KV)sr.  (37)

With the energy functionals, the original equations of motion
of the combined system are cast into the augmented form (10a)
with

W(x, 1) = (w(x, Dwi()e" (1B ()",
£ 507

where w.(¢) has been given in (31). Let the kth eigenvalue of
the combined system be A, and the corresponding mode shape
distributions of the distributed and lumped systems be v.(x)
and x, = (a@fBI)", respectively. The eigenvalue problem in
the augmented form is described by (11) with the augmented
eigenfunctions expressed by

F(x,t) =(f(x, 1) 07 £ (38)

BO" (39)

where the vector v§ = (v,(x,) . .. u(x,))" € C". The eigenfunc-
tions are normalized by

Vilx) = (u(x) (v))" af

3 1
(M5, M0 )y + XEMLX; — IV} (K" 0, K0 )0y
3

+ XiKox + (Vi — @) Ke(vi —ay) ) = 2. (40)

Let the initial conditions of the combined system be
Distributed system:

wi(x, 0) = uy(x), w,(x, 0) = v(x)

Lumped system:

«(0) = @, @(0)=a, PBO0)=Bo, BO0)=ps
(41)

Substituting (36), (38), and (39) into (13) yields the response
of the combined system
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w(x, t) ¢ g™(x, &t~ 1)
ay | = [ [ Tsm@i-n) ) e maar
B o v gt —1)

’ gwa(x’ r-- T) gWﬁ(x, r— T)
+ f g=(t—7)  g%(t—7) (f“m )dr
o | gﬁa(t _ 7.) gﬁﬁ(t _ 7.) fﬁ(T)

g™ (x, & 1)
+f g( g™ (&, 1) )Muo(@
@ 9P\ g™(E
g™ (x, & 1)
+| gE n | (Muo(€) + Dug(€)) pde
g™ (& 1)
g"%(x, 1)
g°%(1) ML<“°)
g7(1) Po
gWﬁ(xs t) A
e ]{ML@O) o))
g%(1) Bo Bo

g0 [Tp,+ D, D] /us
g7 (1) D D ( )
gﬂ“(t) e ) oy

uo(x))7, and the Green’s

8" (x, 1)
+ 1 8% (N
6[ gﬁa(t)

[ g™ (x, 1)
+1 &0
g7 (1)

[ g (x,0)
+| e
| g%

(42)

where the vector ug = (up(xy) ...
functions are given by

gL E D g (x, 1) g (x, 1) g*(x, 1)
g(E D) g g™ g*()
g gk g g%
13‘” ve(x)
=; 2 M a Jw(&) (v al BD. (43)
k=l B

On the right-hand side of (42), the first ling describes the
system response due to the external loads, the second and third
lines represent the contributions of the initial disturbances ap-
plied to the distributed and lumped systems, and the last line
is about the effects of the initial motion at those connecting
points on the transient response of the combined system.

B Examples. Inemploying the above energy formulation,
one does not need to know the original equations of motion.
By Hamilton’s principle, the energy functionals will eventually
lead to the augmented form (10a). This advantage of the pro-
posed method is shown in the following two examples.

Example 1. For the combined beam-oscillator system
shown in Fig, 5(a), the energy functionals are

L

pitvdx + ¢*[m‘ 0 ]a/;

0 14(7)

My (u, v; ¢, ) = f

4]
L

Ip(u, v; @, ) = f (v + Ayl spe )X
0

dz - dz

' ¢*[—d2 d, ]"’ (@) = B (R ~ )

Journal of Applied Mechanics

*e w(x,1) m,I

SANNY

wen f ! 4

Lx o B 12O
ky g &

My j_[i(t)

NN

(@ (b)

Fig. 5 The Euler-Bernoulli beam combined with (2) an oscillator; and
(b) a rigid body

L

Hg(u, v; ¢, ) = f Eli .0, dx + qb*l:

0

A
ke ks ]‘”

+ k(@(x) = P (v(x) = )

where d, and d,, are the viscous and material damping coeffi-
cients, and ¢ = (¢, ¢p)7, ¥ = (Yo )" € C*. Integrating
the functionals by part yields the augmented symmetric opera-
tors

M=diag(p 0 m m)
d? d? l
d,+—\|d,— 0 0 0
Ox* ( " 8x2>
D= 0 Dr+d, —-d 0 |,
0 —~d, d+d, —d,
| 0 _d2 dz .
- o o _
— | Ef — 0 0
Ox? < 8x2) 0
K= 0 Kr+ Kk —k 0
0 _k1 kl + k2 —*kg
B 0 0 —ky ky
with the domain D = {U|U = (u(x) u(x)) u™)", u(x) €

H([0, L]), u € C*}, where Dy and K7 are given in (25). The
augmented equation of motion is (10a) with W (x, t) = (w(x, t)
w(x, t) a(t) B())". The corresponding Green’s function
formula and the modal expansion of the Green’s functions
can be obtained based on (42) and (43).

Example 2. In Fig. 5(b) a rigid body is viscoelastically
mounted on a beam. The energy functionals of the combined
system are given by
L

My (u, v; @, ) = f pitvdx + im(& + @) (P + )

0
1 - —
+ Z;l-z'l(dh — &) (Y — )

L
p(u, v; d, ) = f (dytv + dyi, o0, ) dx
0

+ di(@(x,) = ) (v(x1) — )
+ do(T(x2) — P)(v(x2) — 42)

L

HK(u’ v ¢’ (/;) = f EIII’Xwixdx + kl(ﬁ(-xl) - ¢l)

0

X (v(x) — ¢n) + k(F(x) — $)(v(x) — ¢)
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where ¢ = (¢,2)", (Y 12)" € C?. Here ¢, and 4, correspond
to the motion of left connecting point of the rigid body, i.e.,
y(t) — af(t); and ¢, and ¥, the motion of the right connecting
point, i.e., y(t) + af(t). The augmented operators for this com-
bined system are

p 0 0 0
=100 0 0
T 10 0 (m+Ila®H/4 (m-— 1la*)l4
0 0 (m—Ila*>)/4 (m+ Ila®)/4
[ a2 o2 i
+—\d,— 0 0 0 0
% 6x2( kaxz)
b= 0 Dy + d, 0 -d, 0
0 0 Dy+dy, 0 —d,
0 —d, 0 d, 0
i 0 0 -d, 0 4 |
- —
— | El — 0 0 0 0
sz( li'('Jb:x)
K - 0 KT + k| 0 _k| 0
0 0 KT + kz 0 _'k’Z
0 —k 0 k 0
| 0 0 _kz 0 kz |

with the domain D = {U|U = (u(x) u(x,)) u(xy) u’)7,
u(x) € H([O, L]), u € C*}, where Dy and Ky are given in
(25). Closed-form solution follows the same steps as discussed
before.

C Combination of Two Distributed Systems. The en-
ergy formulation is also valid for multipoint connection of two
distributed systems as shown in Fig, 4(b), where points x,, . . .,
x, of body §2; and points y,, ..., y, of body Q) are connected
viscoelastically. Denote the displacements of €2, and Q;, by w;(x,
t) and wy(x, t), respectively. Let q§(z) be the vector of the
constraint forces applied at the connecting points xi, ..., x, of
€, and q§(7) the vector of the constraint forces at y;, ..., y,
of body £2;. Assume that the constraint forces are determined
by

qi (1)

—qj (1)
= Dc(Wi(8) — wi(n) — Ko(wip(r) — wi(1)) (44)

where wi(f) = (wi(x1, 1) ... wi(x, )" €R", wii(t) = (wy(y,
1) ... wy(y,, D)7 € R’, and D, and K, are given matrices
describing the connection. The energy functionals are

[y Cuey, vis wn, vy)
= 1/2 12 1/2 1/2
={M;"u;, M| UJ}msx,; + M uy, My T-'n)mn,,)

. v i
p(uy, vy uy, vy) = (DII' 2

w1, D1 v,
2 >
+ (Di*uy, D};ﬂ“n)mnn] + (uf — uf)*D.(vj — vf)
A _ w2 2
I Cuy, vys wyry vy) = (K.' Uy, K.:! Uf)ﬂ(n,)

+ (Kif*uy, Ki*viduea,y + (uf — u)*K(vi; — vf)  (45)
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where uf = (u,(x)) ... w(x))", vi = (u(x) ... v(x))",
wy = (ug(n) ... un(y,))", and vip = (vg(y1) ... va(y,))" €
C’, and M;, D;, K, and My, D, K, are the spatial differential
operators of (2, and £y, respectively. The derivation of symmet-
ric augmented operators and subsequent modal analysis are sim-
ilar to those in the previous cases, and therefore is omitted.

D Multibody Systems. The energy formulation can also
be extended to multibody systems. For a system assembled from
N distributed subsystems €2;, ,, . . ., Qy, its energy functionals
are defined in the function space H({2), with @ = Q, U , U
... U 2. The derivation of augmented operators is similar and
the closed-form representation of the system response can be
systematically obtained.

5 Conclusions

Through introduction of energy functionals, the closed-form
transient response analysis developed in Part I is extended to
constrained and combined, distributed damped systems. One
advantage of the energy formulation is that it systematically
leads to the symmetric augmented operators, the Green's func-
tion formula, and the eigenfunction representation of the system
Green’s function. While the current study is on the construction
of analytical solutions, accurate estimation of system eigensolu-
tions, which is needed in the response prediction, is being devel-
oped for a variety of distributed systems (Yang, 1992; Yang,
1994; Yang and Fang, 1994; Yang and Zhou, 1995; Zhou and
Yang, 1996). Combining with that effort, the closed-form tran-
sient analysis proposed herein will find wide applications in
modeling, dynamic analysis, and vibration control of complex
distributed parameter systems.
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Thermomechanical Equations
Governing a Material With
Prescribed Temperature-
Dependent Density With
Application to Nonisothermal
Plane Poiseuille Flow

The standard practice in the literature for modeling materials processing in which
changes in temperature induce significant volume changes is based on the a posteriori
substitution of a temperature-dependent expression for density into the governing
equations for an incompressible material. In this paper we show this ad hoc approach
misses important terms in the equations, and by example show the ad hoc equations
fail to capture important physical effects. First we derive the three-dimensional equa-
tions which govern the deformation and heat transfer of materials with prescribed
temperature-dependent density. Specification of density as a function of temperature
translates to a thermomechanical constraint, in contrast to the purely mechanical
incompressibility constraint, so that the constraint response function ( “‘pressure’’)
enters into the energy equation as well as the momentum equation. Then we demon-
strate the effect of the correct constraint response by comparing solutions of our
thermomechanical theory with solutions of the ad hoc theory in plane Poiseuille flow.
The differences are significant, both quantitatively and qualitatively. In particular, the
observed phenomenon of expansion cooling is captured by the thermomechanically
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constrained theory, but not by the ad hoc theory.

1 Introduction

In general, material properties depend on both thermal and
mechanical state variables. Nonetheless, in some industrial pro-
cesses such as polymer extrusion and fiber spinning, one can
reasonably neglect the pressure dependence of density, specific
heat, viscosity, and thermal conductivity. This is because the
mechanical dependence of material properties is weak at the
low to moderate pressure levels encountered in these processes
(Spencer and Gilmore, 1950; Cox and Macosko, 1974; Winter,
1977; Lodge and Ko, 1989). In contrast, the temperatures of
these processes are high enough and the temperature changes
and gradients are sufficiently large that the thermal dependence
of material properties may have a significant effect on process
behavior. At a fundamental as well as practical level, models
for design or optimization of these processes must incorporate
this temperature dependence. The standard practice in the litera-
ture for modeling such processes is to a posteriori substitute
temperature-dependent expressions for the material properties,
in particular density, into the governing equations for an incom-
pressible fluid. We revisit this practice in a practical benchmark
flow by comparing solutions of these equations to solutions of
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our equations of the thermomechanically constrained theory
which follows from specified temperature-dependent density.

A general mechanical theory of internal constraints was first
developed by Noll (1958). The generalization to thermome-
chanical constraints was made by Green, Naghdi, and Trapp
(1970) and Gurtin and Guidugli (1973). Trapp (1970, 1971)
further generalized the form of thermomechanical constraints
given by Green et al. (1970), and applied the general theory
to the special case of an inextensible material with an additional
thermal constraint on the temperature gradient, in the context of
small deformations and a linear elastic constitutive assumption.
Reddy (1984) constructed a theory of constrained elastic mate-
rials which was a slight modification of that proposed by Trapp
(1971).

The general form of the thermomechanical constraint adopted
by Green et al. (1970) and Trapp (1971) is

A-D + b-grad ® + a® = 0. (1)

In Eq. (1), D is the symmetric part of the velocity gradient, ®
is absolute temperature, A, b, and « are material-dependent
quantities, grad is the Eulerian gradient, and *' " denotes the
material derivative with respect to time, e.g.,

@=@+v-gmd@, (2)
ot

where 8/ is the Eulerian partial derivative with respect to

time and v is velocity.

Prescribed temperature-dependent density was first recog-
nized as a material constraint by Green et al. (1970), but neither
they nor any subsequent researchers have studied the flow of a
material subject only to this constraint. As we shall see, the
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constraint demanded by prescribed temperature-dependent den-

sity p = p(@®) is the special case of (1) with

b=0. a=£2,
P

where p’ denotes the derivative of p(®) with respect to 0.

This paper is the first to develop a self-consistent model for
the large-deformation processing of a material with prescribed
temperature-dependent density. This thermomechanically con-
strained theory yields a problem formulation that is simpler to
solve than the unconstrained theory, yet predicts temperature-
induced volume-change effects that are missed by both the in-
compressible theory and the ad hoc theory of the incompressible
equations with a posteriori substitution of temperature-depen-
dent density. We compare solutions of our thermomechanical
theory in plane Poiseuville flow with solutions of the ad hoc
theory. This study joins a long list of analyses of nonisothermal
flow in capillary and slit dies (Brinkman, 1951; Bird, 1955;
Toor, 1956; Gee and Lyon, 1957; Toor, 1957; Kearsley, 1962;
Kaganov, 1963; Gerrard et al., 1965; Gerrard et al., 1966; Mar-
tin, 1967; Gould, 1971; Sukanek, 1971; Cox and Macosko,
1974; Walters, 1975; Winter, 1975; Hieber, 1977; Winter, 1977;
Hulatt and Wilkinson, 1978; Hulatt, 1980; Kamal and Nyun,
1980; Ybarra and Eckert, 1980; Dinh and Armstrong, 1982,
Rauwendaal and Fernandez, 1985; Duda et al., 1988; Karagi-
annis et al., 1989; Langer and Werner, 1989; Lodge and Ko,
1989; Burton, 1990; Ko and Lodge, 1991; Hossain, 1992; Jan-
sen and van Dam, 1992; Vergnes et al., 1993). In particular,
we discover that our constrained theory is able to predict ther-
momechanical flow features that are present in all of the com-
pressible analyses in the above list, but unattainable in the in-
compressible treatments.

A =1, (3)

2 The Thermomechanical Constrained Theory for
Materials With Temperature-Dependent Density

The governing equations for thermomechanical continua are
the conservation laws of mass, linear momentum, angular mo-
mentum, and energy:

p+pdivv=0, (4)
pv =divT + pg, T=T7, (5)
pe=T-D + py — div q, (6)

where T, g, ¢, v, and q are the Cauchy stress, body force,
internal energy, heat supply per unit mass, and heat flux vector,
respectively, and div denotes the Eulerian divergence operator,
In a particular application these equations are accompanied by
boundary conditions, constitutive equations, and perhaps con-
straint equations.

For a material with prescribed temperature-dependent den-
sity, one specifies p = p(®). This implies the thermomechani-
cal constraint

Zo+1p=0, (7
P
which is consistent with Eq. (4).

In our derivation of the constraint response necessary to main-
tain the constraint (7), we replace internal energy ¢ with free
energy s, defined by a Legendre transformation through

Y =¢c— On,

where 7 is entropy per unit mass.
We first assume that there is an additive constraint response
to all dependent quantities, i.e., we assume

(8)

T=T+T. q=§+q,
W=d+H n=H+m7, 9)
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where ** " ** denotes a constitutive function of deformation and
temperature, and ‘" denotes the constraint response. The
additive constraint response must maintain the constraint while
producing no entropy. This demands (Day, 1972; Green and
Naghdi, 1977)
—pq_‘?—pﬂ@+T-D—$t[*grad®=0, (10)

for all processes satisfying the constraint (7).

In particular (10) must hold for the subset of processes with
grad @ = 0, D = 0 and ® = 0, which necessarily satisfy the
constraint (7). For this subset, condition (10) reduces to

§=0 (11)
or, without loss of generality,
¥ =0. (12)

Since the constraint response must be independent of the partic-
ular process which satisfies the constraint, Eq. (12) must hold
for all processes, not just the above subset. By considering all
processes with D = 0, ® = 0, but grad © arbitrary, a similar
argument enables us to deduce

(13)

Therefore, in a material with temperature-dependent density
W and q are determined entirely by constitutive functions of
deformation and temperature.

All that remains from condition (10) is

—p7i® + T-D = 0.

q=0.

(14)

The subset of processes with D = 0 but @ arbitrary is not
possible for the thermally constrained material, since D and
® are not independent. With (®, D) and (p'/p, I) regarded as
vectors in the seven-dimensional inner product space E’, the
constraint (7) demands

(%,I)-(@.D}=O, (15)

so that the only admissible vectors (©, D) are those perpendicu-
lar to (p'/p, 1).
The condition ( 14), which we rewrite as

(=p7, T)+(6, D) = 0, (16)
indicates that the response (— p#, T) must be perpendicular to
all (O, D) which are perpendicular to (p'/p, I). Hence we
deduce that (— p7, T) is parallel to (p'/p, I), i.e,,

(—p7, T) = —p(%,l) ; (17)

where p is a scalar function of position and time, The total
response ( constitutive plus constraint) is therefore

T=T-pl, a=4, y=14 n=ﬁ+p§. (18)
Using the relation (8) between ¢, ¢, and 7, we obtain

c=e+p0L. (19)
p

The term p®(p'/p?) is needed in the internal energy to offset
the entropy created in any volume change by the constraint
pressure, so that the net entropy generated by the constraint
response is zero.,

Combining Egs. (5), (6), (7), (18), and (19), the field
equations for a material with temperature-dependent density are
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divv = - 2 6, (20)
p
pv=divT —gradp + pg, T =17, (21)
. ' - 2
p€+p—@p+£®(p"—2p—)
P P p
=T:D+ py —divg. (22)

The complete three-dimensional initial/boundary value prob-
lem for a material with temperature-dependent density consists
of the field Egs. (20)—(22), together with initial and boundary
conditions and constitutive equations for T, §, and &.

3 The a Posteriori Treatment of Temperature-De-
pendent Density

For the purpose of comparison, we present the straightfor-
ward, but inconsistent, extension of incompressibility that is the
standard practice in the literature for modeling nonisothermal
processes with significant temperature-induced volume changes.

The field equations for an incompressible material are

divv = 0. (23)
pv=divT —gradp + pg, T=1T" (24)
pt=T'D + py — div §. (25)

The three-dimensional initial/boundary value problem in the
incompressible theory consists of these field equations, constitu-
tive equations for T, &, and §, and initial and boundary condi-
tions.

A comparison of Egs. (23)—(25) with Eqgs. (20)-(22)
shows that a posteriori substitution of a temperature-dependent
function of density into the equations for an incompressible
material produces incorrect mass and energy equations. In Hay-
ashi et al. (1992) and Dutta (1987) temperature dependence of
density is simply substituted a posteriori into (23)—(25), and
terms are missed in both the mass and energy equations. Kase
and Matsuo (1965) correctly take into account thermal expan-
sion or shrinkage, i.e., they use (20) instead of (23), but leave
out the necessary constraint response terms in the energy equa-
tion. Hahn and Kettleborough (1967, 1968) posit a new term
in the energy equation, but it is incorrect.

In applications such as the onset of convection in the Ray-
leigh-Bernard problem, it is standard practice to employ the
Boussinesq approximation. In this approximation temperature-
dependence of density (assumed small) is included in the buoy-
ancy term pg of the linear momentum Eq. (5) but neglected
elsewhere (Rayleigh, 1916). In the context of these approxima-
tions our constrained theory offers an alternative, which will be
pursued in another place. Here we apply our theory to a problem
without an applied temperature gradient.

4 Investigation of Plane Poiseuille Flow

In the following, solutions for the velocity and temperature
distributions in steady plane Poiseuille flow are obtained from
the constrained theory, Egs. (20)-(22), and compared to the
solutions of the ad hoc extensions of incompressibility, Eqgs.
(23)-(25) with p = p(®) or Egs. (20), (24), (25) with p =
p(®). We show that use of the ad hoc extensions results in
considerable error and misses qualitative features of physical
response.

4.1 The Boundary Value Problem. To complete the
boundary value problem formulation for a material with temper-
ature-dependent density, we must specify the constitutive func-
tions T, &, and § for the determinate parts of stress, internal
energy, and heat flux, respectively, the body force g, heat source
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v=0,0=0,

h %2
2
flow T
n = v(za),a=v3=0
B gravity 0 = B(x;)
v=0,0=0,

Fig. 1 Nonisothermal plane Poiseuille flow with isothermal walls

v, and density function p(®), that appear in the governing Eqs.
(20)--(22), and appropriate boundary conditions,

Here we model the steady flow between two infinite hori-
zontal planes, depicted in Fig. 1. We assume that the flow is
two-dimensional, laminar, and hydrodynamically and thermally
fully developed. Hence, the velocity and temperature fields are
of the form

=0, vy=0, @ =0(x),

(26)

subject to the boundary conditions of no slip and isothermal
walls:

up = vy(x2),

v=0 0=0, @x=zx-, (27)

ISR

where 0, is a specified constant temperature.

For simplicity, we assume constant specific heat and constant
thermal conductivity in the constitutive functions for internal
energy and heat flux,

dé = cdB®,

q = —k grad O, (28)

although ¢ and k could just as well be taken as functions of
temperature and not change the form of the governing equations.
We employ a Newtonian model for the fluid,

T = 2u(0)D, (29)

where viscosity p(®) is a specified function of temperature ®.
Dependence of viscosity on shear rate can be incorporated in a
straightforward manner, but this feature is omitted here so as
to not complicate the discussion.

The body force is

g = —ge, (30)

where g is the acceleration of gravity and e, is a unit vector in
the x, direction. We assume no heat supply, i.e.,, y = 0.

4.2 Solution of the Boundary Value Problem in the Con-
strained Theory. With assumption (26) on the velocity and
temperature fields, the constraint Eq. (20) is identically satisfied
for any specified function p(®), the x,, x,, and x; components
of the momentum Eq. (21) simplify to

are % _, 9

1

p(®)g =0, 0=0, (31)

dJCg 6X| 612 B
and the energy Eq. (22) becomes
p'(®) o dp dv, a*e
—— 0 ==Tp—+ k—. 32
P(®) Uy o, 12 dx, dx% (32)
Equations (31) imply
P= _.Bxl - 8 f P(@(xz))dxz. (33)
Ty, = —fx,, (34)

where £ is the constant rate of pressure drop (positive when
the pressure decreases in the flow direction). From Eq. (34)
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we see that the absolute value 7, of shear stress at wall is
related to the pressure gradient 8 by

Tw = 1 . (35)

Eliminating T, from Egs. (31) and (32), the reduced one-
dimensional equations governing the velocity and temperature
distribution are

dy__
o e, (36)
O __ B, Bp®)
ki PR < B 37
aF " T u®) " "k p(@) =0

In Eq. (37), the term — (8/k)(p'(®)/ p(8)) v,0 is the effect
of constraint response; this term is absent if the temperature-
dependent density is inserted a posteriori into the equations for
an incompressible material.

To perform specific numerical simulations we must adopt
explicit forms for the temperature dependence of density and
viscosity. Here we assume a linear dependence of density on
temperature,

p(®) = py — p1©, (38)

where p, and p, are constants, and an Arrhenius form for viscos-

ity,
Efl 1
u(B)—;uwcxp[ (6_@)_)]

where the constants, E, R, and u, are the activation energy,
gas constant, and viscosity at the wall temperature ®,,, respec-
tively. The constants p,, u., E, R, and @, are positive; p, will
also be positive if the material expands while heated.

To nondimensionalize Egs. (36) and (37), we scale tempera-
ture to the wall temperature @,,, lengths to the wall separation
h, and velocity to

(39)

& & Bh? Tw' (40)

8.  du

which is the maximum velocity in the isothermal solution of Eq.
(36) with the boundary condition of no-slip. The dimensionless
transverse coordinate is then

X2

B= (41)
and dimensionless temperature and velocity are
C] v 8uu  4uuv

&= fp=2 0 Theth 42

0, " Tw A T .

Using the material density p, at the wall temperature as the
characteristic value of density, the dimensionless form of the
density function (38) becomes

@ _ 1-pPO
p(®) = £ - , (43)
Pw l =P
where the dimensionless thermal expansion number,
P= p1®, ; (44)
Po

is a characteristic measure of the degree of temperature depen-
dence of the material’s density at the processing conditions.
The dimensionless forms of Eqs. (36) and (37) are

%2 = -8% epr:—E(—é-)- - l)]-
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(45)

PEC)

1
T i —64 Br f%exp[—E(fé - 1)]

5,0
+8BrP——r (46
BT (46)
where
,u.,vu B*h* Tih? F
B = , Beese, (47
"= %0, T 64ku,®,  16ku,®, re, 7

Br is the Brinkman number indicating the balance of the com-
peting effects of viscous heating and thermal conductivity, and
E is a dimensionless number quantifying the degree of viscosity
variation with temperature. The dimensionless boundary condi-
tions are

=0 O=1 @f==3 (48)

The two-point coupled boundary value problem (45), (46),
and (48), involving the three dimensionless parameters Br, E
and P, is solved with a relaxation method, and, as a check, a
shooting method. )

Because of the constraint response 8 BrP(#,®)/(1 — PO)
in the energy equation due to thermal expansion, the governing
equations for the fields of velocity and temperature are coupled,
and the boundary value problem (45), (46), (48) must be
solved simultaneously for the velocity and temperature distribu-
tions, Without this term the temperature distribution can be
obtained first and then used to determine the velocity profile as
done by Burton (1990), but it is precisely this coupling that
creates the phenomenon of expansion cooling, as we show be-
low.

4.3 Solution of the Boundary Value Problem in the ad
hoc Theory. If we model the same plane Poiseuille flow
shown in Fig. 1 with the ad hoc theory, in which a temperature-
dependent density is substituted a posteriori into either the in-
compressible Egs. (23) —(25) or the incompressible Egs. (24),
(25) accompanied with the thermal expansion constraint (20),
the dimensionless governing equations reduce in both cases to

dU|_"— l_
-&};— szexp[ E((:) l)].
2

d®=—64BrX§exp[—E(%—l)], (50)

di}

subject to the boundary conditions (48). The parameter P de-
scribing the temperature dependence of density does not appear
in Eqgs. (49) and (50); in fact, the equations are exactly the
same as the governing equations derived for an incompressible
material in nonisothermal plane Poiseuille flow. Hence, this a
posteriori approach leads to a result that, no matter how strong
the temperature dependence of density, it has no effect on the
velocity, temperature, and stress distributions. The only effect
of temperature—dependent density is on the density itself: once
© is determined from the boundary value problem (48), (49),
and (50), the nondimensional density is obtained from

Péua)
- P

(49)

p(xy) = (51)

Also note that Eq. (50) for the temperature distribution decou-
ples from Eq. (49) for the velocity.

4.4 Comparison of the Solutions and Discussion. The
effects in the constrained theory of temperature-dependent den-
sity on the velocity and temperature fields are shown in Fig.
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Fig. 2 The transverse velocity and temperature distributions in noniso-
thermal plane Poiseuille flow with isothermal walls as predicted by the
constrained theory, showing the effect of varying the level of temperature
dependence of density: E = 5.0, Br = 0.2, varying P. The vertical coordi-
nate is the dimensionless transverse coordinate £;. The solution for all
values of P from the ad hoc theory (a posteriori substitution of tempera-
ture-dependent density into the incompressible theory) is the same as
the solution to the constrained theory with P = 0.

2. As the temperature dependence of density becomes more
pronounced (i.e., as P becomes greater), a depression develops
at the center of the temperature profile, and the difference be-
tween the wall temperature and mean temperature of the flow
decreases. In fact, at P = 0.3, the temperature at mid-channel
is less than the wall temperature. This behavior is due to the
phenomenon of expansion cooling (Toor, 1956; Cox and Ma-
cosko, 1974; Winter, 1977): In the plane Poiseuille flow we
model, the fluid interior undergoes viscous heating, which tends
to increase fluid temperature in the center; however, the viscous
heating also tends to expand the fluid when the fluid is heated,
and the work done in this expansion leads to loss of temperature.
These competing effects lead to the temperature profiles in Fig.
2. The inflection points observed in these temperature profiles
from our constrained theory are also predicted in all compress-
ible analyses of fully developed nonisothermal Poiseuille flows
in the literature.

The ad hoc theory cannot reflect the competing effects of
viscous heating and expansion cooling. Although viscous heat-
ing is included, expansion work is missing when the tempera-
ture-dependent density is inserted a posteriori in the incompress-
ible equations. The solutions for the velocity and temperature
distribution in the ad hoc theory are not affected by the degree
of temperature dependence of density: the predicted distribu-
tions for temperature-dependent density and constant density
are identical, and given by the solutions with P = 0 in Fig. 2.
When modeling plane Poiseuille flow with the ad hoc theory
the temperature dependence of density decouples from the tem-
perature and velocity problem, and only affects the density dis-
tribution itself. The ad hoc theory makes both qualitative and
quantitative errors: it cannot predict the two inflection points in
the temperature distribution, and predicts average and maximum

Journal of Applied Mechanics

temperatures that are too large. The ad hoc theory overestimates
the fluid maximum absolute temperature by 5.3 percent and the
velocity at the mid-channel by 16.7 percent for the case with
density expansion number P = 0.2; polymers are typically pro-
cessed with P in the range of 0.1 to 0.3 (Toor, 1957).

The density distribution across the channel predicted by the
two theories is shown in Fig. 3. In our constrained theory the
density has a local maximum in the channel center, reflective
of the depressed temperature there due to expansion cooling.
In the ad hoc theory, the density minimum is in the center of
the channel. Since the ad hoc theory cannot model the lowering
of temperature at mid-channel due to expansion cooling, it un-
derestimates fluid density there.

The errors in material density and velocity distributions that
result from use of the ad hoc theory have contrary effects on
the mass flow rate: the overestimated fluid temperature lowers
fluid viscosity and thus leads to higher velocity, as shown in
Fig. 2, and therefore too high a volume flow rate; on the other
hand, the underestimated density distribution in the ad hoc the-
ory leads to an underpredicted mass flow rate. In the simulation
shown in Fig. 4, with £ = 5.0 and Br = 0.2, the net result of the
two competing errors in the ad hoc theory is an overprediction of
the mass flow rate. Figure 4 compares the dimensionless mass
flow rates _]'0' pU,dx; resulting from the velocity and density

profiles predicted by the two theories, as functions of parameter
P. Note that the ad hoc theory overestimates the mass flow
rate for any material with temperature-dependent density. The
difference is significant even for moderate temperature depen-
dence of density: e.g., when P = 0.1, the dimensionless mass
flow rate predicted by the ad hoc theory is 5.9 percent higher
than the value predicted by the constrained theory.

As an explicit example, when poly(ethylene terephtalate)
(PET) is melt processed in a steady nonisothermal plane Poi-
seuille flow with a wall separation 4 of 0.2 mm and a wall
temperature @, of 558.2 K, the dimensionless numbers E and
P are calculated to be 12.18 and 0.1869, respectively (see Table
1). The Brinkman number is in addition a function of the shear
stress T, at the wall, or equivalently, the imposed pressure
gradient 4 = 27,/h. When 7, = 0.82 MPa (8 = 8.2 MPa/
mm), Br = 0.1 and the dimensionless mass flow rate predicted
by the constrained theory and the ad hoc theory are 0.7983 and
0.9574, respectively, so the ad hoc theory overestimates the
mass flow rate at this wall stress by 19.93 percent.

The relation between volume flow rate and either pressure
drop or wall shear stress is important in many process and
viscometric measurements. To study this relation, we compute
for the process of Table 1 the dimensional volume flow rates
per unit channel width as a function of shear stress at wall 7,
predicted by the two theories. For comparison, we also compute
the volume flow rate per width given by the exact solution for
a flow with *‘effective’’ constant values of density and viscosity.
The exact solution follows from setting £ = P = 0 in the
boundary value problem (45), (46), and (48). The constant
values of density and viscosity in this *‘effective incompressible
flow’’ model are taken as their values at the wall temperature,
Le, p = py, N = Ny

Figure 5 shows that the ad hoc theory underestimates the
wall shear stress T,, (or pressure gradient 4) which is necessary
to produce a desired volume flow rate, or, viewed differently,
the ad hoc theory overestimates the volume flow rate created by
an imposed pressure gradient or wall shear stress. Alternatively,
ignoring the temperature dependence of viscosity and density by
employing the ‘‘effective incompressible flow’’ model results in
errors in the other direction. At the specified volume flow rate
per width of 0.15 cm?/s, the ‘‘effective incompressible flow’
model produces an error of +4.57 percent in the wall shear
stress, and the ad hoc theory produces an error of —2.46 percent,
As the flow rate increases, so do the errors: for 0.38 cm?/s the
“‘effective incompressible flow’” model and ad hoc theory give
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Fig.3 The density distribution across the channel for different levels of tempera-
ture dependence of density: E = 5.0, Br = 0.2, varying P. The horizontal coordi-
nate is the dimensionless density, and the vertical coordinate is the dimen-
sionless transverse coordinate ¥,. Solid lines are the predictions from the con-
strained theory, and dashed lines are the predictions from the ad hoc

formulations.

errors of +27.7 and —10.8 percent, respectively. For such flow
rates, process modeling based on either the ad hoc theory or
the ‘‘effective incompressible flow’* model can lead to serious
design flaws.

The cessation of the curves for both the constrained theory
and the ad hoc theory in Fig. 5 indicates that there are no stable
solutions to the boundary value problem for fully developed
flow in these equations when the pressure gradient exceeds
threshold values. This was also noticed in the incompressible
theory with temperature-dependent viscosity (equivalent in two-
dimensional Poiseuille flow to the ad hoc theory) by Martin
(1967) and Sukanek (1971). As can be seen in Fig. 5, this
behavior is not captured by the *‘effective incompressible flow"’
model.

The effects of temperature dependence of density are aug-
mented by large Br, as shown in Fig. 6. When there is viscous

dimensiocnless mass flow rate
o
8 &

o
&

070 " N
0.00 010 020

P

Fig. 4 The dimensionless mass flow rate as a function of the level of
temperature dependence of density: E = 5.0, Br = 0.2, varying P
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heating in the flow of a fluid with poor thermal conductivity
(and hence large Br), the concavity in the temperature distribu-
tion at mid-channel deepens, the bulk temperature and mean
velocity in the channel increase, and the temperature and veloc-
ity gradients at the wall become greater, relative to a fluid with
good thermal conductivity.

The effect of temperature dependence of viscosity, or equiva-
lently E, on the temperature distribution is similar to that of Br
just described, but less pronounced (see Fig. 7).

Figure 8 illustrates the danger of neglecting temperature de-
pendence of density and viscosity altogether in the modeling
of a process. The ‘‘effective incompressible flow*’ solution for
temperature-independent viscosity and density differs greatly
from the result given by the constrained theory for a process
with Br = 0.1, E = 10 and P = 0.2, and cannot capture the
phenomenon of expansion cooling.. The maximum dimen-
sionless temperature predicted by the *‘effective’’ constant den-
sity/constant viscosity theory is 1.033 at the middle of the

Table 1 PET properties and flow conditions used in the simulations of
Figs. 5 and 6, and the corresponding dimensionless numbers

Material properties for PET

Density coefficient pg = 1493 kg-m~% f
Density coefficient p; = 05 kg -m™3.K™! 1
Thermal conductivity k = 0.147 W.m-1.K-'1
Intrinsic viscosity [1] = 06450 dl.gt¥
Activation energy £ = 56.54 x 10° J -mole~! 1
Flow conditions

Wall separation h = 0.2 mm

‘Wall temperature @, = 285 °*C=0568.2K
Viscosity pat wall temperature = 2046 Pa-s ¥

shear stress at wall r, = variable

Dimensionless numbers

Griffith number E = 12,18

Brinkman number Br = Be(r,) = 0.148972 MPa~*

Di ionl ion ber P = 0.1869

F

tHayashi et af (1992).
Polymer Handboak (1989).
fICalculated by 14(6) = [7]***exp{ g5 ~ 23} poise.
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Fig.5 The relation between volume flow rate per unit width of the chan-
nel and wall shear stress 7, along the flow direction for the PET meit
processing of Table 1

channel, and by the constrained theory is 1.020 at dimensionless
length scale 0.3. If the material is processed at a wall tempera-
ture of 558.2 K, this means the mid-channel temperature pre-
dicted by the constant density/constant viscosity solution is 7.1
K higher than the correct temperature given by the constrained
theory. For comparision, the mid-channel temperature predicted
by the ad hoc theory is 15.3 K too high.

4.5 Conclusion
A theory for the processing of materials with temperature-
dependent density is derived in such way that this temperature
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Fig. 6 The transverse velocity and temperature distributions in noniso-
thermal plane Poiseullle flow with isothermal walls as predicted by the
constrained theory, showing the effect of varying the thermal conductiv-
ity of the fluid: E = 5.0, P = 0.1, varying Br. The vertical coordinate is
the dimensionless transverse coordinate %..
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Fig. 7 The transverse velocity and temperature distributions in noniso-
thermal plane Poiseuille flow with isothermal walls as predicted by the
constrained theory, showing the effect of temperature dependence of
viscosity: Br = 0.1, P = 0.1, varying E. The vertical coordinate is the
dimensionless transverse coordinate X;.
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Fig. 8 The transverse velocity and temperature distributions predicted
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with effective constant values: Br = 0.1.
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dependence is recognized a priori, and not inserted a posteriori
as is often done in the literature. In our a priori treatment, a
constraint response appears not only in the momentum balance
but also in the energy balance as compression or expansion
work. Our theory provides a simpler formulation than the un-
constrained compressible theory which retains essential temper-
ature dependence of material properties. We apply our theory
to the problem of nonisothermal plane Poiseuille flow to pro-
duce the following conclusions: The equations modeling the
process from our theory are significantly different for quantita-
tive and qualitative predictions than either an ad hoc theory in
which temperature-dependent density is inserted a posteriori in
the theory for an incompressible fluid, or an ‘‘effective’’ con-
stant density/constant viscosity model. In particular, neither the
constant density/constant viscosity theory nor the ad hoc theory
can model the phenomenon of expansion cooling in plane Poi-
seuille flow, and both significantly overestimate the mean tem-
perature and mass flow rate.
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Theory for Multilayered
Anisotropic Plates With
Weakened Interfaces

Rigorous kinematical analysis offers a general representation of displacement varia-
tion through thickness of multilayered plates, which allows discontinuous distribution
of displacements across each interface of adjacent layers so as to provide the possibil-
ity of incorporating effects of interfacial imperfection. A spring-layer model, which
has recently been used efficiently in the field of micromechanics of composites, is
introduced to model imperfectly bonded interfaces of multilayered plates. A linear
theory underlying dynamic response of multilayered anisotropic plates with nonuni-
formly weakened bonding is presented from Hamilton's principle. This theory has
the same advantages as conventional higher-order theories over classical and first-
order theories. Moreover, the conditions of imposing traction continuity and displace-
ment jump across each interface are used in modeling interphase properties. In the
special case of vanishing interface parameters, this theory reduces to the recently
well-developed zigzag theory. As an example, a closed-form solution is presented
and some numerical results are plotted to illustrate effects of the interfacial weakness.
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1 Introduction

It has long been recognized that the classical two-dimensional
laminated plate theory, which is based upon the Kirchhoff
hypotheses of straight inextensional normals for the entire plate
package, yields inadequate results for analysis of composite
plates in many engineering problems. Due to their low ratio of
transverse shear modulus to the in-plane modulus, composite
laminates often exhibit significant transverse shear deformation,
which if neglected as in classical plate theory precludes an
accurate prediction of both overall behavior and local failures
caused by delamination. From the theoretical viewpoint, one of
the central issues of various theories is how to account for
the effects of transverse shear flexibility and other nonclassical
factors, such as transverse normal strain. Many approaches have
been proposed to this end and there are numerous publications
in the field of multilayered composite plates and shells; e.g.,
see the review papers of Bert (1984 ), Reissner (1985), Noor
and Burton (1989) and Reddy and Robbins Jr. (1994), and the
references cited in them.

All the different approaches for constructing two-dimensional
shear deformation theories of multilayered plates can be catego-
rized as either equivalent single-layer theories or discrete-layer
theories. In equivalent single-layer theories a heterogeneous
laminated plate or shell is treated as a statistically equivalent
single layer, possibly having complex constitutive behavior.
Examples are classical and first-order shear deformation theo-
ries (e.g., Chia, 1980, 1988) based on linear distribution of the
in-plane displacements in the thickness direction, and higher-
order theories (e.g., Librescu, 1975; Reddy, 1984) based on
a nonlinear distribution of the in-plane displacements in the
thickness direction. The advantage of introducing a global dis-
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placement approximation in the thickness direction is that only
three or five generalized displacement parameters are involved
in the resulting equations and the order of the governing equa-
tions is independent of the total number of layers. The global
response characteristics predicted by higher-order shear defor-
mation theories are fairly accurate. However, the distributions
of the stresses and displacements through the thickness obtained
by these theories are not so accurate, as transverse stresses do
not satisfy continuity at layer interfaces.

In contrast to the equivalent single-layer theories, most dis-
placement-based discrete-layer theories are based on piecewise
linear approximation for in-plane displacements in the thickness
direction, the transverse shear stresses are constant within each
layer and so do not satisfy compatibility conditions on the two
bounding surfaces of the plate. On the other hand, although the
discrete-layer theories are generally very accurate, they are quite
cumbersome in solving practical problems because the number
of unknowns and the order of the theories depend upon the
number of layers that the plate has.

Because of this, various zigzag theories, alternatively called
simplified discrete-layer theories (Noor and Burton, 1989) or
refined single-layer theories (Reddy and Robbins Jr., 1994),
have recently been proposed for describing the deformation of
plates and shells; see Di Sciuva (1986, 1987, 1992), Di Sciuva
and Icardi (1993), Savithri and Varadan (1990, 1993), Li-
brescu and Schmidt (1991), Gaudenzi (1992), Cho and Par-
merter (1992, 1993, 1994), Xavier et al. (1993), He (1993,
1994), and Schmidt and Librescu (1994). The displacement
field assumed is such that the displacements and tractions are
continuous at layer interfaces. This continuity can be used to
reduce the total number of unknown parameters in the theories,
Such approaches formulate a multilayered plate model of the
discrete-layer category for which the total number of general-
ized displacements does not increase with the number of layers,
This number is usually five, as in most equivalent single-layer
theories such as first-order theory or the third-order theory of
Reddy (1984).

Unlike their homogeneous isotropic counterparts, the aniso-
tropic constitution of multilayered composite structures often
results in unique phenomena that can occur at vastly different
geometric scales, i.e., at the global level, the ply level or the
reinforcement-matrix level. The equivalent single-layer theories
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are generally capable of accurately describing the global re-
sponse, whereas at the ply level discrete-layer and zigzag theo-
ries are needed to determine the three-dimensional stress field.
When equivalent overall elastic properties at the reinforcement-
matrix level of random composite materials are required, they
can be found by efficient micromechanics theories, e.g., the
Mori-Tanaka mean field approach (Mori and Tanaka, 1973;
Weng, 1984; Benveniste, 1987), the self-consistent method
(Hill, 1965; Budiansky, 1965), the generalized self-consistent
method (Christensen and Lo, 1979) and the differential scheme
(McLaughlin, 1977; Norris, 1985). The present paper gives a
theory which is general in so far as results at the ply level are
concerned and only requires that the elasticity constants of each
layer have been determined either by experiment or from micro-
mechanics methods, Particular attention is paid to multilayered
anisotropic plates with imperfect layer interfaces.

It is well known that properties of composite materials are
significantly influenced by the properties of interfaces between
the constituents. A perfect interface, which implies continuous
displacements and tractions across the interface, is assumed in
most analytical and numerical work on composite materials and
thus interface properties and structures are eliminated. However,
in many cases of interest this perfect interface assumption is
not adequate. Examples for multilayered composites are either
the presence of a thin layer between adjacent ply layers or of
a coating on the surface of the reinforcing constituent. Such an
interfacial layer is generally referred to as an interphase. It may
be due to chemical interaction between the constituents or it may
be deliberately introduced in order to improve the properties
of composites. In the limit of vanishing interphase-thickness,
displacement jumps occur when crossing the interphase from
one side to another while the tractions must remain continuous
from simple equilibrium consideration. The simplest approach
used to model this is that the jumps in normal and tangential
displacements are assumed to be proportional to the tractions,
giving a spring-layer model. Such a model has recently been
applied in micromechanics-based researches on imperfect inter-
faces of composites at the reinforcement-matrix level; e.g., see
Benveniste (1985), Aboudi (1987), Achenbach and Zhu
(1989), Jasiuk and Tong (1989), Benveniste and Dvorak
(1990), Hashin (1990, 1991a, b, 1993) and Qu (1993a, b).
However, few attempts have been made to evaluate the effects
of weak bonding at the ply level of multilayered composites.

A large class of new composite materials, e.g., ARALL (ara-
mid fiber-reinforced aluminium alloy laminates) and CARALL
(carbon fiber-reinforced aluminium alloy laminates), has re-
cently been developed for aircraft and civil application. These
materials consist of alternating layers of aluminium alloy sheets
bonded by an adhesive impregnated with high strength aramid,
ramie or carbon fibers; e.g., see Vogelesang and Gunnink
(1986), Aboudi and Paley (1992), Mao and Han (1992), Li
et al. (1994), and Lin et al. (1994). In addition to their lower
density and higher strength than aluminium alloys, excellent
fatigue crack growth resistance has been observed for these
materials. However, the aluminium alloy has a very different
thermal expansion coefficient from that of the adjacent sheet,
e.g.,, of CFRP (carbon fiber-reinforced polymer) sheets for
CARALL. Therefore the curing process will certainly produce
substantial residual stresses at layer interfaces and these stresses
will influence the mechanical properties of such materials, espe-
cially their bending behavior. In addition, although the surface
of the aluminium sheet is pretreated by chemical or mechanical
methods in order to improve adhesion, in practice imperfect
bonding still exists to different extents. A recent development
(Mao and Han, 1992) is to pre-coat the aluminium alloy and
CFRP surfaces of CARALL material with a kind of adhesive
called CCVC (copolymer of controllable volume change on
curing). CCVC can form a very thin interfacial layer between
the aluminium alloy and CFRP sheets, and different ratios of
its constituents can lead to different interfacial bonding proper-
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Fig. 1 Geometry of a multilayered plate

ties. One purpose of the CCVC coatings is to increase the bond-
ing strength between the aluminium alloy sheet and the CFRP
sheet, because the main composition of CCVC is a kind of
adhesive, while another purpose is to reduce the residual stresses
generated from the curing process so as to prevent premature
delamination. These expectations have been confirmed by ex-
periments, including those of Mao and Han (1992).

The present work incorporates some of the interfacial proper-
ties into the theory of multilayered anisotropic plates. Each
interface between adjacent layers is characterized by a spring-
layer model as employed in micromechanics. An important fea-
ture is the introduction of this micromechanics model into mac-
rostructural analysis in order to model interphase properties. As
will be shown, the use of this model in the two-dimensional
theory of multilayered plates and shells avoids the physically
impossible phenomenon of interpenetration at the interfaces.
However this model might lead to such interpenetration within
the three-dimensional theory of elasticity, as discussed briefly
by Achenbach and Zhu (1989), although perhaps more accurate
models could be found to overcome this problem. An exact
representation of displacement variation through the thickness
of a multilayered plate is obtained by rigorous kinematical anal-
ysis. This representation can include displacement jumps across
each interface and thus can enable interfacial imperfection to
be incorporated. However, in the present paper only a small
amount of interfacial weakness is allowed because, when deriv-
ing the present theory from Hamilton’s principle, certain ap-
proximations have been made concerning displacement varia-
tion. As the displacement model satisfies the compatibility con-
ditions of transverse shear stresses both at layer interfaces and
on the two bounding surfaces of the plate, there is no need for
the use of shear correction factors, and the number of unknowns
is eventually shown to be five irrespective of the number of
layers, i.e., the same number as for most first and third-order
smeared theories. The governing set of equations has variable
coefficients due to the nonuniform bonding strength involved
in each interface. Thus in this theory uniform bonding corre-
sponds to governing equations with constant coefficients. In the
limit of vanishing interface parameters this theory reduces to
exactly the flat-plate limit of the conventional zigzag theory
for multilayered anisotropic shells of He (1994). A simple
numerical example is presented to give a good understanding
of how a small amount of interface weakness affects the overall
and local behaviors of multilayered plates.

2 General Representation of Displacement Variation

Figure 1 shows a multilayered plate consisting of k homoge-
neous anisotropic layers with uniform thickness. For conve-
nience, the undeformed lower surface of the plate is chosen as
the reference surface defined by x; = 0 and the x;-axis is normal
to it, where {x; } (i = 1, 2, 3) is a Cartesian axis system. Let
MO (m =0, ..., k) denote the lower surface (m = 0), the
interface between the mth and (m + 1)thlayers (m =1, ...,
k — 1) and the upper surface (m = k) of the plate. The volume
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V of the multilayered plate is thus divided by the (k — 1)

interfaces “Q (m = 1, ..., k — 1) into k subspaces “"V (m
=1,..., k) corresponding to the volumes of the k layers. The
range of "V in the x;-direction is [~ Vh, “?h], where “h
(m=0,...,k)is the distance between “’§2 and (2. Obvi-

ously, @A = 0 and ®h = h, where h is the total thickness of
the plate. It is assumed that the displacement vector "’v(x; 1) at
time ¢ of a point in the mth layer after deformation is sufficiently
smooth in 'V, in the sense that it is differentiable with respect
to x; as many times as necessary. Here x is the vector (x,, x,,
x3) and v is the corresponding displacement vector.

The displacement vector v(x; t) of any point in V can be
expressed as

k-1

vix; ) = 3, [ Vv(x; 1) — Mv(x; )]H(xs — ™h), (1)

m=l

where “Pv(x; ) = 0 and H(x; — ““h) is the Heaviside step

function. Taylor expansion of “’v(x; t) (m = 0, ..., k) with
respect to x; gives an alternative form of Eq. (1) as
k=1 =
vix:t)= 3 3 Mul(x, 0 t)
m=0 n=0
X (33 = "h)"H(x = “h), (2)
!ul)u(li}(xh 12; 1) gas LI [m-l-l)v(nj(xl' X2, (m]h; I')
n!
] (m)g {n) il
— = " (xy, X, "R ), (3)
n!
retaining, unlike He (1994), the term
u®xy, xa1 ) = " OV, x, Mhs 1)
— "y (xy, x, Mhy 1), (4)

This term implies that the displacements at interfaces are al-
lowed to be discontinuous, so as to provide a possible incorpora-
tion of imperfect interfaces of multilayered plates, e.g., weak-
ened bonding or even delamination. The case of perfect bonding
corresponds to this term being a null vector.

3 Spring-Layer Model of Imperfect Interfaces

To incorporate the properties and structures of interfaces in
the evaluation of composite behavior, interfaces must be treated
as regions of distinct atomic structure and, possibly, distinct
composition. They should have different properties from the
bulk properties on either side of the interface. In the context of
continuum mechanics, one simple approach is to introduce a
thin layer of interphase material which replaces the interface.
The limiting case of vanishing interphase-thickness then gives
an interface which is a mathematical surface across which mate-
rial properties change discontinuously, with the interfacial trac-
tions being continuous while the displacements are discontinu-
ous, Although nonlinear relationships may be proposed between
the interfacial tractions and displacement jumps, a linear spring-
layer model is explored in this paper to characterize the imper-
fect bonding.

If 2 and n are used, respectively, to denote the interface and
its unit positive normal vector, the interface conditions may be
written as

Ao'n=[ec")—o(l7)]'n=0,
Av=[v(Q") - v )] =R+o-n,

(3)
(6)

where o(2*) and o(£17) are the values of stress tensor o(x)
as x approaches the interface from positive and negative direc-
tions of the normal to the interface, respectively, and v(2%)
and v(27) are defined similarly. The second-order tensor R in
Eq. (6) represents the compliance tensor of the spring-layer
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interface. For simplicity, it is assumed in this paper that R is
symmetrical and positive definite. It is also clear from Eq. (6)
that R = 0 corresponds to a perfect interface, while R™' = 0
represents complete debonding, i.e., o*n = 0 on {2. From this
point of view, a slightly weakened interface may be modelled
by small values of R. Such an imperfect interface may be due
to the presence of an interphase but could also be due to inter-
face bond deterioration caused by, e.g., fatigue damage or envi-
ronmental and chemical effects.

A special form of R that has some physical significance is
given by

R=RT+(R"-R)n®n, (7)

where I denotes a second-order unit tensor and the symbol &
is the usual dyad symbol. It can easily be shown that R’ and
R" represent the compliance in the tangential and normal direc-
tions of the interface, respectively, i.e.,

Av-(I-n®n)=Rn-o- (I -n®n), (8)

(9

When R" = 0, this constitutive characterization of the inter-
face allows relative sliding between the two surfaces, but no
separation. Furthermore, the free-sliding case can be achieved
by setting R' — o with R" = 0. It should be noted that when
R" *# 0 this mathematical model includes solutions which are
physically impossible because one constituent would have to
penetrate another, as noticed by Achenbach and Zhu (1989)
and Qu (19934, b). This violates the compatibility requirements
and therefore the model is apparently unreasonable for such a
case. Fortunately, the normal stress os; for the plate problem
under consideration is assumed to be negligibly small compared
with other stress components, so that it is ignored in the present
theory as in most other theories for plates and shells. This
automatically leads to a vanishing displacement jump in the
normal direction, see Eq. (9), regardless of the value of the
interface parameter R". Therefore it seems to be reasonable to
adopt this spring-layer model in the theory of plates and shells
with imperfect bonding in shear.

Av'n =R"'n-on.

4 Approximate Expressions for Displacements

Throughout the following derivations, a comma followed by
a subscript denotes a derivative with respect to the correspond-
ing spatial coordinate, and a dot over a quantity refers to a
derivative with respect to time, ¢. The Einsteinian summation
convention applies to repeated subscripts of tensor components,
with Latin subscripts ranging from 1 to 3 while Greek subscripts
are either 1 or 2. The spatial derivative with respect to x; is
stipulated as the right-hand one so that H;(x; — “h) = 0.

Equation (2) can be rewritten in component form as

k=1

vy(xs )= 2 X “uf(xa 1)

m=0 n=0

X (X — ™h)"H(xy — ™h). (10)

To develop a practical theory of multilayered plates, which can
model weakened interfaces but not debonding, the above series
is truncated by using the approximations

0,1,2,3 for j=a and m=0
n=4 0,1 for j=a and m=1,..., k- L
0 for j=3 and m=20,...,k—-1
(11)

By also using the contact condition of adjacent layers in the
normal direction of each interface, i.e.,
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{m-i-]).uj{xa, (:u:lh+; t) = “"Jﬂg{x“, (m)h—: I),

(m=1,....k—=1), (12)

the displacements can be expressed as

Ua(xi; I) = Ug t+ lﬁ’«xa + ‘P«Ig T nan
k=1

+ X [™Av, + Mgy = Ph)H(xs — ™h),

(13)

where @0, @y ©@ (03 my©) anq (my 1) iy Eq.
(10) have been replaced by the quantities #,, s, @u, Na, ™ Av,
and “Vu,, respectively.

For most plate problems transverse normals do not experience
significant extensions and therefore it has been assumed, with-
out significant loss of accuracy, that v, is independent of the
thickness coordinate. Theories higher than third order are not
used because the extra accuracy achieved is so small that the
effort required to solve the equations is not justified. (Of course,
theories developed for calculating delamination need more
terms than are retained by Egs. (13), e.g., see Chattopadhyay
and Gu (1994), and so the use of Egs. (13) in the present
theory means that it only applies to multilayered plates with
slightly weakened interfaces and no debonding.)

The strain and stress components of the plate can be obtained
from

vs (x5 1) = ua,

ey = ’_.IZ'(UIJ i)y Oap = Hupoplups Oy =2Eamsizeus, (14)

where e; and o are components of the strain and stress tensors,
E;, are components of the elasticity tensor associated with an

elastic anisotropic body, and

4 Eaﬁ a3 Ezﬁup

afwp (15)

Hopup =
o Es

Here, as indicated by Librescu (1975), the second and third
of Eqgs. (14) hold only under the assumptions that each layer
possesses a plane of elastic symmetry parallel to the x; = 0
plane and that o4, is vanishingly small compared with the other
components of the stress tensor.

The compatibility conditions of transverse shear stresses on
the two bounding surfaces of the plate as well as at the interfaces
are now used to reduce the number of unknowns in Egs. (13).
For simplicity, it is assumed that no tangential tractions are
exerted on Q2 and (2, where Eqs. (13) and the first and third
of Egs. (14) give the tangential tractions. Hence

'v&a:_uii.a,
m=-2 (Lot & ) (16)
YO B3\ATT T

The conditions of continuously distributed transverse shear
stresses at the interfaces lead to, by using Eqgs. (16), (13) and
the first and third of Egs. (14),

%(HE“S”SHIMU + ((!+])En’3w3 _ “]Eu:iwa}l:(mh _ % (i)hz) u

1 i ] ) k=1
=3 oy op2 § oy, | o
2 - 2h? z

=] mm]

(i=1...,k=1). (17

In fact, Eq. (17) can be regarded as 2(k — 1) linear algebraic
equations involving the 2(k — 1) unknowns “u, (i =1, ...,
k — 1), which give the following relationship between ““u, and

“n
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(nun=(il .“k._‘lj‘ (IS)
in which the “’a,,, depend only on the material elasticity proper-
ties of each layer and are therefore known constants.

Substitution of Eqs. (16) and (18) into the first of Egs. (13)
yields

AenlPrs (i s lv .

k=1
Ug = Uy — Xallaq +fa)\[:oo\ + Z W}AUaH(xB - (m]h)v (19)

m=]
in which, using the Kronecker delta,
for = fan(x3) = 6arX3 + carxd
k=1

g E (m}a“}\(xj e “"’h)H(xg - (”']h},

m=1

2 | ko
G === (6u'h g i Z fmlﬂm) :

h (20)

The spring-layer interface model of Eq. (6) for plate prob-
lems can be rewritten in the component form

(m}Aunz = (M)RRB( -rp)o'BS(xa- ‘m]h; !)‘
(m=1,...,k—=1). (21)

The displacement jump at each interface is obtained, from Eq.
(19), the first and third of Eqs. (14) and Eq. (21) as

Ay, = (M}Raﬂ( xp}""+I}EﬁM3fwh,3({'"’h "en, (22)

and then substituting into Eq. (19) gives the approximate dis-
placement expression

(23)

Vo = Ug — Xalhaq T hanipr,
in which
han = hap (%) = fon(x3)

k-1
. Z (m]Raﬁ(xp)lmH}Eﬁh3fm3((mh+)H(xz - (th). (24)
me ]

The fact that the interface parameter R, ; depends upon x,
implies that the bonding strength at the interface “Q (m = I,
..., k — 1) may be nonuniform, i.e., general cases of a small
amount of interface weakness are included in the present theory.

By using the displacement expressions of Eq. (23) 'and the
second of Egs. (13), the associated strain and stress components
can be obtained from Eqs. (14), but their explicit forms are not
given herein.

5 Equations of Motion and Boundary Conditions

It is assumed that the mass density p of the plate is indepen-
dent of time 7 and that an arbitrarilg! distributed normal load
q(x,; t) is applied to the surface (‘' or Q). From Hamil-
ton’s principle

f”(f o;jﬁegdv—fﬂ;é)'ﬂ,pdl’—f qau_,dn)mzo, (25)
0 v v E1

the dynamic fundamental equations are derived as
Nagp — Ty + Jilo — Lpps = 0,
Musas + q — Iy — Jiigq + Kiiygo — (JapPp)a = 0,
Pigp — Ry — Lodi, + Jaia e — Kpnipp = 0, (26)

associated with either one of each of the following pairs of
boundary conditions

Su, = 0,
ng(Ma a Jﬁg + Kﬁlg - Jﬁa(pa) = 0, or

ngN.s =0, or
65{3 =1,
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ngPos =0, or by, =0,

nM.; =0, or bus, =0, 27)
where
h
[Na » MRBI Pw] ™ J‘o an‘ﬂ{lv Xa, ho‘k]dx:h (28)
h
Rh ™ f Jm'hm\.idx3| (29)
0
h
1, J,K] = f pll, x5, x3]dxs, (30)
0
h
l.qu + Jalﬂ; K}\B] = f Pha.t}[l‘ X3, hnk]dx:i' (31)
o

Furthermore, Eqs. (28) and (29) can be rewritten, by using Eq.
(23), the second of Egs. (13) and Eqgs. (14), as

Nap
Mgﬂ
Prs
Ry
CEI'I hwp _CS(Z 7] CLJ g CL:}?)UP-P Uyp
=2 Cfr?wp —CE.?,,,, CL:BW Cfx?v 2 H3wp (32)
cBe - i, CH || on
o (5) it (8)
Cu}ph,ﬂﬁ _Cmp.\ﬁ,.ﬁ lepk c:\v Pu
where

[C‘it1 wp r Cfa)wﬂ' ¥ C&}:’vﬁ » C::r?uﬂ L] Cfrs vpy Cib (1] C;\?ﬁ)u]

h
= f Hnﬂwp[ls X34 hnm; x%v xi'nhwm h«khwm hahhuu.p]diﬁ; (33)
4]

h
Cﬂv] L f (Hn,&uphnk.ﬁhww,p + EaMJhah.Bhuv.:l)de- (34)
]

Finally, substitution of Eqgs. (32) into Egs. (26) yields
Cgtlﬂ)wp“u.pﬂ e C&?ﬂp“lwﬂ + {Cfr?vp‘pv).pﬁ
- Ifin + Jﬂ:;.“ = mgl;?p = 0,
CEvRJp“w.paﬁ 5 CE:?W“BM::«.H + (Cfrfgup()au).pﬂﬂ
+ g — iy — Sl + Kilyau — (JupPp)a = 0,
C‘(.?p)lﬂ“w‘ﬂﬁ = Cs.asp)w“lwpﬂ + Cs\?vp‘Pv.pﬂ
+ (ClGus + CL — C P, + (Cls — C) .

= Iadly + Jotse — Kanipg = 0. (35)

These equations need to be solved with the boundary condi-
tions of Egs. (27) to obtain the unknowns u,, u;, and ¢, for
any set of plate parameters and the load parameter q. Obviously,
Eqgs. (35) have variable coefficients simply due to the nonuni-
form value of interface parameters ‘" R,; at the interfaces ™)
(m=1,...,k— 1), sothat for problems with uniform bonding
strength at each interface, Eqs. (35) will have constant coeffi-
cients. By setting ™ R.s =0(m =1, ..., k — 1), the corre-
sponding governing equations and boundary conditions become
simply those for perfect bonding, being exactly the same as
those given by specializing the shell theory of He (1994) to
the plate case. They are also very similar to those proposed by
Di Sciuva (1992) and by Cho and Parmerter (1992, 1993), but
are more general in the sense that layers are anisotropic rather
than just orthotropic.

6 Numerical Example

Assessment of the accuracy of the present theory for cases
with perfect bonding is unnecessary because of the final senten-
ces of the previous section. However, it is interesting to get an
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Fig. 2 Effect of span-to-thickness ratio on central deflection

insight into the influence of interfacial weakness on the global
and local behaviors of multilayered anisotropic plates. Determi-
nation of interface parameters would need either theoretical
evaluations of interfacial properties and microstructures or ex-
perimental measurements. However, here attention is restricted
to investigating the effects of slightly weakened interfaces on
the static bending behavior of multilayered plates. Therefore,
an infinitely wide three-ply (0 deg/90 deg/0 deg) laminated
plate of length [ (in the x,-direction) between simply supported
edges at x, = 0 and x, = [ was chosen as the example even
though it is not so representative as a CARALL plate for analys-
ing interfacial weakness. Another reason for choosing this sim-
ple example is that its exact solution was obtained by Pagano
(1969) from three-dimensional elasticity analysis of a perfectly
bonded plate.

Each layer has identical thickness and the stiffness properties

E, = 172 GPa (25 X 10° psi), Er = 6.9 GPa (10° psi),
Gir = 3.4 GPa (0.5 x 105 psi),
Grr = 1.4 GPa (0.2 X 10% psi), vur = vpr = 0.25, (36)

where E is the tensile modulus, G is the shear modulus, v is
Poisson’s ratio and the subscripts L and T signify parallel and
normal to the fibers, respectively. The values are given in En-
glish units because the calculations were performed in English
units since they were used by Pagano (1969) to obtain the exact
results with which we are comparing. It is assumed that the
interface parameter "R,y = 6,,Rh/Er (m = 1, 2), with R
being a dimensionless quantity. This implies identically uniform
bonding of the interfaces. Under the action of g = g, sin 7x,/
1, an exact solution of this problem has the following form

E] . (37)

1
, @
! ,cos!

[ur, us, 1] = [Uu COSK—?, U, sinE

From these expressions, exact displacements, strains, and
stresses can easily be calculated for any point of the plate. Hence
some numerical results are plotted in Figs. 2-6 to illustrate the
effect of a small amount of interfacial weakness on the overall
and local behaviors of the plate.

Figure 2 shows the variation of dimensionless central de-
flection as the span-to-thickness ratio varies. Figures 3—6
show the variations of dimensionless in-plane displacement,
bending stress, and transverse shear stress distributions with
position within the plate thickness. Here the transverse shear
stress was calculated, respectively, from the constitutive
equation to obtain Fig. 5 and from the equilibrium equation
04, = 0 to obtain Fig. 6. The exact results given by Pagano
(1969) for perfect bonding of the plate are also plotted in
these figures. It is already well recognized in the literature,
e.g. see Di Sciuva (1986, 1992), Cho and Parmerter (1992,
1993) and He (1994), that for the cases of moderately thick
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Fig. 5(a, b} Transverse shear stress through thickness at x, = 0, using constitutive equation

and very thick plates most plate theories which make an a
priori assumption of through-thickness displacement distri-
bution fail to accurately predict transverse shear stresses
directly from constitutive equations. This is true for perfect
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interfaces with continuity conditions of tractions and dis-
placements enforced. Instead, accurate evaluation of trans-
verse shear stresses is obtained by using equilibrium equa-
tions. This is confirmed by comparing our results for R = 0
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Fig. 6(a, b) Transverse shear stress through thickness at x, = 0, using equilibrium equation

on Figs. 5(a, b) and 6(a, b) with the exact results for perfect
bonding. It can also be seen clearly that the trend of interface
stress in Fig. 5 changes in an unexpected pattern, while the
trend of interface stress in Fig. 6 is physically reasonable.
Therefore, conclusions concerning transverse shear stress
should be drawn from Figs. 6(a, b) rather than Figs. 5(a, b).

Figs. 2—6 show results when the interfacial parameter has
the values R = 0, 0.2, 0.4, 0.6. These values represent a
decreasingly stiff interphase, i.e. a progressively weakened
bonding, with R = 0 corresponding to a perfect bond. There-
fore increasing R means relaxation of the interfacial bonding
strength, and hence reduction in the overall rigidity of plates.
When curing composite materials, one purpose of weakening
the interfacial bonding is to reduce interfacial stresses. Con-
sistently with the foregoing, examination of Figs 2—6 reveals
that the dimensionless central deflection increases as the in-
terface parameter increases, while the dimensionless inter-
face stress decreases, especially for small span-to-thickness
ratios. Thus, as expected, increasing the parameter R causes
reductions in interface stresses which are beneficial, but at
the expense of increases of the central deflection.

7 Concluding Remarks and Suggestions for Future
Work

A spring-layer model has been introduced to simulate interfa-
cial weakness of multilayered anisotropic plates. By invoking
rigorous analysis of through thickness displacement variation,
the linear dynamic response of the plates has been incorporated
in the present theory, which preserves all of the advantages of
existing zigzag theories for perfect interfaces. Numerical results
indicate that the strength of weakened bonding has significant
effects on both the overall and local behaviors of the plates.

Suggestions for further improving the current predictive capa-
bility of the response of multilayered composite plates with
interfacial imperfection include the following possible exten-
sions of the theory presented:

1 The exact representation of through thickness displace-
ment variation for plates in the present paper makes possible
the incorporation of imperfect interfaces, including not only the
slightly weakened bonding covered in this paper but also more
pronounced weakening and even debonding. This would require
retention of more terms than in Eqs. (13) for the displacement
expressions.

2 Within the range prior to debonding, interfacial optimiza-
tion and design could be performed so as to improve overall
and local behaviours of the multilayered plates in a controlled
manner, especially for interface stresses.

Journal of Applied Mechanics

3 Complicating factors such as the microstructures and non-
linear properties of interphases and the residual strains resulting
from curing of laminations are expected to be accounted for in
due course.
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If the inertia of the system is included in analysis, the results are physically realistic
although the problem becomes more complex. Research along this line is in progress
and this paper is an effort to study a nonlinear oscillator excited by correlated noise.
The work delves on the Duffing oscillator driven by exponentially correlated noise.

The colored Fokker-Planck equation is derived and the method of systematic adiabatic
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expansion is used to obtain the reduced probability density function from which
the second-order moments are evaluated for different values of system parameters.

Numerical simulation is carried out by generating colored noise using the spectral
method. In the region where perturbation is valid, the results of adiabatic expansion
agree very well with that of Monte Carlo simulation.

1 Introduction

Nonlinear oscillators subjected to random excitation occur in
many areas of science and technology. In this context, the non-
linear system model that has received much attention in the last
few decades is the Duffing oscillator (Lin and Cai, 1995; Rob-
erts and Spanos, 1989). It is one of the simplest nonlinear
systems which nonetheless demonstrates a highly complex be-
havior (Guckenheimer and Holmes, 1983; Scheffczyk et al.,
1991). Many problems in engineering ranging from dynamic
buckling to flow-induced vibration have been modeled using
the white noise excited Duffing oscillator.

Nonlinear systems excited by white Gaussian noise have been
studied thoroughly and are quite well understood. Great stride to
the understanding of such oscillators has been made through the
use of methods like stochastic linearization, moment closure, and
perturbation, etc. (Caughey, 1971, 1986). To model physical
systems realistically, however, it is imperative to take into ac-
count the correlation time of the noise, i.e., use the so-called
colored noise (Moss and McClintock, 1989; Lin and Cai, 1995).
Over the last decade substantial work has been carried out on
nonlinear systems where the excitation is due to colored noise.
Again, the method of stochastic linearization (Falsone and Eli-
shikoff, 1992) has been innovatively applied to solve physical
problems, and the results are compared to that of white noise in
terms of percentage error of mean square. The method of stochas-
tic averaging (Stratonovich, 1963; Lin and Cai, 1995) has also
been applied to evaluate response and stability. A particular kind
of noise, the so-called narrow-band excitation has been applied
to the Duffing’s oscillator using a combination of stochastic lin-
earization and the method of multiple scales (Iyengar, 1988,
1989; Davis and Nandall, 1987; Rajan and Davis, 1988). The
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Duffing oscillator under nonwhite noise has also been studied
using the Wiener-Hermite functional representation (Roy and
Spanos, 1992). Lately, the so-called van Kampen expansion
method, which is a method using the cumulant expansion, has
been applied for the Duffing oscillator excited by an exponen-
tially correlated noise (Weinstein and Benaroya, 1994 ),

In all these methods, the time scales are not explicitly dis-
cussed and therefore the effect of correlation time of noise is
not directly accounted. It is well known that the method of
stochastic averaging, introduced by Stratonovich (1963), con-
siders two distinct time scales for nonlinear systems, and has
beep applied to many problems in engineering. Its use has been
justified based on the rigorous proof of the validility of the
method given by Khasminiskii (1967). Unfortunately, the
method is suitable for systems where damping is nonlinear. In
the case of Duffing oscillator, with hardening or softening
spring, the method averages out the nonlinear stiffness effect,
and reduces the problem to a linear one.

In physics, some work has been carried out on the nonlinear
Duffing oscillator driven by colored noise. Much of the work,
however, examines the response behavior of the system repre-
sented by one relevant variable, obeying an overdamped equa-
tion of motion excited by a color noise. This results in a system
where the effect of inertia is neglected from the very beginning
(van Kampen 1985) and two coupled first-order equations are
solved; one for displacement x and the other for noise y. Even
in this case, the coupled system is non-Markovian and approxi-
mate analysis must be used. Various methods along this line
are outlined in Moss and McClintock (1989).

In many physical situations, however, the assumption of over-
damped dynamics is not appropriate. Great difficulties are en-
countered when the inertia of the nonlinear system and the
correlation time of the excitation are accounted for in the analy-
sis (Moss and McClintock, 1989; Lindenberg and West, 1990;
Hwalisz et al., 1989; Schimonsky-Geier, 1988; Fronzoni et al.,
1986; Marchesori et al., 1988). Nevertheless, the work repre-
sented by these references have contributed greatly to the under-
standing of the response of the nonlinear dynamic systems sub-
jected to colored noise.

2 Problem Definition
The problem of a Duffing oscillator driven by colored noise
has not been completely solved as yet and therefore is the source
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of interest among many researchers. In particular, recently, the
van Kampen expansion method (Weinstein and Benaroya,
1994), and modified stochastic linearization technique (Falsone
and Elishakoff, 1994) were applied to the Duffing oscillator
which evaluated the response of this oscillator under exponen-
tially correlated colored noise. In the present work, the adiabatic
expansion technique (van Kampen, 1985), which was pre-
viously found useful in stability studies (Graham and Schenzle,
1982; Billah and Shinozuka, 1991), has been utilized for this
problem and the result is compared with that of Monte Carlo
simulation.
The system considered is described by an equation of the

form

| 3

;x+x+dx+bx = y(t). (1)
A convenient model for the noise is a stationary Ornstein-Uhlen-
beck process, described by the equation

==y + 2,

T

(2)

where £(1) is the Gaussian white noise with (£(z)) = 0 and
{£(1)£(0)) = &(r). The correlation function of y(t) thus satis-
fies

Gy = 2 gmrr, 3)

2r
Note that y(t) becomes a Gaussian white noise as 7 — 0 with
Q fixed, in which case {y(1)) = 0 and {y()¥(0)) = Q4(r).

3 Systematic Adiabatic Expansion and Reduced
Probability Density

Usually a dynamic system has widely different response
times and often the behavior on a very short time scale is not
of much interest. In fact, the purpose of the present paper is to
consider the long-term behavior of a nonlinear system using the
adiabatic expansion method. The method is consistent with*the
goal of concentrating on the long time scale of the system
(Gardiner, 1986; Moss and McClintock, 1989; van Kampen,
1985). To explicate the method, consider as an example the

Brownian motion for which the Lagevin equations are
dx
—=y 4
ar (4)

m%’ = — v + V2BkTE(r)

t

(5)

with the following Fokker-Planck equation for probability den-
sity function p(x, v, 1)

op ad d fup
L == +— =)+
ot 6x{Up} &J('r,)

kT 9*p
—_ =, 6

72 o? (6)
where 7, = m/f is the relaxation time. The limit of large 5

and small m should result in very rapid relaxation of Eq. (5)
to a quasi-stationary state, i.e., when 7,— 0, dv/dt — 0, therefore

’ZkT
a4l m o
v 3 £(1) (7
resulting in

dx _ [2kT

5;_1,_,8 &(n). (8)

In this case v has been eliminated; v is called the fast variable,
which is assumed to relax very rapidly to the value given by
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Eq. (7). The Fokker-Planck equation corresponding to Eq. (8)
is thus
Op(x, 1) _ kT 9°p(x, 1)
at g ox?

(9)
where

plx, t) = r px, v, t)dv. (10)

The above procedure of eliminating the fast variable is some-
what drastic. A more systematic method of deriving the reduced
equation (in the form of Eq. (9) from Eq. (6)) in a perturbative
manner with higher corrections in powers of a small parameter
is called adiabatic expansion (Stratonovich, 1963; Wilemski,
1976; Titulaer, 1978). In the present work, Wilemski’s system-
atic analysis is followed for solving a nonlinear oscillator ex-
cited by colored noise.

4 Adiabatic Expansion for the Duffing Oscillator
For Eq. (1), the following scaled variables are introduced:

gl x:‘\[é,
y' = (1yQ)y,
k'(x") = k(x)NQ, (11)

where k(x) = dx + bx? is the force due to potential V(x)
associated with the Duffing equation:

Vi(x) =~§x2+gx“. (12)
Two more important parameters are also introduced:
N = 1/(yT),
e =1/v. (13)

Rewriting Eq. (1) in terms of the scaled variables and the
new parameters, the following system of ordinary differential
equations is obtained:

dx' 1
2 -2y,
dt €
du 1 1
=___ki' BN i _ ,‘
o c (x") Ez(u y')
dy' 1 1
2oyt + =M. 14
T v (1) (14)

This system is solved for long-term behavior with large value
of y (fast relaxation) and arbitrary A, i.e.,, A\ = O(1), and ¢ =
0. From now on, all primes are omitted in the notation for
simplicity.

For the probability density function p(x, y, u, t), the Fokker-
Planck equation is obtained by the method introduced by Lax
(1966) as outlined below, For systems described by equations

% (1) = Li({x}) + Gy({x D) F;, (15)

where F; is the Gaussian white noise, the stochastically equiva-
lent equation for p({x:}, t) is

a

apuxk},:}=%(k$”({xmpuxk},m
L0 @ mbpxl, ), (16)
20x0x " Zh Al
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where the coefficients £{"’({x;}) and k{?’({x,}) are related to
the coefficients of Eq. (15) by the following relations:

KO((x)) = Ll (x) + %aaf

G, (17)

and

kP (x)) = Ga({x D Gul({x}). (18)

It is to be noted that in Eqs. (15) - (18), summation over re-
peated indices is implied.
The Fokker-Planck equation corresponding to Eq. (14) is

then ®

ap 1.0 N\d 8

e Ny (u -

ar 62[ ) T2 T y)]p
1 1s] 1)
e L -2 19
+e[(x)5u 6xu]p’ 9

where p represents p(x, y, u, t). The reduced probability den-
sity p(x, t) is marginal density defined as

p(x,t) = J‘j fj p(x,y, u, t)dudy, (20)
and the moments j, . are defined as
Jam(x, 1) = f u'y"p(x, y, u, t)dudy, (21)
and in particular,
Joo(x, 1) = p(x,1). (22)

Integrating the Fokker-Planck equation Eq. (19) for the joint
probability p(x, y, u, t), the following equation for p(x, 1) is
obtained:

- lgjl,()(x, t). (23)

0
—_— R t —3
6tp(x ) € Ox

By utilizing a method developed by Wilemski (1976), a closed-
form expression for p(x, t) can be derived in the form of a
perturbation expansion in the parameter . Multiplying Eq. (19)
by u"y™ and integrating, the following equation is obtained:

a .
—nm ’t
atj’(x)

1 . 1 , aJ
=— =@+ M)y —— [nk(x)jm,m + '—]n+1,m:|
€ € ox

L. A2 .
+ ? R Jn-1m+1 + ? m(m - l)Jn,mfl . (24)

As € = 0, Eq. (24) describes a rapidly damped time evolution
of the moments j, , for n, m + 0 in a time scale ¢? as indicated
by the diagonal term in Eq. (24). In the asymptotic time regime
(r =>¢), Eq. (24) has the approximate solution

—€? 1 7]
- k .,,, m T .n+ m
n + Nm {e [n (X, ax }

Jnm(X, 1) =

1 ) A? ,
- ? AJn—1m+1 T E m(m = 1) jum—a . (25)
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Substituting Eq. (25) back into Eq. (24), the iterative solution
of j,.(x, t) is then obtained as

Jam(X, D) = X% [

=0

. g .
{—e[nk(x)J,,-l,m + —Jn+1,m]
Ox

€ g'
n+ \m ot

1
n+ \m

X

. A? .
+ [n]nl.m+l + ? m(m - l)]n,mZ]} . (26)

The moment j, , is evaluated up to a given order in € by express-
ing it in terms of jo, and its derivatives. In order to derive
expressions to the first order in € from Eq. (27), j,, is evaluated
to the zeroth order of € and j,, to the first order, which requires
the evaluation of j,; and j,» to the zeroth order:

Joz = 5]0.0, (27)

Jii = mjo.z, (28)
T TRt F TR CL)
Jao = 1 = % 1 _)'\_ )\jo,o’ (30)

Equation (26) is then simplified to

Jro(x, 1) = —ek(x)p(x, 1)

1 ¢ a 0
_ = Lz Z
21+ M| 0x ox

]p(x, 1)+ 0(e?). (3D

Substituting Eq. (31) into Eq. (23) gives the desired equation
for the reduced probability density p(x, t):

0 -9 19
5 P& D= — [k(x) +5 ax]”("' n. (32)

Table 1 The normalization constants N for different system parameters

(a) d=1, Q=1 (b) d=1, b=1 (c) b=1, Q=1
b N [ Q N d N

0.000000 | 0.8862303 | [ 0.500000 | 0.5597789 | [ 0.0000000 | 1.077907
0.500000 | 0.7916504 | | 1.000000 | 0.7431554 0.2500000 | 0.9641283
1.000000 | 0.7431586 | | 1.500000 [ 0.8692590 1.000000 | 0.7431586
1.500000 [ 0.7097491 | [ 2.000000 | 0.9676239 2.250000 | 0.5583445
2.000000 | 0.6842151 | [ 2.500000 { 1.0491899 4.000000 | 0.4338767
2.500000 | 0.6635685 | | 3.000000 | 1.1193506 6.250000 | 0.3512605
3.000000 | 0.6462587 | | 3.500000 | 1.1811996 9.000000 | 0.2940762
3.500000 | 0.6313795 | [ 4.000000 | 1.2366907 12.25000 [ 0.2525835
4,000000 | 0.6183469 | | 4.500000 | 1.2871428 16.00000 | 0.2212347
4.500000 | 0.6067659 | [ 5.000000 | 1.3334919 20.25000 | 0.1967601
5.000000 | 0.5963565 Table 1(b) 25.00000 | 0.1771393
Table 1(a) 30.25000 | 0.1610662
36.00000 ; 0.1476617

42.25000 | 0.1363139

49.00000 | 0.1265841

Table 1(c)
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Fig.1 Stationary probability density distribution po(x) with different sys-

tem parameters d, b and Q

The corresponding stationary solution is then

po(x) = N exp {— gxz — %%x"} (33)

which is written in terms of the unscaled and unprimed variables
with N being the normalization constant. The second-order mo-
ment is defined as

(x?) = f x2po(x)dx.

(34)

The normalization constants N are given in Table 1 for differ-
ent system parameters d, b, and Q.

5 Numerical Simulation

A numerical study is now presented and compared with the
above analytical results. To this goal colored noise is generated
by a method introduced originally by Shinozuka (Shinozuka,
1972). The method has been revised over the years (Shinozuka
and Deodatis, 1991) and has been found to be suitable for the
type of nonlinear analysis presented here (Wu et al, 1995;
Billah and Shinozuka, 1990, 1991). The one-dimensional

é-\l P s e Aoy e O v A ity
i

ij 0.3 ittt e bt A Pt e e N -

¥ San AN AN AP i Ny

b M o ot o1 g Pl R o Yo i 1
0.2 e
0.1 | -

4] 1 1 L I 1 1
0 1 4 8 7
t (sec)

Fig. 2 Time evolution of the second-order moment (x*) obtained from
numerical simulation.
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0.35

Fig.3 The comparison of the second-order moments (x2) from theoreti-
cal analysis and Monte Carlo simulation, as functions of b, Q and d,
respectively. The lines are from adiabatic expansion, and the points are
from numerical simulation.

Gaussian noise was simulated by the following series with a
large N:

N-1
y(1) =2 T (28(w,)Aw)"? cos (wit + B,), (35)

n=0
where w, = nAw, n = 1,2, ..., N, and Aw = w,/N. w,
represents an upper cutoff frequency beyond which the power
spectral density may be assumed to be zero. The ®, appearing
in Eq. (35) are independent random phase angles distributed
uniformly over the interval [0, 27]. The period of the stochastic

process is Tq = 27/ Aw.

In the present case the power spectral density S(w), corre-
sponding to the exponential correlation function, has the form

(a) Q=1

<xh2>
0 02040608 1

<xhe>
0051152258

Fig. 4(b)

Fig. 4 The second-order moments (x?) as functions of b, d and b, Q by
adiabatic expansion
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V(x)
n

Fig. 5 Potential V(x) = (d/2)x* + (b/4)x* withd =20, b =1andd =
20,b =0

I S

2 w? + (1/7)2
Using Runge-Kutta method to integrate Eq. (1), the long-

term response of the Duffing oscillator excited by colored noise

is found, from which statistics such as standard deviation (or
the second-order moments) are obtained.

S(w) = (36)

6 Results and Discussion

To satisfy the requirement that v be large, - in Eq. (1) is
taken as 100. At the same time, 7 is chosen as 0.01 to ensure
that X = 1/(ry) = O(1), thus ¢ = V1/y = 0.1.

Figure 1 shows the stationary probability density distribution
po(x) with different values of d, b and Q obtained from preced-
ing adiabatic expansion analysis. Figure 2 shows the time evolu-
tion of the second-order moment (x?) calculated by means of
Monte Carlo simulation. [t can be seen that (x?) becomes stable
in a short time. Figure 3 shows the comparison of the second-
order moment {x?) as functions of b, Q and 4, for both theoreti-
cal analysis and numerical simulation. It can be seen clearly
that the results of theoretical analysis are in very good agree-
ment with those of the numerical simulation. Figure 4 shows
the second-order moments {x?) as functions of b, d and b, Q
by adiabatic expansion.

For the limiting case b — 0, the oscillator response can be
solved exactly and the mean square is obtained as (Stratonovich,
1963; Gardiner, 1985)

b Q 1 1
e 27 w4 (1 7)) (d — w?y)? + w?

By using the computer algebra system Maple, for b = 0, d =
1,and O = 1, a value of (x*) = 0.498 is obtained. The Monte
Carlo simulation (1000 samples) gives {(x*) = 0.496, which
agrees very well with the exact value. The point corresponding
b = 0 forms an anchor point to verify the accuracy of both
theoretical and simulation methods. When d is large compared
to b, the system can be approximated by the corresponding
linear system. Figure 5 shows the potential V (x) respectively
with d = 20, b = 1 and d = 20, b = 0. In the range of
significance, the potentials are almost identical. The exact mean
square for the linear oscillator with d = 20 and Q = 1 is (x?)
= 0.0227, while the Monte Carlo simulation gives (x*) =
0.0226 for d = 20, 0 = 1 and b = 1 (the nonlinear term is
included). This agreement again verifies the validity of the
Monte Carlo simulation results.

{(x*) = dw. (37)

7 Conclusion

The Duffing oscillator excited by colored noise is studied in
this paper. The limitations of analytical methods are clearly

Journal of Applied Mechanics

shown by the restriction on the parameter values of the equation.
These limitations are due to the use of colored noise in the
analysis which results in extended Fokker-Planck equation.
Such an equation is intrinsicaly difficult to solve and therefore,
solution of the equation for other parameter values can only be
obtained by numerical simulation. Results obtained by using
stochastic linearization, stochastic averaging or Van Kampon
expansion are difficult to compare with the present results since
the former ones do not address the issue of restricted parameter
values. The paper emphasizes that such parameter value restric-
tions are absolutely necessary for obtaining physically valued
results.
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Out-of-Plane Displacement
Derivative Measurements Using
Interferometric Strain/Slope
Gage

An optical method originally developed for measuring derivatives of in-plane dis-
placements is redefined to measure derivatives of out-of-plane displacements. The
technique is based on interference of laser beams reflected and diffracted from two
microindentations closely depressed on a specimen surface. As in-plane and out-of-
plane displacements cause the microindentations to move relatively to each other,
the two interference fringe patterns change accordingly. Movement of the interference
Jringes is monitored with linear photodiode arrays and analyzed via a computer-
controlled system that allows simultaneous measurements of the in-plane and out-
of-plane displacement derivatives. The technique is referred to as the interferometric
strain/slope gage (ISSG). Having short gage length (~100 um), the technique is
unique for measurements of high deformation gradients and for applications in com-
plex geometries. Its principle as well as an experimental validation of measuring
bending strains/stresses and deflection slopes in a cantilever beam is presented. The
experiment shows that both the first-order and second-order derivatives of out-of-
plane displacements can be obtained. Measurement sensitivities to in-plane and out-
of-plane rigid-body motions are systematically investigated. The technique can be
potentially extended to measure large deflection angles. The derived governing equa-
tions indicate a coupling effect between the in-plane and out-of-plane components.
The associated instrumentation for data acquisition and analysis is described in great

Keyu Li'
Department of Mechanical Engineering,
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Rochester, Ml 48309

detail.

Introduction

Derivative of the in-plane displacement or strain is often
measured using a strain gage. Resistance strain gages, exten-
someters, and capacitor strain gages are examples of conven-
tional strain measurement devices. With the advent of the laser,
optical strain gages including diffraction strain gages (Bell,
1956; Pryor and North, 1971) and interferometric strain gages
(ISG) (Sharpe, 1968 ) have been developed. The interferometric
strain rosette (ISR) (Li, 1995) is extended from the ISG for
measurements of three in-plane strain components, which func-
tions similarly as a strain rosette. Optical strain gages possess
advantages over conventional gages in that they are associated
with short gage lengths and noncontacting nature. Full-field
optical strain measurement techniques such as holographic,
speckle, and moiré interferometry methods (Kobayashi, 1987)
can be used to measure derivatives of out-of-plane displace-
ments in addition to derivatives of in-plane displacements (Ho-
vanesian and Varner, 1970; Hung et al., 1974; Chiang et al.,
1976; Ligtenberg, 1954). However, these interferometry meth-
ods require special environmental stability and are not well
suited for industrial applications (Klumpp and Schnack, 1990;
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Sirkis and Lim, 1991; Sullivan, 1991; Schultheisz and Knauss,
1994). The moiré method requires a grating on a flat surface
and thus prohibits its application to complex geometries such
as notched areas (Parks, 1993; Post, 1993).

In this work, an interferometric strain/slope gage (ISSG) is
extended from the ISG to measure derivatives of out-of-plane
displacements besides derivatives of in-plane displacements.
The principle of the ISG technique for measuring an in-plane
strain (Sharpe, 1968) is based on the interference of laser light
reflected from two microindentations placed on a specimen sur-
face. The size and separation of the indentations are made small
enough for the light diffracted from the two indentations to
interfere. Strain causes the spacing between the indentations to
change, which generates a phase shift in the interference fringes.
Therefore, by measuring the shift in the interference fringes,
the strain component in the direction of the indentation separa-
tion can be determined. When three indentations are used in an
ISR technique (Li, 1995), the system is equivalent to a strain
rosette and three strain gages are defined in the directions of
the indentation separations. In the previous papers of Sharpe
(1968) and Li (1995), measurements of out-of-plane displace-
ments were not considered. The phase shift in the fringe patterns
of an ISG or ISR can be caused by not only in-plane but also
out-of-plane displacements. Measuring the phase shift in the
fringe patterns could allow the simultaneous determination of
both in-plane and out-of-plane displacement derivatives. This
leads to the development of the ISSG technique. Besides mea-
suring in-plane strains, the ISSG technique can be used to mea-
sure deflection slopes in beams, plates, and shells. The measure-
ment principle is presented and the governing equations are
derived for a pair of ISG microindentations. Using the same
principle, the derivation may be extended to an ISR. An experi-
mental investigation of cantilever beam deformations using a
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Fig. 1 A photomicrograph of a pair of the ISG indentations spaced 100
jm apart

pair of the ISG indentations is described. The ISSG technique
is validated by comparing the experimental results with the
well established analytical solutions. Advantages of the new
technique over conventional methods will be discussed.

Principles of Measuring In-Plane and Out-of-Plane
Displacement Derivatives

An ISSG consists of two ISG indentations which are pyrami-
dal in shape, Fig. 1. The indentations are depressed on a speci-
men surface using a microhardness tester (LECO M-400-H).
The size of the indentations is approximately 20 pum and the
indentation separation is about 100 pzm. The angle between the
opposite facets in each indentation is 136 deg.

As illustrated in Fig. 2, two ISSG indentations on a deflected
specimen surface are illuminated by a laser beam that is perpen-
dicular to the original position of the specimen surface. Two
reflective facets in each indentation diffract the incident laser
beam in two directions. The diffracted patterns from the two
indentations overlap to create two Young’s interference fringe
patterns. A typical fringe pattern is shown in Fig. 3. Since the
fringe patterns are distant from the indentations, it is assumed
that the interfering beams are parallel to each other between
which the path length difference is formulated. The path length
difference between the two incident laser beams upon the two
indentations is A, = d sin . The path length difference between

% (in Gage Direction)

-9
o —— —

Indentation 1

Fig. 3 A photograph of the interference fringe pattern of the two inden-
tations in Fig. 1, taken at a distance of 30 cm from the indentations

the reflected laser beams takes different formula for the two
patterns: A, = d sin (#, + a), for the pattern numbered 1;
A;, = d sin (#; — &), for the pattern numbered 2. The total of
the path length difference includes both differences between
the incident beams and between the reflected beams: A, =
[d sin (8, + a) + d sin a], for pattern 1; A, = [d sin (, —
a) — d sin a], for pattern 2. The interference principle dictates
that fringes occur when the path length difference equals one
wavelength or an integer multiple of a wavelength, which can
be described by

A, = d[sin (8, + @) + sin a] = \m, (1)

(2)

where A, and A, are the respective path length differences for
the fringe pattern numbered 1 on the top and the fringe pattern
numbered 2 on the bottom; A is the wavelength of the laser;
m; and m, are fringe orders in the two fringe patterns; d is the
indentation separation; « is the deflection angle of the specimen
surface which approximately equals to the out-of-plane slope
tor small deflection; 8, and 8, are the respective angles between
the incident and reflected laser beams for pattern 1 and pattern
2. For small deformation, the reflective facets in each indenta-
tion can be assumed to remain the same reflecting directions,
and we have 8, = 6, = f. Angle # is twice the inclination angle
of the reflective facets in an indentation.

Ay = dlsin (0, — a) — sine] = M,

Fringe Pattern 1

Laser Beam

Fringe Pattern 2

Deflected Specimen Surface

Fig. 2 A schematic diagram showing the interference principle of laser beams
reflected from the ISSG indentations closely spaced by d on a specimen surface

deflected with a tangent angle of o
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Specimen deformation causes a relative displacement be-
tween the two indentations. As a result, the path length differ-
ence between the interfering beams changes, which induces a
phase shift in each fringe pattern. The relative displacement
generally consists of both in-plane and out-of-plane displace-
ment components. Consequently, the phase shift is related to a
combination of both displacements. Since the separation of the
indentations is small, the relative displacement may be consid-
ered as a displacement derivative. Differentiating Eqs. (1) and
(2) gives two equations relating the two dependent variables
of the indentation separation 4 and deflection angle « to the
independent variables of the fringe orders m;, and m,, while
other parameters such as A and # are constants. In the derivation,
it is assumed that the deformation and the deflection angle a
are small so that the following relations hold: 8, = 6, = @, cos
a =~ 1,tan o ~ sin @ ~ « and fa ~ éw/d where w is the out-
of-plane displacement. Simplification of the two differentiated
equations gives in-plane and out-of-plane displacement deriva-
tives as follows:

sd
7 = Fang o tibm) 3
L " (Bmy = ) (4)

d "~ 2d(1 + cos )

where éd and éw are in-plane and out-of-plane components of
the relative displacements between the two indentations; ém,
and &m, are the change of the fringe orders in the two interfer-
ence fringe patterns. Equations (3) and (4) show that the deriva-
tive of the out-of-plane displacement is measured independently
from that of the in-plane displacement. Simultaneous determina-
tion of the derivatives of in-plane and out-of-plane displace-
ments is accomplished by measuring the phase shift in the two
fringe patterns, i.e., ém, and ém,. The effect is additive for
determining the in-plane displacement derivative or strain, and
subtractive for determining the out-of-plane displacement deriv-
ative or deflection slope.

Equations (3) and (4) are valid under the condition that the
deflection angle is small. As for a large deflection angle, the
previous assumptions regarding a small deflection angle do not
hold any more. Considering the case that a rigid-body rotation
of the indentations causes the diffraction patterns to turn
slightly, the path length difference formulated between the in-
terfering beams is only related to the positions of the indenta-
tions to the first order approximation, and thus is not influenced
by the change of the reflective directions of the indentation
facets. Therefore, the angles 8, and 6., in Egs. (1) and (2) can
be taken as & for large deflection angles as well as small deflec-
tion angles. The governing equations for measuring the in-plane
strain and out-of-plane deflection angle can be derived directly
from Egs. (1) and (2) and shown as follows:

&d A
a e S pes e O T )
éd A
— + _ s
g T8 = e Do T a). (6]

The in-plane strain and out-of-plane deflection angle are cou-
pled in the above equations. Since the measurement is in real
time, increments are measured with the obtained instantaneous
value of the deflection angle. The increments are accumulated
to get the next instantaneous value for the next sampling step
of increment measurements. As the fringe shift of interference
patterns can be measured, the in-plane strain and the deflection
angle of bending can be obtained. Experiments on large beam
deflection will be conducted in near future.

Computer-Controlled Signal Processing System
A 10-mW He-Ne laser is used as a coherent light source.
The wavelength of the laser light is 0.6328 um. A linear photo-
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diode array (EG & G Retican, RL5128) is mounted on a model
RC 1001 satellite board which is installed on a precision stage
(Edmund Scientific, G36,347). The position of the satellite
board can be adjusted in two orthogonal directions to intercept
an interference fringe pattern. Two boards are kept approxi-
mately at a distance of 48 cm from the indentations and oriented
perpendicular to the reflected laser beams. The satellite boards
are connected to mother boards (RC1000). One mother board
is used as the master board to slave the other board for scan
and trigger control. The mother boards are enclosed in an elec-
tronic case as a remote controller to process the optical signals
sent from the satellite boards. The linear photodiode array sys-
tem monitors the light intensities of the fringe patterns and
converts them into electrical voltage signals.

A Pentium-based microcomputer (60 MHz) is equipped with
a data acquisition board (Data Translation DT2821-F-8DI) for
data acquisition and analysis. The computer algorithm used to
implement the technique is similar to that of ISG and ISR, and
requires two steps of data acquisition. The first step involves
scanning the sensors and displaying and storing the fringe sig-
nals in the computer. The second step is to analyze fringe signals
from the ISSG so that the derivatives of in-plane and out-of-
plane displacements in the specimen can be calculated using
Eqgs. (3) and (4). Phase shift of fringes is measured by de-
termining the position change of the minimum light intensity.
The increments of strains and deflection angles are accumulated
in real time to get instantaneous measurement results.

Experiments and Discussions

The purpose of the experimental investigation is to verify the
capabilities of the ISSG technique in measuring derivatives of
in-plane and out-of-plane displacements. A thin cantilever beam
is chosen as the test sample because the setup is simple and is
well suited for creating a significant deflection angle. However,
the in-plane strain is small and represents an extreme case for
measurement accuracy. The material is Aluminum 6061-T6 and
has a Young's modulus of 70 GPa. The dimensions of the beam
are: length = 254.0 mm, width = 25.3 mm, and thickness =
3.0 mm. The beam is clamped at one end, and the free end of
the beam is subjected to a lateral load at the middle point of
its width. Deflection of the free end is measured using a microm-
eter gage that has a resolution of 0.0254 mm. A pair of ISSG
indentations with a separation of 150 pm is applied to a surface
point at 136.5 mm from the fixed end of the beam. The ISSG
gage is centered and oriented along the axis of the beam. An
incident laser beam upon the indentations creates two symmetri-
cal Young’s interference fringe patterns. Therefore, two linear
photodiode arrays are needed to monitor the fringe patterns. A
schematic diagram of the experimental setup is shown in Fig,
4. Seven tests were conducted. During each test, a lateral force
is manually applied to the free end of the beam using the mi-
crometer gage. As the load increases, the bending strain and
the beam deflection increase. The computer-controlled system
is used to measure and record the bending strain and the deflec-
tion angle in real time,

During each measurement, the rigid-body motion takes place
at the location of ISSG, which includes in-plane and out-of-
plane components. The in-plane rigid-body motion causes the
two fringe patterns to move in the same direction. Since the
linear photodiode arrays are mounted opposite to each other,
the fringe order may be taken as positive in one and negative
in the other. Thus the in-plane rigid-body motion is canceled
in the additive calculation of the two fringe orders in Eq. (3).
The in-plane rigid-body motion does not alter measurement
results of in-plane strains. However, its influence on the mea-
surement of the deflection angle is doubled due to subtraction
of the fringe orders in Eq. (4). On the other hand, the out-of-
plane rigid-body motion causes the fringes to move in opposite
directions and the fringe spacing in the two patterns to change
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Fig. 4 A schematic diagram of the computer-controlled system for measuring
in-plane strains and deflection angles of a cantilever beam

by the same amount, so that the fringe orders have the same
sign. The out-of-plane rigid-body motion should not influence
the deflection angle measurement but has a doubling effect
on the in-plane strain measurement. Due to linear relationship
between fringe movements and the change of the path length
difference between the interfering laser beams, measurement
sensitivities to rigid-body motion are proportional to the amount
of rigid-body motion. Therefore, the factor of the measurement
sensitivity can be defined as the strain/angle reading caused by
one micro of rigid-body motion. In addition, since the fringe
spacing increases proportionally with the distance between the
ISSG and the photodiode arrays, the influence of the rigid-body
motion on the relative change of the fringe orders is inversely
proportional to the distance. The measurement sensitivity is
inversely proportional to the distance between the ISSG and
the photodiode arrays.

An investigation of the measurement sensitivities to rigid-
body motion is conducted on a rigid steel plate. The sample is
mounted on a x-y translation stage equipped with two microme-
ter gages. The in-plane and out-of-plane rigid-body motions of
the sample are generated and measured using the micrometer
gages. A pair of ISSG indentations with a separation of 150
um is placed on the surface of the sample. Two satellite boards
are mounted opposite to each other and are positioned at a
distance of 48 cm from the indentations, which duplicates the
experimental protocol for the cantilever beam test. For any
rigid-body motion of the sample, the computer-controlled sys-
tem assesses the movement of the fringe patterns to give read-
ings for strains and deflection angles. The test results show that
one micron of in-plane rigid-body motion causes a reading of
6.8 X 1077 radians of the deflection angle, and gives essentially
zero reading for the in-plane strain. The maximum in-plane
rigid-body motion, which can be detected, is limited by the
diameter of the laser beam. Measurements can only be made if
the indentations remain within the middle third of the laser
beam to insure that the intensity is satisfactory for monitoring
with the current measuring facility. On the other hand, one
micron of out-of-plane rigid-body motion causes a reading of
1.45 microstrains of in-plane strain, and gives essentially zero
reading for the deflection angle. The strain sensitivity to out-
of-plane rigid-body motion increases to 1.65 microstrains per
micron as the distance between the indentations and the linear
photodiode arrays decreases to 43 cm. Because of the strain
insensitivity to in-plane rigid-body motion and the deflection
angle insensitivity to out-of-plane rigid-body motion, the tech-
nique is tolerant to certain vibrations, and does not always re-
quire strict environmental stability.

1036 / Vol. 63, DECEMBER 1996

In the cantilever beam experiment, the in-plane rigid-body
motion is small and its influence on the measurement of the
deflection angle is negligible. The measured results of deflection
angles at the location of the ISSG are compared with the analyti-
cal results using Eq. (9) in Table 1. However, the out-of-plane
rigid-body motion in the beam experiment is significant and
compensation must be made for the determination of in-plane
strain. The sensitivity factor calibrated in the above rigid-body
motion tests is used to estimate the influence of the out-of-
plane rigid-body motion on the in-plane strain measurement.
Generally, the out-of-plane rigid-body motion may be measured
using a dial gage or calculated using beam theory. Here, Eq.
(7) is used. The strain correction is calculated by multiplying
the sensitivity factor with the amount of the out-of-plane rigid-
body motion. Subtraction of the strain correction from the ISSG
measurement gives the in-plane strain. The experimental results
of in-plane strains after compensation are compared in Table 2
with the analytical solutions given by Eq. (8). The out-of-plane
displacement, bending strain, and small deflection angle given
in the following equations are taken from the well-established
cantilever beam theory:

Table 1 Comparison of the measured and calculated tan-
gent angles of the beam deflections

Test w « Cosaiyrical 1ncusuees = Ctunatyicnt|
no. (mm) (1077 rad.) (107 rad.) Qpnaytica

1 0.127 0.564 0.589 4.2%

2 0.254 1.215 1.179 3.1%

3 0.381 1.783 1.770 0.7%

4 0.635 2.944 2.950 0.2%

5 1.016 4,722 4,716 0.1%

6 1.270 5.906 5.895 0.2%

7 2.540 11.81 11.79 0.2%

Table2 Comparison of the measured and calculated bend-
ing strains

Test W , d (3 Eanabvtical |e § = Eanalyiicat|
no. (mm) (MPa) (ee) (ue) Eanalytical

1 0.127 0.235 3.36 4.098 18%

2 0.254 0.680 9.71 8.196 15%

3 0.381 0.735 10.5 12.29 14%

4 0.635 1.645 23.5 20.49 14%

5 1.016 2471 353 32.78 7.6%

6 1.270 2.702 38.6 40.98 5.8%
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where & is the thickness of the beam, which equals 3 mm in
the test; x is the distance between the ISSG location and the
fixed end of the beam, which equals 136.5 mm in the test; W
is the deflection at the free end of the beam; and L is the beam
length.

Table 1 shows that the difference between the measured and
calculated deflection angles is small. The maximum deflection
applicable to the free end of the beam is 2.54 mm as found
out in the seventh test. The maximum deflection angle mea-
sured at the ISSG location is 1.18 x 10~ radians. After the
maximum deflection is reached, the interference fringe pat-
terns move out of the scanning windows of the linear photodi-
ode arrays and measurements can not be made. Therefore, the
system requires modification to measure larger deflections.
Future research is planned to measure large beam deflections
using longer linear photodiode arrays. The measured tangent
angles of the beam deflections during a test are plotted versus
time in Fig. 5. The waviness of the data shown in the plot is
due to fluctuations of the manually loading condition. The
measurement is carried out on a real-time basis. This shows
that the technique has a potential to be applied to study vibra-
tion problems. As real-time measurements are made, the first
and second-order time derivatives of vibrational displace-
ments, which are equivalent to velocity and acceleration, may
be determined.

As shown in Table 2, bending strains and stresses in the
beam are measured using the current ISSG system. Equation
(8) elucidates the fact that bending strain is related to the sec-
ond-order derivative of out-of-plane displacements. Therefore,
the ISSG technique can be used to measure both the first and
second-order derivatives of out-of-plane displacements. Consid-
ering the very small strains which are measured with the com-
pensation of the rigid-body motion, the experimental data agree
satisfactorily with the analytical solutions. The measurement
difference decreases with increasing strain. Therefore, for mea-
surements at the fixed end of the beam, where maximum bend-
ing stresses are expected, the difference between the measure-
ments and analytical solutions should be reduced. Similarly, for
stiffer beam structures with stiffer support conditions, for which
out-of-plane rigid-body motions are small and bending strains
are large, the measurement accuracy is expected to increase.
The technique provides a useful means to study bending stress
problems in various solid structures where out-of-plane rigid-
body motion is negligible.

The interferometric strain rosette technique (Li, 1995) can
be extended to measurements of three derivatives of in-plane
and three derivatives of out-of-plane displacements. Based on
the same principles which have been discussed for the [SSG,
the ISR can be also used to measure bending strains and stresses
as well as deflection angles. Because the ISR measures deriva-
tives with respect to three gage directions, it can be used to
study bending problems in two-dimensional structures in such
as plates and shells,

Conclusions

The ISSG method for measuring derivatives of in-plane
and out-of-plane displacements has been presented. By means
of laser beam interferometry, strain and deflection slope on a
surface point can be accurately measured in real time. The
optical principle and experimental procedure are described in
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Fig. 5 Real-time measurement result of the tangent angle of the beam
deflection plotted versus time

the paper and easy to follow. A systematical study of the
measurement sensitivities to rigid-body motion shows that an
application of the ISSG to in-plane strain measurements is
not influenced by in-plane rigid-body motion and its applica-
tion to out-of-plane displacement derivative measurements is
not influenced by out-of-plane rigid-body motion. Influences
of in-plane rigid-body motion on out-of-plane displacement
derivative measurements and out-of-plane rigid-body motion
on in-plane strain measurements can be compensated for. Ex-
periments conducted on a cantilever beam have shown that
the ISSG is a satisfactory method for measuring the first and
second-order derivatives of the out-of-plane displacements as
well as bending strains and stresses. A small beam deflection
angle approximately equals the first-order derivative of out-
of-plane displacements or the slope of the deflection, which
can be separately measured from the in-plane strain. The gov-
erning equations for measurements of large deflection angles
have been derived and indicate a coupling effect between the
in-plane and out-of-plane components. The ISSG technique
is useful for studying bending problems of beams, plates,
and shells, and has a potential to be extended to vibration
measurements.
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On the Oblique Compression of Two
Elastic Spheres

D. Elata'

In this note Walton’s ( 1987 ) force-displacement relations for
a contact between two identical elastic spheres are discussed.
The relations are based on the solution for the oblique compres-
sion of two elastic spheres (Walton, 1978) which is rederived
here in a simple fashion that relates it to Mindlin's (1949)
solution for contact stress. Specific limitations of these relations
are reviewed and it is demonstrated that misusing the relations
leads to thermodynamic inconsistencies. '

Introduction

An exact solution for the contact traction between two elastic
spheres can assist in developing models for the mechanical
behavior of granular materials. One problem of particular inter-
est is the oblique compression of two identical elastic spheres.
This problem was solved by Walton (1978) who used laborious
symmetry and energy flux considerations. Walton's solution is
different from the one obtained by Mindlin (1949) in that the
latter predicts a singular shear traction on the contact area con-
tour, which may cause slip, whereas the former predicts a
bounded shear traction that either causes slip on the entire con-
tact area or does not cause slip at all.

Based on his solution of the oblique compression of two
identical elastic spheres, Walton (1987) calculates the effective
elastic moduli of a random packing of identical spheres. In this
work it is assumed that the centers of the spheres and their
mutual contacts are displaced in accordance with a uniform
displacement field (pointwise displacement affinity). Endres
(1990) further developed this model by considering the effect of
generation and elimination of contacts as the granular material
deforms.

! Earth Sciences Division, Lawrence Livermore National Laboratory, P.O. Box
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The solution proposed by Walton (1978) is rederived in a
simple and straightforward way that trivially relates it to the
work of Mindlin (1949). The derivation is the same as in John-
son (1985) (Section 7.3), but Johnson did not relate it to Wal-
ton’s solution., Next, based on this solution, contact force-dis-
placement relations are derived, and their limitations are dis-
cussed. Specifically, it is shown that misuse of these relations
leads to violation of the second law of thermodynamics.

Contact Traction

Mindlin (1949) has shown that when two identical elastic
spheres of radius R are pressed together the stress distribution
on the contact surface is

2 2

N= -y (a* = r))'2, (la)
2“ 2 2y 112
= (a®- 1
P=reero@ M7 (15}
where
a® = Rw, (le)
1 1 1
B=—(-
wlites) o
1 (1 1
e=f= — : I
4 (u A+ M) i)

In the equations above, N is the normal traction, P is the tangen-
tial traction, a is the radius of the contact area, r is the radial
distance from the center of the circular contact area, w and
u are, respectively, the values of the normal and tangential
displacements of the center of the contact relative to the center
of the spheres, and A\ and g are Lamé’s constants. This solution
is based on the assumption that the two spheres are initially
pressed together along the normal to their mutual contact area
and only then a relative displacement parallel to the contact
area is applied. The tangential traction (1b) is clearly singular
on the contour of the contact area whereas the normal traction
is bounded. This means that the possibility of slip must be
addressed (Mindlin, 1949).

By using lengthy symmetry and energy flux considerations,
Walton (1978) has shown that when the relative displacements
w and u increase from zero to their final value with a fixed
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proportionality, the traction distribution on the contact surface
is

N o 2 (aZ s r2)lf2

TRB (2a)
_ _____ﬂ‘____ 2 aim
P=GB+Ome @ " (2b)

In contrast to (1b) the tangential traction (2b) is bounded.
Moreover, there is a fixed ratio between N and P which means
that slip occurs over the entire contact area or does not occur
at all (Walton, 1978).

In the following, Eq. (2b) is rederived in a simple and
straightforward fashion. It is assumed that the displacements w
and u increase with a variable proportionality so that

L = c(w),

bw (3)

where ¢ is a scalar valued parametric function of w. Since
Mindlin’s solution assumes that the tangential displacement is
applied only after the normal displacement has been applied,
the variation in contact traction is related to variations in contact
displacement by

6N = ?I':B (Rw — r®) 26w, (4a)
6P = 24 (Rw - )"
7(2B + C)
_ 2e(w)bw _ e
S T@B+C) BT, @)

where 6P results from an applied éu while keeping w fixed.
Notice that although 6P and 6N are singular on the circumfer-
ence of the contact area, their ratio is a (bounded) linear func-
tion of ¢(w). This means that the normal displacement variation
either causes slip around the contour of the contact area or does
not cause slip at all. At any given radius r in the final contact
area, assuming that no slip occurs, the integrated tangential
traction is

W=w o B
P(w,r)=j 2e (W)

RW — #1) 124,
W=rtiR ‘?1'2(23 . C) (R® =17 =

(5)

where the lower boundary of the integration is due to the fact
that while w < r?/R, all points at radius r are subjected to no
traction. In the specific case where c(w) is a constant, the
tangential traction is

4¢

PRI L 5 B S ¥
2B+ ORTY )

P(w,r)=

4u

2 2 _ 212
2028+ ORw 4 T

(6)

which is identical to Walton's (1978) solution.

In addition to eliminating the lengthy derivation and compli-
cated theoretical considerations in Walton (1978), the present
derivation clarifies the relation of Walton's solution to Mind-
lin's solution. It is noted here that for any nonproportional strain
path the tangential traction must be calculated by (5) while
continuously considering the possibility of slip (Mindlin and

Deresiewicz, 1953; Chang et al,, 1992). ,

Contact Force-Displacement Relations

By integrating Eqs. (2a, b) over the contact area, Walton
(1987) has calculated the resultant forces;

1040 / Vol. 63, DECEMBER 1996

Y, Y

Wi Wy

Tw rF w

(@) (b)

Fig. 1 Two possible contact displacement cycles for which misuse of
Eqgs. (7a, b) results in (a) dissipation of energy, (b) “generation” of en-
ergy

r=VRw 2 4R'?
N = J~,=0 s (Rw — r)"2urdr = E w2, (7a)
P= Jir:m —— S (Rw = )" 2nrdr
r=0 7w(2B + C)Rw
8R'" Uy 3
~322B + C) (;)w © (78)

These contact force-displacement relations are relatively simple
and it is enticing to use them in modeling the mechanical re-
sponse of granular material, In this respect it is important to
emphasize that these force-displacement relations are path-de-
pendent and they are derived assuming a fixed ratio between
the normal and tangential displacements of the contact. Consid-
ering the intergaranular contacts in a general (unordered) granu-
lar material, this specific displacement trajectory is unlikely
even when the overall material is subjected to boundary dis-
placements of a fixed arbitrary proportionality.

Another deterring consideration is the thermodynamic impli-
cation of misusing these contact force-displacement relations
by regarding them as path-independent. If Eqs. (7) are used to
calculate the work W done by the contact forces in a displace-
ment cycle described in Fig. 1(a) it may be shown that

_ BR”I H%WI;ZI
6m(28 + C)

The forces vanish at the beginning and end of the displacement
cycle and therefore the elastic strain at these points vanishes.
Consequently, all the work done by the forces has dissipated.
The fact that a cyclic displacement of a contact is mechanically
dissipative is well known (Mindlin and Deresiewicz, 1953).
The physical reason for this dissipation is energy loss due to
friction. In contrast, the dissipation quantified in (8) is solely
due to the misuse of the contact force-displacement relations
(7) to described nonproportional contact displacements. In par-
ticular, consideration of the reverse displacement cycle de-
scribed in Fig. 1(b) shows that a net energy equal to W may
be generated (without any work being done), which clearly
violates the second law of thermodynamics.

(8)
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Jour-

Extremum Problem Formulations of
Mixed-Form Models for Elastostatics

J. E. Taylor?

The material of this note is related to variational models for
the analysis of elastostatic structural response. Established and
familiar mixed stress and deformation models for such analysis,
e.g., the Hu-Washizu, Hellinger-Reissner, and the various mod-
els summarized in Oden and Reddy (1976) and elsewhere in
the literature, have the form of saddlepoint problems. As an
alternative to dealing with the functional associated with the
saddlepoint form, expression is given here to the general elasto-
statics problem in the (stronger) form of convex constrained
extremum problems. The alternate formulations make use of
a decomposition of the measure of stress or strain into two
variationally independent components. This provides for the
interpretation of the results as mixed models, as is to be demon-
strated in what follows. Two examples are described below;
they are complementary formulations, parallel in sense to the
basic minimum potential energy and minimum complementary
energy principles.

The developments to follow are expressed for linear elasto-
statics of general continua. As a first step in each description,
the symbolic expression of a constrained minimization problem,
supposed to represent the elastostatics analysis, is simply stated.
That the model does in fact comprise a valid statement for the
mechanics analysis is then confirmed through an interpretation
of the variational problem, For the first example formulation,
which amounts to an extension of the classical minimum poten-
tial energy characterization, the problem is expressed symboli-
cally in the form

min { f [ SEgucyen + 5Cp030u — fit ]dv = fl :,ufds}
gl L] ¥l

subject to

[P1-

%(“f.;' +uy) = (e + Cuon) =0 x€Q
The notation here is to reflect that the minimum point in [P] is
identified with independent variation with respect to (w.r.L.) the

arguments oy, ¢;, and u. Symmetric, positive definite tensors
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fields Ej;; and Cyy, (to be interpreted later) and (load) vector fields
Jiand 1, are prescribed. , symbolizes elements of the set of vectors
defined (in the usual way) to be kinematically admissible, o are
differentiable in Q, and oy and ¢; are further defined jointly in
relation to u according to the constraint in [P].

Symbol Ay is introduced to represent the Lagrange multiplier
associated with this constraint, The necessary conditions for a
minimum in problem [ P], stated in order w.r.t. variation of o,
€y, and u;, are

Ciwoy — Cyuhyy = 0 (1)
Epey — =01 x€8 (2)

Nax +fi=0 3)

Mty — 1, =0 x on [, (3a)

Using the result (1) that Ay = oy, (2) and (3) are restated
as

waij —oy=10 Yen (2")
oux +fi=10 (3"
oy — =0 x on T, (3a")

With the standard model for linear elastostatics in mind, in
view of (3') and (3a') the o, up to this point undesignated,
is identified as representing a stress field that equilibrates the
external forces f; and 7.

According to the constraint equation of [P], an interpretation
of the quantity (e; + Cyuoy) as total strain is consistent with
convention for the linear model, and of course this measure of
strain is then compatible. In order to complete the confirmation
that the system comprises a full statement of the elastostatics
boundary value problem, it remains o g to identify the constitu-
tive relation. With the introduction of Cy, to represent the effec-
tive compliance tensor, and making use of the interpretations
for stress and strain already described, the net stress-strain rela-
tion is expressed as

(4)

With the substitution for €; in (4) from (2'), the effective
property Cjy is evaluated in terms of the original, undesignated
tensors as

Ciwoy = (€5 + Cyuou).

C;;w = (EJI + C.;m)- (5)

Thus the demonstration is complete, i.e., it has been shown
that the system of necessary conditions associated with problem
[ P] comprise a complete statement of the classical linear elastic-
ity problem, with oy, and (e; + Cyyoy) representing stress and
strain, and Cy; prowdmg the relation between them. The relative
value of Ey, and Cyy is still open, and may be set for conve-
nience (perhaps to achieve proper scaling). For example, for
equal values of Ejy; and Cyy the net compliance Cjy has twice
the value of compliance for each constituent within the expres-
sion for total strain. In summary, note that

1 the problem represented in [P] is a constrained, convex
programming problem, and so the solution is generally a unique
minimizer of the objective, and

2 relative to the purpose in using a mixed model, namely to
provide for independence with respect to variation of the field
variables, characterization of elastostatics in the form of varia-
tional problem [ P] reflects independent variation among o, €;,
and u,.

As noted in the introductory statement, a second mixed for-
mulation for elastostatics is available in the form of a relaxed
version of the classical, single field statement of the **‘minimum
complementary potential energy’’ model in mechanics. Follow-
ing an approach similar to the one used above, the exposition
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Endres, A. L., 1990, **The Effect of Contact Generation on the Elastic Proper-
ties of a Granular Medium,"” ASME JoURNAL OF APPLIED MECHANICS, Vol. 57,

pp. 330-336.

Johnson, K., L., 1985, Contact Mechanics, Cambridge University Press, Cam-
bridge, UK.

Mindlin, R. D., 1949, *‘Compliance of Elastic Bodies in Contact,”” ASME

JOURNAL OF APPLIED MECHANICS, Vol, 16, pp. 259-268.

Mindlin, R. D., and Deresiewicz, H., 1953, “‘Elastic Spheres in Contact Under
Varying Oblique Forces,”” ASME JOURNAL OF AppLIED MEcHANICS, Vol. 20, pp.
327-344.

Walton, K., 1978, **The Oblique Compression of Two Elastic Spheres,"’
nal of the Mechanics and Physics of Selids, Vol. 26, pp. 139-150,

Walton, K., 1987, “*The Effective Elastic Moduli of a Random Packing of
Spheres,”” Journal of the Mechanics and Physics of Solids, Vol, 35, pp. 213
226.

Jour-

Extremum Problem Formulations of
Mixed-Form Models for Elastostatics

J. E. Taylor?

The material of this note is related to variational models for
the analysis of elastostatic structural response. Established and
familiar mixed stress and deformation models for such analysis,
e.g., the Hu-Washizu, Hellinger-Reissner, and the various mod-
els summarized in Oden and Reddy (1976) and elsewhere in
the literature, have the form of saddlepoint problems. As an
alternative to dealing with the functional associated with the
saddlepoint form, expression is given here to the general elasto-
statics problem in the (stronger) form of convex constrained
extremum problems. The alternate formulations make use of
a decomposition of the measure of stress or strain into two
variationally independent components. This provides for the
interpretation of the results as mixed models, as is to be demon-
strated in what follows. Two examples are described below;
they are complementary formulations, parallel in sense to the
basic minimum potential energy and minimum complementary
energy principles.

The developments to follow are expressed for linear elasto-
statics of general continua. As a first step in each description,
the symbolic expression of a constrained minimization problem,
supposed to represent the elastostatics analysis, is simply stated.
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of the variational problem, For the first example formulation,
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is identified as representing a stress field that equilibrates the
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property Cjy is evaluated in terms of the original, undesignated
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Thus the demonstration is complete, i.e., it has been shown
that the system of necessary conditions associated with problem
[ P] comprise a complete statement of the classical linear elastic-
ity problem, with oy, and (e; + Cyyoy) representing stress and
strain, and Cy; prowdmg the relation between them. The relative
value of Ey, and Cyy is still open, and may be set for conve-
nience (perhaps to achieve proper scaling). For example, for
equal values of Ejy; and Cyy the net compliance Cjy has twice
the value of compliance for each constituent within the expres-
sion for total strain. In summary, note that

1 the problem represented in [P] is a constrained, convex
programming problem, and so the solution is generally a unique
minimizer of the objective, and

2 relative to the purpose in using a mixed model, namely to
provide for independence with respect to variation of the field
variables, characterization of elastostatics in the form of varia-
tional problem [ P] reflects independent variation among o, €;,
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As noted in the introductory statement, a second mixed for-
mulation for elastostatics is available in the form of a relaxed
version of the classical, single field statement of the **‘minimum
complementary potential energy’’ model in mechanics. Follow-
ing an approach similar to the one used above, the exposition
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of this second model starts with an unqualified, symbolic state-
ment of a constrained minimization problem. The problem so
represented also is convex. Here too, the identification of the
problem statement with the mechanics of elastostatics is accom-
plished through an interpretation of the *‘necessary conditions.”’
The form for this characterization, stated here for simplicity as
though boundary displacement where prescribed has value zero,
is given as

i 1 1
min f EEW;H;JH“ -+ EC,'j“O',-_.-O'“dV
@bl 0

subject to:

r[Q].
(oj+ Ejuwey)y +fi=0 in Q

(J;J: + E'."[ﬂﬂk_;)nj == f,‘ = 0 on r;

o

The problem statement reflects minimization (of the sum of
quadratic measures) independently w.r.t. admissible fields o
and u,, where admissibility requirements correspond to those
of model [P]. According to the constraints of [Q], these fields
jointly equilibrate (loads) f; and ¢;. As in the prior formulation,
here E;, and Cy, represent differentiable, positive definite, sym-
metric tensors. Also as before, Eyy, Cy, f;, and t; symbolize
data. \; and f; are introduced as multipliers associated with
the field equation and boundary condition constraints of [Q].
Stationarity w.r.t. g and u,, respectively, requires

Cgk;ﬂ'k; - hi.j = 0 i“ Q (6)
}3,’ + h.,' = U on r, (ﬁa)
[~ Ewgi; + Ejghijla =0 in Q. (7)

This system is satisfied with \; = u;, and making use of the

linear strain-displacement relation e; = (u;; + u;;)}/2 and the

symmetries in the stress and material properties tensors, (6) is
interpreted as

(8)

It is clear from the equilibrium equation constraint that o, +
Ey €y represents total stress, and so with the introduction of E
to symbolize the net modulus, the total stress-strain relation is
expressed as

C{iﬂ Ty = €.

(9)

Accordingly, in view of (8) the effective modulus for this model
has the value

o + Egen = Eguen.

Eyu = Eiju + CE&E!- (10)

For example, if Ey, = Cj then £y, = 2E,,. This completes a
verification that the formulation [Q] comprises an authentic
portrayal of linear elastostatics. The earlier comments given in
relation to version [ P] of the problem apply here as well, i.e.,
the solution to [Q] is generally a unique minimizer,

Summary

Formulations [P] and [Q] have the relatively simple form
(among constrained nonlinear programming problems) of
*‘quadratic objective with linear constraints,”” which is conve-
nient. Creation of these formulations for continuum mechanics
relies on the feature of the models that has total stress or total
strain interpreted via a decomposition into variationally inde-
pendent components which are coupled through the constraints.
In each of the two problem statements the decomposition is
expressed in a form that provides for both static and kinematic
field measures to be present, and so the results appear as mixed
models. Where the goal in using such models is to achieve a
desirable balance in precision between the computational evalu-
ation of stresses and deformations, the relative value of Ej, and
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Cyy may be adjusted to control this balance. More generally,
compared to familiar forms for mixed principles the extremum
problem formulations presented in this note may be more conve-
nient in the treatment of applications, e.g., the development
of computational models, performance of analysis toward the
establishment of bounds, or the treatment of structural optimiza-
tion problems, to name a few.

Notwithstanding the simplicity of problem formulations [P]
and [Q], these two features i.e., the interpretation of the dual
field variables in terms of a set of (independent) constituents,
and the interpretation for analysis that follows standard form
for the mathematical modeling of constrained nonlinear pro-
gramming models, can be exploited to obtain other useful exten-
sions to the energetic formulations in solid mechanics. For ex-
ample, extended versions of the classical complementary state-
ments of ‘*‘energy principles’’ are available in forms that
comprise constructive formulations for the elastostatics of con-
stitutively nonlinear systems (see, e.g., Taylor, 1993, 1994;
Plaxton and Taylor, 1994). Also, the same approach can be
used to model the more general problem of finite strain elasto-
statics with nonlinear materials (Hollister et al., 1995).
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Elastic Force on a Point Defect in or
Near a Surface Layer

H. Yv’, S. C. Sanday?, and D. J. Bacon*

The elastic force on a point defect within or near a surface
layer is determined by the image method. There is no siable
equilibrium position for the point defect in the surface layer, it
is attracted either to the free surface or to the interface. When
the point defect is in the substrate it is attracted to the interface
when the surface layer is softer than the substrate and to an
equilibrium position in the substrate when the surface layer is
stiffer than the substrate, the equilibrium position being a func-
tion of the elastic constants and the layer thickness.

1 Introduction

The interaction between a point defect and the free surface
of a material have been studied extensively for many years,
mainly because it plays an important role in material behavior
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of this second model starts with an unqualified, symbolic state-
ment of a constrained minimization problem. The problem so
represented also is convex. Here too, the identification of the
problem statement with the mechanics of elastostatics is accom-
plished through an interpretation of the *‘necessary conditions.”’
The form for this characterization, stated here for simplicity as
though boundary displacement where prescribed has value zero,
is given as
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(J;J: + E'."[ﬂﬂk_;)nj == f,‘ = 0 on r;

o

The problem statement reflects minimization (of the sum of
quadratic measures) independently w.r.t. admissible fields o
and u,, where admissibility requirements correspond to those
of model [P]. According to the constraints of [Q], these fields
jointly equilibrate (loads) f; and ¢;. As in the prior formulation,
here E;, and Cy, represent differentiable, positive definite, sym-
metric tensors. Also as before, Eyy, Cy, f;, and t; symbolize
data. \; and f; are introduced as multipliers associated with
the field equation and boundary condition constraints of [Q].
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symmetries in the stress and material properties tensors, (6) is
interpreted as
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It is clear from the equilibrium equation constraint that o, +
Ey €y represents total stress, and so with the introduction of E
to symbolize the net modulus, the total stress-strain relation is
expressed as

C{iﬂ Ty = €.

(9)

Accordingly, in view of (8) the effective modulus for this model
has the value

o + Egen = Eguen.

Eyu = Eiju + CE&E!- (10)

For example, if Ey, = Cj then £y, = 2E,,. This completes a
verification that the formulation [Q] comprises an authentic
portrayal of linear elastostatics. The earlier comments given in
relation to version [ P] of the problem apply here as well, i.e.,
the solution to [Q] is generally a unique minimizer,

Summary

Formulations [P] and [Q] have the relatively simple form
(among constrained nonlinear programming problems) of
*‘quadratic objective with linear constraints,”” which is conve-
nient. Creation of these formulations for continuum mechanics
relies on the feature of the models that has total stress or total
strain interpreted via a decomposition into variationally inde-
pendent components which are coupled through the constraints.
In each of the two problem statements the decomposition is
expressed in a form that provides for both static and kinematic
field measures to be present, and so the results appear as mixed
models. Where the goal in using such models is to achieve a
desirable balance in precision between the computational evalu-
ation of stresses and deformations, the relative value of Ej, and
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Cyy may be adjusted to control this balance. More generally,
compared to familiar forms for mixed principles the extremum
problem formulations presented in this note may be more conve-
nient in the treatment of applications, e.g., the development
of computational models, performance of analysis toward the
establishment of bounds, or the treatment of structural optimiza-
tion problems, to name a few.

Notwithstanding the simplicity of problem formulations [P]
and [Q], these two features i.e., the interpretation of the dual
field variables in terms of a set of (independent) constituents,
and the interpretation for analysis that follows standard form
for the mathematical modeling of constrained nonlinear pro-
gramming models, can be exploited to obtain other useful exten-
sions to the energetic formulations in solid mechanics. For ex-
ample, extended versions of the classical complementary state-
ments of ‘*‘energy principles’’ are available in forms that
comprise constructive formulations for the elastostatics of con-
stitutively nonlinear systems (see, e.g., Taylor, 1993, 1994;
Plaxton and Taylor, 1994). Also, the same approach can be
used to model the more general problem of finite strain elasto-
statics with nonlinear materials (Hollister et al., 1995).
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The elastic force on a point defect within or near a surface
layer is determined by the image method. There is no siable
equilibrium position for the point defect in the surface layer, it
is attracted either to the free surface or to the interface. When
the point defect is in the substrate it is attracted to the interface
when the surface layer is softer than the substrate and to an
equilibrium position in the substrate when the surface layer is
stiffer than the substrate, the equilibrium position being a func-
tion of the elastic constants and the layer thickness.

1 Introduction

The interaction between a point defect and the free surface
of a material have been studied extensively for many years,
mainly because it plays an important role in material behavior
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Fig. 1 Variation of interaction energy W with c/h for the point defect in
the substrate for v = ' = > and different u'/u ratios

related to diffusion, oxidation, corrosion, spinoidal decomposi-
tion, etc. When a planar, uniform elastic layer is bonded to an
elastic semi-infinite solid of different elastic properties and the
materials are isotropic and homogeneous, the problem of finding
the elastic force on a point defect which is approximated as a
center of dilation is an axisymmetric one and the theory of
Hankel transforms given by Sneddon (1951) is a powerful tool
for solving it. For example, the force on a point defect in a
semi-infinite solid near a surface layer was studied by using
Hankel transformations (Dundurs and Stippes, 1966; Bacon
1972). Equally important is the case when the point defect,
such as a solute atom, a vacancy, or an interstitial, is in the
surface layer of a semi-infinite solid, as might be produced, for
example, by deposition or the formation of oxides which, in
general, will have different elastic properties from the semi-
infinite solid. The aim of this paper is to investigate the elastic
interaction between a point defect, the free surface, and the
interface in a plane layered material using the image method
(Yu and Sanday, 1993).

2 Elastic Solution

The coated semi-infinite solid consists of an infinite plate
(surface layer), of thickness A, shear modulus p’, and Poisson’s
ratio v', which is perfectly bonded to a homogeneous, isotropic,
elastic solid (substrate) with shear modulus g and Poisson’s
ratio v, at the interface z = 0O (see insert in Fig. 1). The point
defect, which is approximated as a center of dilatation, is at
point (0, 0, *¢). This problem has cylindrical symmetry and
the axes of the cylindrical coordinates (r, #, z) have been chosen
with the origin in the interface. The boundary conditions at the
interface, z = 0, are continuity of displacements «, and u, and
stresses o, and o,,. The boundary conditions at the free surface,
z = h, are the vanishing of the normal stress o, and shear stress
o,

It has been shown that if o is the stress due to a center of
dilatation in the homogeneous infinite solid, and o + o is
that in the body under consideration, the interaction energy W
(Bacon, 1972) and the nonzero component of the force on the
center of dilatation F, are

aw
and F, o

_2n(1 = v)
1 +v

W= Qo ik (1

where Q is the strength of the center of dilatation and o is the
image stress. It should be noted that the force given in Eq. (1)
differs from that given by Dundurs and Stippes (1966) by a
factor of 3. This is because, as pointed out by Bacon (1972)
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and Moon and Pao (1967), the image interaction energy W
differs by a factor of § from the interaction energy produced by
an independent source other than the center of dilatation itself,
and the results given by Dundurs and Stippes were obtained
using Eshelby’s expression (1951) for the force exerted on the
point defect by an external surface traction.

The elastic solution for a center of dilatation in tri-materials,
as given by Yu and Sanday (1993), is obtained using the image
method and the Green’s functions in a bi-material for the double
force, doublet, center of dilatation, and their derivatives. The
solutions are expressed in terms of the Galerkin stress function
Z which is the z-component of the Galerkin stress vector, From
the results given by Yu and Sanday (1993) and by setting the
clastic constants of one of the semi-infinite solids in the tri-
material equal to zero, the dilatational stress due to the center
of dilatation at point (0, 0, —¢) is

62
o =4(1 + v)pQ 222 X1 )

3 (2)

for points in the substrate (z = 0) and that due to the center of
dilatation at point (0, 0, ¢) is

62
ot =8(1 +v)pu'Q px'(f. z), 3)
Z

for points in the surface layer (0 = z < h), where

x(r,z) = Aypo + Ayps
n—1

+ A, X [AS+ X GyD* V@l (4)

n=1 j=0

X'(r,2) = ol + Agpr + 2 (Al@hur + A 0201)

n=1
= n—1

+ Z 2 (Hn;'D§j+I‘p2ri o= H::;DEJH‘PL.

n=1 j=0
+ GuD* Vs + GuDI* Vpyy), (5)
k
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and

= [r+(z—c—2nh)*17"", (6)

Omer = {r*+lz+c=2(n+ 1)h1*} "

The interaction energy and the forces on the point defect in the
substrate and in the surface layer are obtained, respectively, by
substituting Eqs. (2), (4) and Eqgs. (3), (5) into Eq. (1). When
the point defect is in the substrate the results obtained by the
image method are the same as those obtained by the method of
Hankel transforms (Dundurs and Stippes, 1966) (except for a
factor of 2 as pointed out previously).

3 Numerical Results

The convergence of the infinite series given in Section 2 has
already been demonstrated (Yu and Sanday, 1993). The force
on the point defect in the substrate calculated for p'/u = 2, v
= 4 and ¢’ = { and the sum of the first four terms, together
with the values obtained by Dundurs and Stippes (1966) of the
sum of the first four terms are shown in Table 1. The values in
the last two columns are those given by Dundurs and Stippes
and the values in the second column are those obtained in the
present study. The convergence when using the image method
is faster than when using the integral obtained by Hankel trans-
formations as indicated by comparing the sum of the first four
terms in each solution with the exact values given in column
four. '

In the following numerical calculations, the results are the
sum of the first 12 and 24 terms for the point defect in the
substrate and in the surface layer, respectively. Let us first con-
sider the point defect located in the substrate. The numerical
results showed that when the surface layer is softer than the
substrate (u’'/p = 1), the layer attracts the point defect, When
the surface layer is stiffer than the substrate (u'/p > 1), the
defect is repelled from the interface. The effect of the layer on
the defect when the layer is stiffer than the substrate is analyzed
in Fig. 1 which shows the variation of W for » = " = § and
p'fp = 1.5, 1.75, 2, 3, and 4. The point defect has a stable
equilibrium position, i.e., W is minimum and F, equals zero,
and this equilibrium exists because the stiff layer masks the
. attraction of the free surface, and its position increases in depth
from the interface with increasing layer stiffness. The existence
of this effect has implications for the segregation of point de-
fects in coated crystals. When the point defect is in the surface
layer, the results for W are given in Fig. 2 for » = v’ = } and
pwlp' =0,0.1, 0.5, 1, 2, 10, and . Figure 2 shows that when
the surface layer is softer than the substrate, the energy de-
creases with increasing distance ¢, and the point defect is at-
tracted to the free surface. However, when the surface layer is
stiffer than the substrate, the energy has a maximum where F,
= 0 at position ¢y, i.e., the position of unstable equilibrium.
The ¢, value increases with decreasing u/u' ratio and equals
0.5k for a plate, i.e., p = 0.

Table 1 Comparison of the values for the force on the
point defect in the substrate for p'/p = 2, v = 1/3 and v’
= 1/4 with results obtained by Dundurs and Stippes (1966)

Dundurs and
clh This study* Stippest Exact
0.125 —944.63 —944.64 —944.63
0.5 —3.4953 —3.4998 —3.4941
1 -0.6212 —-0.6241 —0.6204
2 -0.0014 -0.0018 —0.0012
3 0.0013 0.0012 0.0014

* in units of 127(1 — »)uQ*h™*
tin units of 6m(1 — v)u@*h*
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Fig. 2 Variation of interaction energy W with c/h for the point defect in
the surface layer for v = »' = ;-and different u/ ' ratios

4 Summary

The elastic interaction of a point defect with a surface layer
has been discussed in terms of the induced interaction energy
and the force acting on the defect. The point defect is treated
as a center of dilatation. The surface layer is perfectly bonded
to a semi-infinite substrate, and both are isotropic elastic solids
but with different elastic constants. The energy and force are
obtained by the image method and the results are expressed in
terms of convergent infinite series. The comparison of the re-
sults obtained by the present method with those obtained by the
method of Hankel transforms has been made for the case when
the point defect is in the substrate. Numerical examples have
been presented and discussed for the point defect in the surface
layer and in the substrate. When the point defect is in the sub-
strate and the surface layer is stiffer than the substrate, an equi-
librium position exists and the point defect is attracted to this
position, which is closer to the surface layer with decreasing
stiffness of the layer or decreasing layer thickness. When the
point defect is in the surface layer, no stable equilibrium posi-
tion exists. The point defect is either attracted to the free surface
or to the interface, depending on the ratio of the shear moduli
of the two materials. These results should be prove of value
for researchers concerned with point defect behavior in coated
solids.
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APPENDIX

Some errors made in transposing equations for publication
in an earlier study (Bacon, 1972) will be corrected here. All
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notation and equation numbers used here are the same as those
used in the reference (Bacon, 1972). Equation (16) should be

Glk,z) = (A + Bz)e ™ + (C + Dz)e™, for z=0
and
G(k,z) = (A" + B'z)e® + (C’ + D'z)e &,

for —t=2z=0.

For a center of dilatation in the surface layer at point (0, 0,
—¢), which corresponds to point (0, 0, ¢) in our text, the correct
expressions for Eqgs. (17¢) and (17f) in the reference are

ke ™A' 4+ (2v' = kt)e ™B’'
+ ke¥C" — (2v' + kt)e" D' = Fé",
~ke ™A' 4+ (1 = 2" + kt)e ™ B’
+ ke®C' + (1 — 20" — kt)e"D' = Fe",
rt?‘e?;clively. Solving the six simultaneous Egs. (17a) to (17 f)
yields

F

A=B=A"=B'=D'=0, amd C'=2. (2

The elastic field obtained by using Eq. (a) is

a

u=—u?, and ud= —ul.

The displacements in the layer given by Eqs. (22a) and (22b)
are zero, which means that the method given by Bacon (1972)
only gives a trivial solution for the elastic interaction of a point
defect and a surface layer when the defect is in the surface
layer.

Yield Locus in Deep, Single-Face-
Cracked Specimens Under Combined
Bending and Tension

Yun-Jae Kim,>® F. A. McClintock,®
and D. M. Parks®’

Introduction

For plates with deep, single face cracks, slip line fields are
known under pure tension and under opening bending with
compression or small tension (Shiratori and Miyoshi, 1980;
Shiratori and Dodd, 1980). For such plates under opening bend-
ing and large tension, Rice (1972) gave an analytical-graphical
formulation for sliding along the circular arc giving the least
upper bound to the limit load. He also proposed an approximate
elliptical yield locus for all ranges of positive tensions and net-
section moments, which has been widely used (e.g., Hu and
Albrecht, 1991).
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Fig. 1 Yield loci for deep, single-face-cracked specimens under com-
bined bending and tension. Equation 2 holds to the left of the point x.

After a brief review of existing slip line and upper bound
fields, we provide a completely analytical formulation for Rice’s
least upper bound. Then we propose an improved approximate
elliptical yield locus and compare it with finite element limit
analyses of Lee and Parks (1993).

Opening Bending with Compression or Small Tension

For pure opening bending, Green and Hundy (1956) found
the slip line field, For sufficiently small tensile forces, slip line
fields can be obtained by ‘‘shaving off '’ some of the constant
stress region. When the constant stress sector just vanishes,
force and moment equilibrium lead to the following net section
tension and bending moment, normalized in terms of an un-
notched plate with the shear strength k and remaining liga-
ment b:

N, = N,/(2kb) = 0.5512 and
M, = M,/(2kb?/4) = 13232, (1)

Note that the limiting field of (1) is likely to be only an upper
bound: in complete solutions for shallow cracks in pure bending,
Ewing (1968) found constant-state triangles at the ends of
curved slip lines approaching a free surface. Slip line fields for
N, = 0 with M, = 0 can be obtained by reducing the circular
hinge radius and increasing the constant stress regions. The
resulting yield locus from these slip line fields is

Oy = M, + 0.7394N? — 0.5212N, — 1.2606 = 0 for
-1 =N, < 05512, (2)

as shown in Fig. 1, with the point (N, = 0.5512, M, = 1.3232)
denoted by ** X *’, See Shiratori and Miyoshi ( 1980), and Shira-
tori and Dodd (1980) for closed-form analytical expressions
for the numerical coefficients in (1) and (2).

Opening Bending with Large Tension

_ Slip line fields are not known for large tension (0.5512 =
N, < 1). A possible slip line field, motivated by the field for
transverse shear of grooved plates (Mode I1) (McClintock and
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notation and equation numbers used here are the same as those
used in the reference (Bacon, 1972). Equation (16) should be

Glk,z) = (A + Bz)e ™ + (C + Dz)e™, for z=0
and
G(k,z) = (A" + B'z)e® + (C’ + D'z)e &,

for —t=2z=0.

For a center of dilatation in the surface layer at point (0, 0,
—¢), which corresponds to point (0, 0, ¢) in our text, the correct
expressions for Eqgs. (17¢) and (17f) in the reference are

ke ™A' 4+ (2v' = kt)e ™B’'
+ ke¥C" — (2v' + kt)e" D' = Fé",
~ke ™A' 4+ (1 = 2" + kt)e ™ B’
+ ke®C' + (1 — 20" — kt)e"D' = Fe",
rt?‘e?;clively. Solving the six simultaneous Egs. (17a) to (17 f)
yields

F

A=B=A"=B'=D'=0, amd C'=2. (2

The elastic field obtained by using Eq. (a) is

a

u=—u?, and ud= —ul.

The displacements in the layer given by Eqs. (22a) and (22b)
are zero, which means that the method given by Bacon (1972)
only gives a trivial solution for the elastic interaction of a point
defect and a surface layer when the defect is in the surface
layer.

Yield Locus in Deep, Single-Face-
Cracked Specimens Under Combined
Bending and Tension

Yun-Jae Kim,>® F. A. McClintock,®
and D. M. Parks®’

Introduction

For plates with deep, single face cracks, slip line fields are
known under pure tension and under opening bending with
compression or small tension (Shiratori and Miyoshi, 1980;
Shiratori and Dodd, 1980). For such plates under opening bend-
ing and large tension, Rice (1972) gave an analytical-graphical
formulation for sliding along the circular arc giving the least
upper bound to the limit load. He also proposed an approximate
elliptical yield locus for all ranges of positive tensions and net-
section moments, which has been widely used (e.g., Hu and
Albrecht, 1991).
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Fig. 1 Yield loci for deep, single-face-cracked specimens under com-
bined bending and tension. Equation 2 holds to the left of the point x.

After a brief review of existing slip line and upper bound
fields, we provide a completely analytical formulation for Rice’s
least upper bound. Then we propose an improved approximate
elliptical yield locus and compare it with finite element limit
analyses of Lee and Parks (1993).

Opening Bending with Compression or Small Tension

For pure opening bending, Green and Hundy (1956) found
the slip line field, For sufficiently small tensile forces, slip line
fields can be obtained by ‘‘shaving off '’ some of the constant
stress region. When the constant stress sector just vanishes,
force and moment equilibrium lead to the following net section
tension and bending moment, normalized in terms of an un-
notched plate with the shear strength k and remaining liga-
ment b:

N, = N,/(2kb) = 0.5512 and
M, = M,/(2kb?/4) = 13232, (1)

Note that the limiting field of (1) is likely to be only an upper
bound: in complete solutions for shallow cracks in pure bending,
Ewing (1968) found constant-state triangles at the ends of
curved slip lines approaching a free surface. Slip line fields for
N, = 0 with M, = 0 can be obtained by reducing the circular
hinge radius and increasing the constant stress regions. The
resulting yield locus from these slip line fields is

Oy = M, + 0.7394N? — 0.5212N, — 1.2606 = 0 for
-1 =N, < 05512, (2)

as shown in Fig. 1, with the point (N, = 0.5512, M, = 1.3232)
denoted by ** X *’, See Shiratori and Miyoshi ( 1980), and Shira-
tori and Dodd (1980) for closed-form analytical expressions
for the numerical coefficients in (1) and (2).

Opening Bending with Large Tension

_ Slip line fields are not known for large tension (0.5512 =
N, < 1). A possible slip line field, motivated by the field for
transverse shear of grooved plates (Mode I1) (McClintock and
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L)

Fig. 2 Possible slip line field for combined bending with large tension
(light dotted lines) and kinematically admissible upper bound fields (dark
solid line).

Clerico, 1980), is suggested in Fig. 2. They showed that the
bound to the limit load in shear is only two percent higher if
their slip line field, with fan, arc, and constant stress sectors, is
replaced by a single straight line. In Fig. 2, the suggested slip
line field is replaced by a single arc of radius R and angular
extent (e — ), as proposed by Rice (1972). As L and R tend
to e, both « and 8 approach /4, and the field approaches that
for pure tension.

From relative sliding along the circular arc, equilibrium about
the point O gives

= R\? (L 1
M, =2 (;) ((X _;8) —4Nn(;+5) . (3)

For a given N, the least upper bound for M, can be determined
by minimizing the right hand side of (3), subject to the two
geometric relations from Fig, 2:

§=§slnﬁ, %+ 1 =§sina.
Eliminating L/b and R/b from (3) using (4) and minimizing
the right hand side of (3) with respect to « and g results in
two equations in the two unknowns, « and 5:

(4)

(¢ — @) cos a

— (sina — sin B) (5 + N, sin fcosa) = 0. (5)

(a — B)cos B
— (sin @ — sin B) (3 + N, sin @ cos §) = 0. (6)

For a given N,, @ and B can be determined numerically from
(5) and (6). Then M, is determined from (3) with (4) for
R/b and L/b. The resulting upper bound to the yield locus is
shown in Fig. 1.

Rice (1972) assumed that L is given and minimized the right

hand side of (3) with respect to 8, which leads to
2(a — B) = tan a — tan 8. (7

(Note that eliminating N, from (5) and (6) also gives (7).)
With (7) he performed a graphical minimization of M, to obtain
the same least upper bound as from (5) and (6).

Approximate elliptical yield loci

For the full range of positive tension (0 = N, = 1), Rice
(1972) approximated the yield locus with an ellipse matched
to the slip line solution for pure tension:

Pp=g55 (N, —03)2+xM2—1=0 for 0=N,=<1. (8)

As shown in Fig. 1, this approximate locus falls within the least
upper bound locus by up to 9% radially.
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We here propose a better elliptical yield locus than (8),
for 0.5512 = N, = I:
¢, =AM, —-B)’+C(N,-D)>’—1=0 for
05512 =N, = 1. (9)

The four unknown coefficients A, B, C, and D are determined
such that the ellipse smoothly matches the yield loci of the
adjacent slip line solutions at the respective end points:

N,

M,=0 and — =0 at N,=1. (10)
M, =1.3232 and 8@‘= =L N, =05512. (11)
oM,  0.2939

The resulting approximate yield locus, shown in Fig. 1, is
®, = 0.56415M % + 3.9258(N, — 0.4953)> = 1 =0 for

05512 =N, = 1. (12)
The locus (12) lies within that of the least upper bound analysis
by at most 4%. No appreciably better fit could be found with
a rotated ellipse satisfying the same end conditions.

Lee and Parks (1993) studied yield loci for various crack
depths using finite elements. For a given crack depth and ten-
sion-to-bending ratio, they found the limit tension and the limit
moment. By comparing yield loci for various crack depths, they
suggest that relative crack depths of a/¢ greater than about 0.35
would be ‘*deep enough’ to prevent shoulder deformation for
all tension-to-bending ratios. (For pure extension, any crack
depth is sufficient.) As shown with circles in Fig. 1, their results
for relative crack depths of a/t = 0.5 and 0.6 are consistent
with the modified Green and Hundy solutions, Their results
suggest that, for 0.6 = N, = 0.9, the least upper bound locus
overestimates by up to 3%, and the Rice ellipse underestimates
by up to 6%. Surprisingly, the ellipse ( 12) fits the finite element
results within 1%, as shown in Fig. 1. For N, > 0.9, the agree-
ment is still within 2%, the order of the self-consistency of the
FEM calculations.

Therefore for opening bending and compression or tension
(2) and (12) provide complete plane strain general yield loci
for plates with deep enough cracks and small flank angles.
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Non-Newtonian Creep Into a Two-
Dimensional Cavity of Near-
Rectangular Shape

A. Bogobowicz®

The plane-strain formulation for the steady-state closure of a
near-rectangular, single isolated opening in an indefinite visco-
elastic medium is presented. A power creep law describes the
creep behavior of the viscous medium. Because of the highly
nonlinear nature of the creep, an analytic solution is not possi-
ble for the proposed opening geometry, hence an approximation
method based upon the minimum principle for velocities is used.
The analytic function is used to describe the shape of opening
(circular, elliptical, and rectangular with rounded corners).

1 Introduction

The derivations in this paper result from saltrock creep re-
search, but the solution is general enough to be used for any
problem of steady-state viscous flow into a single isolated open-
ing. The constraints are a power law creep formulation, an
infinite isotropic viscous medium model, and hydrostatic load-
ing at infinity. The formulation is strictly for steady-state creep,
which implies constant creep rates due to uniform stress distri-
bution in the viscous medium. Creep generally occurs in two
stages: a transient stage, where creep rates are initially high
and decrease monotonically with time as stresses are redistrib-
uted within the medium and steady-state creep where a dynamic
stress equilibrium is established and creep rates become con-
stant. Transient creep response in saltrock is a result of many
factors, changes in stress, temperature, moisture content, but
primarily is a result of changes in the microstructure of the
material itself (Senseny et al., 1992). A true steady-state condi-
tion is never attained because of the slow relaxation of stresses
as the opening closes. However, determining steady-state creep
rates for the intermediate term (years to tens of years) is im-
portant for salt mining and storage applications. As the change
in creep rate is small the constant creep rates can be assumed.
Also, the assumption of a hydrostatic virgin stress state is rea-
sonable because the highly viscous nature of the material will
not allow high stress differences to be maintained.

It is generally accepted that steady-state creep at low stresses
typical of mined structures is best described by a power law.
Because of the highly nonlinear nature of creep, analytic solu-
tions are only possible for two-dimensional problems such as
‘the axisymmetric circular case. For steady-state power law
creep, an analytical solution for circular openings (Hardy et
al., 1983) and a semi-analytical solution for elliptical openings
(Bogobowicz et al., 1991) exist. The focus of this paper is to
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extend the work done by Bogobowicz et al. for elliptical open-
ings to rectangular openings with rounded corners.

2 Shape Function for the Opening

Excavated openings in saltrock are usually rectangular, Fol-
lowing excavation there is a rock around the opening that fails
in a brittle manner because of the high stresses that accompany
excavation, Further strain-rate dependent brittle failure can oc-
cur over some period (generally several months) because of
high creep rates. In deep mines (high stress conditions) an
elliptical effective opening is formed. Shallow excavations (low
stress conditions) exhibit a rectangular effective opening with
rounded corners (Mraz and Dusseault, 1986). A general shape
function representing a wide range of realistic effective opening
shapes bounded by the described cases is now introduced.

For the problem considered, an infinite saltrock medium, S,
is bounded by one simple contour, L, the shape of the effective
opening. The region § is transformed onto the infinite plane
with a circular hole (/£/ > 1) by the function (Muskhelishvili,

1954):
: ) (1)
where m is the eccentricity.

The first two terms of Eq. (1) correspond to an ellipse with
center at the origin (Muskhelishvili, 1954 ), and the fourth term
forces a rounded corner onto the ellipse. A realistic effective
opening geometry for the problem considered is

: m  k(l—m) k(l—-m
z=w(.§)(§+z+ ‘ i : 7t

x=(p+E)COSB+£3-(I — m) cos 36
P P

y=(p—ﬂ)sins—£3(|—m)sin39, (2)
p P
1.e.,
m K(l —m)
z=£+z+“£—3» (3)

Because the third term is dependent on 36, we must make | K|
sufficiently small to prevent looping of the surface contour at
the corner. Figure 1 illustrates that to prevent inward curvature
of the contour the minimum value of K is approximately —g;
as K — (0, an elliptical shape is reached.
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near-rectangular, single isolated opening in an indefinite visco-
elastic medium is presented. A power creep law describes the
creep behavior of the viscous medium. Because of the highly
nonlinear nature of the creep, an analytic solution is not possi-
ble for the proposed opening geometry, hence an approximation
method based upon the minimum principle for velocities is used.
The analytic function is used to describe the shape of opening
(circular, elliptical, and rectangular with rounded corners).

1 Introduction

The derivations in this paper result from saltrock creep re-
search, but the solution is general enough to be used for any
problem of steady-state viscous flow into a single isolated open-
ing. The constraints are a power law creep formulation, an
infinite isotropic viscous medium model, and hydrostatic load-
ing at infinity. The formulation is strictly for steady-state creep,
which implies constant creep rates due to uniform stress distri-
bution in the viscous medium. Creep generally occurs in two
stages: a transient stage, where creep rates are initially high
and decrease monotonically with time as stresses are redistrib-
uted within the medium and steady-state creep where a dynamic
stress equilibrium is established and creep rates become con-
stant. Transient creep response in saltrock is a result of many
factors, changes in stress, temperature, moisture content, but
primarily is a result of changes in the microstructure of the
material itself (Senseny et al., 1992). A true steady-state condi-
tion is never attained because of the slow relaxation of stresses
as the opening closes. However, determining steady-state creep
rates for the intermediate term (years to tens of years) is im-
portant for salt mining and storage applications. As the change
in creep rate is small the constant creep rates can be assumed.
Also, the assumption of a hydrostatic virgin stress state is rea-
sonable because the highly viscous nature of the material will
not allow high stress differences to be maintained.

It is generally accepted that steady-state creep at low stresses
typical of mined structures is best described by a power law.
Because of the highly nonlinear nature of creep, analytic solu-
tions are only possible for two-dimensional problems such as
‘the axisymmetric circular case. For steady-state power law
creep, an analytical solution for circular openings (Hardy et
al., 1983) and a semi-analytical solution for elliptical openings
(Bogobowicz et al., 1991) exist. The focus of this paper is to
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extend the work done by Bogobowicz et al. for elliptical open-
ings to rectangular openings with rounded corners.

2 Shape Function for the Opening

Excavated openings in saltrock are usually rectangular, Fol-
lowing excavation there is a rock around the opening that fails
in a brittle manner because of the high stresses that accompany
excavation, Further strain-rate dependent brittle failure can oc-
cur over some period (generally several months) because of
high creep rates. In deep mines (high stress conditions) an
elliptical effective opening is formed. Shallow excavations (low
stress conditions) exhibit a rectangular effective opening with
rounded corners (Mraz and Dusseault, 1986). A general shape
function representing a wide range of realistic effective opening
shapes bounded by the described cases is now introduced.

For the problem considered, an infinite saltrock medium, S,
is bounded by one simple contour, L, the shape of the effective
opening. The region § is transformed onto the infinite plane
with a circular hole (/£/ > 1) by the function (Muskhelishvili,

1954):
: ) (1)
where m is the eccentricity.

The first two terms of Eq. (1) correspond to an ellipse with
center at the origin (Muskhelishvili, 1954 ), and the fourth term
forces a rounded corner onto the ellipse. A realistic effective
opening geometry for the problem considered is

: m  k(l—m) k(l—-m
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x=(p+E)COSB+£3-(I — m) cos 36
P P

y=(p—ﬂ)sins—£3(|—m)sin39, (2)
p P
1.e.,
m K(l —m)
z=£+z+“£—3» (3)

Because the third term is dependent on 36, we must make | K|
sufficiently small to prevent looping of the surface contour at
the corner. Figure 1 illustrates that to prevent inward curvature
of the contour the minimum value of K is approximately —g;
as K — (0, an elliptical shape is reached.
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3 Curvilinear Orthogonal Coordinates

It is more convenient to use a system of curvilinear coordi-
nates by considering the transformation (3). The curvilinear
orthogonal system for the problem at hand can be derived from
the general strain equations for elastic problems:

_1%, Vel

¢ = S 4
“r = 2o pg o8 e

: 1 6Vg V; ﬁ(pg)
b ==t + — P8 s)

" pg 88 pgt 6p
5 (Vo\ 15 (Y

B e 2B e 6
o pﬁp(pg) 969(3) 0

where g(p, #) is the function of length transformation between
the effective opening and a unit circle:

2
g=[1—2—?cos29+%
p p

- 2\ 12
+ﬂf(1 - m)(-m—zcos 3 e c0349) + 9K2M) :
p p p

4 Nonlinear Viscoelastic Problem

The kinematics of the general problem (Egs. (4) to (6)) are
solved in terms of the flow velocity fields; », and v4. Addition-
ally, the kinematic constraint of incompressibility

Epp T bt ¢.,=0, =0 (8)
and steady-state equilibrium state are assumed:
%:j = 9
Using the notion of stress deviator,
by=0y— 106 (10)

where o is the sum of principal stresses, we define the constitu-
tive power-law creep equation in the form

& == é— | =
2 oy \oo

where N is the power-law exponent, ¢y, € are material constants
and

(11)

oy =31 (12)

where
Jy = (]3}

TyTj.

B —

The inverted form of the power creep law has the following
form (Bogobowicz et al., 1991):

. 2 él} ée_,i’ L
Gy=70e |7~
3 €er €p

V2

Eef = ? éaéﬁ.

(14)

where

(15)

5 Variational Approach to Steady-State Solution

Gilormini and Montheillet (1986) and Bogobowicz et al.
(1991) applied the minimum principle for velocities proposed
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by Hill (1956) to non-Newtonian flow problems in elliptical
coordinates. The former deal with the deformation of an ellip-
tical inclusion in a viscous matrix, while the latter present the
approximate solution for closure of an elliptical opening in a
viscous medium.

The velocity field for a nonlinear flow problem which results
in an equilibrium stress field minimizes the rate of energy dissi-
pation on a set of all possible incompressible fields:

Y
D(&,) = fv (J;’a,,.d.ﬁg)dv = L omudB.  (16)

The first term represents the rate of energy dissipation in an
element of the volume, V, of the medium, and the second term
is the power input of boundary tractions, o;n;, where n is the
outward normal to the boundary B surrounding V. The form of
the dissipation equation for the nonlinear power law viscous
case can be written as ( Gilormini and Montheillet, 1986; Bogo-
bowicz et al., 1991):

D(¢ )——Ng"é"f te Wldv—f onmidB. (17)
TN+ 1\ g A

Application of the minimum potential energy principle results
in the following steps of computing:

(1
(2)
(3)
(4)
(5)

Many authors utilize a sufficiently wide set of physically
admissible velocity fields to solve the specific problems (Gilor-
mini and Montheillet, 1986; Budiansky et al., 1982). Bogobo-
wicz et al. (1991) approached the problem of creep into an
elliptical opening in a similar manner. The authors found that
fields of linear and nonlinear problems are substantially differ-
ent for high exponents of power-law viscosity. Both analytical
study and finite element method extensive computations suggest
the following form of the radial velocity field for non-Newton-
ian flow:

Assume an incompressible velocity field.
Calculate the effective strain rate.

Calculate stress from Eq. (14).

Calculate D by integration over the volume.

Try all possible fields until a minimum is found.

: s 20 26
v(p, 6) = —uo(— yficos28 | frcon
Pe P8 p’g

cos 26
+ﬁf+‘
p'g

) (18)

Recognizing the incompressibility constraint and that the ve-
locity functions must be single-valued functions of 6 (Bogo-
bowicz et al., 1991), the form of the velocity fields used to
describe flow into an elliptical opening are

v, = —uo[—l* + cos 29(—6—' + LTQ + C—‘])] i (19)
PE pgE P& P8

Vg = —uu[l sin 29( ? + %)] .
2 pg P8

These trial velocity functions are used for the closure problem
for the near-rectangular opening.

(20)

6 Minimization Procedure

The minimization of the energy dissipation function (17) is
performed subject to hydrostatic stress at infinity (o; = p..d;).
In this case the boundary tractions become

p.,.,f v,dB = 27p.g. (21)
B
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For 1/N = n, the function can be written as

o i (n+ 1)
Tpkn Eaf
D=—— - dV — 2mwp.g, 22
n+ l fv ( éu) Trp UO ( )
where
ey = V2, + é20). (23)

The radial and shear strain rates are obtained by solving the
strain-rate partial differential equations, Egs. (4), (5), and (6)
in terms of the conformal mapping function (Eq. (7)) and the
trial velocity fields (Eqs. (19) and (20)). The resulting radial
strain rate is
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The shear strain rate is
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2 sin 26

2 : 2 2
:"C:. {3——’-?c0526+£7;
P8 P P

9K*? Vo C3

——(l—m)z}—f—2 sin 26
p pig’

X {6{{(1 - m)(Z ~ 2 cos 26 + cos 46]} . (25)
P P
Thus Eq. (23) can be written as
éef =1l \/% [(é,ﬂp)z + (énﬁ)zl = Uﬂéef (26)
and the rate of energy dissipation becomes
R
D T%e, f f (”“e"f ) pg2dpdf — 2mp.e. (27)
n+1
This equation is further simplified to
n+t |
D= 2m».eo[ d (1’9) =5 (ﬁ)] (28)
n+1\¢g Ty \ &y
where the integral [ is defined by
1 2
= —f r(E?)"+’pgzdpd3. (29)
2m Jy Jo

Note that in Bogobowicz et al. (1991) this equation contains a
typographical error; the g term must be g2 as above.

Finding the minimum of Eq. (28) with respect to v, yields
the mean closure velocity over the whole opening surface:

(1 pa\"
UO_ED([(J")

Finally, the integral / is minimized with respect to constants
€1, €2, and ¢, defining the trial velocity fields. Evaluation of
the infinite integral is simplified by performing the following
substitution:

(30)

pdp = — — di. (31)

26>

Therefore the integral can be written as

1 In 1 4 hari o ZE—" (n+13/2
= Z;J; J:} [3—§2 (EE[‘ + 6%3)] C"_] -gzdcdﬁ. (32)

For a circular opening (m = 0, ¢; = ¢, = ¢; = 0), I can be

calculated analytically:
! _ N ( 2 )n
B\

If I is normalized by this constant, and new I, introduced, then
the solution becomes

w-Fa(iee)

Now [y, in its simplest form, is as follows:

. TYtm+lu2
I = 2ﬂNf f [C’ (€& +e;g)] {"'g2dtdd (35)
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Fig. 2 Comparison of y between elliptical and near-rectangle solution

where the strain rates are given by Egs. (24) and (25) with
Vg set to unity and the variable substitution from Eq. (31) is
performed.

The integral is evaluated numerically using 15-point Gauss-
Legendre quadrature. Once minimum I(N, m, ¢, ¢, ¢3) is
found for each power exponent and eccentricity, the steady-
state closure solution for the rectangular opening with rounded
corner is solved in terms of variables vy, v,, v and x using the
appropriate equations. Note that the eccentricity m in the shape
formula is replaced in the computations by a ‘‘dynamic eccen-
tricity”” x = (v, — v,)/ (v + v.), where v,—horizontal velocity,
v, = vertical velocity.

Results

Bogobowicz et al. (1991) use the conjugate gradient method
with linear search based on parabolic approximation combined
with logarithmic golden-ratio search which utilizes a special
concept of dividing an interval ¢ = a + b into two intervals, ¢
and b. Golden-ratio of the division is given by the formula:
(log al/log b) = (log b/log (a-b)) (Gottfried, 1983). Skew
testing was applied in a minimization procedure. However, it
was recently found that for the elliptical opening, by using a
shrinking molecule method, identical results to those presented
by Bogobowicz et al. (1991) are obtained. The minimization

Numerical

9 Semi - Analytical
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Fig.3 Comparison of y between numerical and semi-analytical solution
for near-rectangle opening
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Fig. 4 Minimization resuits for an elliptical opening and near-rectangle
opening, N =3

procedure applied in this paper uses a seven-node shrinking
molecule which moves through ¢, ¢;, ¢4 space until a minimum
is reached. Comparison of the results obtained for an elliptical
and a near-rectangular opening is presented in Fig. 2—4. Com-
pare to the elliptical results, the coefficient ¢; associated with
the linear term is about double for the near-rectangular case,
whereas the coefficients associated with the quadratic and cubic
terms, i.e., ¢z, c; have a slightly smaller contribution to the
velocity fields (Fig. 4). The correlation exists between the semi-
analytical solution and the FEM solution for eccentricity less
than 0.6 (Fig. 3). Poor correlation thereafter is associated with
finite boundary assumed in the FEM solution, as the computa-
tions with different extension of the domain indicated.

Conclusions

Although it is difficult to assert with certainty that the trial
velocity fields are ideal for the general case, from the computa-
tions performed for elliptical and near-rectangular opening it
appears that they are adequate. Some interesting properties were
observed for the relative closure x intreduced in the paper as
“‘dynamic eccentricity.’’ It was found that for all eccentricities
and power exponents (both in elliptical and near-rectangular
openings) the relative closure rates become constant after about
three months, while the steady state is reached after about six
years. It indicates that the rapid stress redistribution occurs early
in the transient creep stage. We noted that the velocity field
obtained from numerical calculations (FEM) along different
lines bisecting the opening were linearly related. It is suggested
(and it is a subject of further analysis) that it results from
general properties of ellipses ( Auerbach et al., 1935).
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Critical Angle of Shear Wave
Instability in a Film’

D. R. Woods'*'? and S. P. Lin!"*?

The onset of instability in a liquid film flowing down an
inclined plane may manifest itself as long surface waves (soft
mode) (Benjamin, 1957; Yih, 1963) or short shear waves (hard
mode) (Lin, 1967; DeBruin, 1974; Chin et al., 1986; Floryan
et al., 1987), depending on the angle of inclination 6. Floryan,
Davis, and Kelly (1987) showed that the change in the critical
Reynolds number of the hard mode may not be monotonic as
the angles of inclination # is reduced, or as the surface tension
is increased. On the other hand the critical Reynolds number
of the soft mode increases monotonically with reduction in ¢
for all surface tension. Hence, there exists a critical angle de-
pending on the surface tension below which the film becomes
unstable with respect to shear waves, and above which the
film becomes unstable with respect to surface waves. Here, we
confirm the finding of Floryan et al. by use of the Chebychev
spectral method (Woods and Lin, 1995). Moreover, we obtain
the upper bounds of the critical angle of inclination and the
lower bound of the critical Reynolds number for all finite sur-
face tension.

Consider a uniform layer of liquid flowing down an inclined
plane under the action of gravity. The basic flow which satisfies
exactly the Navier-Stokes equations has a parabolic distribution
of velocity @ y) parallel to the incline (Benjamin, 1957; Yih,
1963), where y is the distance measured perpendicularly to the
flow direction from the middepth of the liquid layer in the unit
of the half-layer thickness D. When such a parallel flow is
perturbed by an arbitrary Fourier component of the two-dimen-
sional disturbance, the amplitude of the velocity disturbance
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must satisfy the Orr-Sommerfeld equation (Benjamin, 1957;
Yih, 1963).

¢ ~ 207" + a‘d
—ia Re[(T — c)(¢" — a’¢) —w'¢] =0, (1)

where ¢ is the normal mode amplitude of the perturbation
stream function

Y = ¢(y) explia(x — c1)]. (2)

« is the wave number; x is the dimensionless distance measured
in the flow direction; ¢ is the complex wave speed; ¢ is time;
primes on ¢ and i denote differentiation with respect to y; and
Re = Reynolds number = U,D/v, U, and v being, respectively,
the average velocity and the fluid kinematic viscosity. Upon
substituting the Chebyshev series expansion of ¢(y)

o) = 2 aT(y)

n=0

(3)

into the Orr-Sommerfeld equation and its boundary conditions,
and demanding the coefficient of the nth order Chebychev poly-
nomial T,(y) of the resulting equation to be zero (Woods and
Lin, 1995), we have

N
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2 (=), =0, 2 (=1)""'n’a, = 0, (5)
n=0 N n=0
Y a, + [u(1) —clh =0, (6)
=0
3 [n*(n? - 1)/3 + a?la, + T"(1)h = 0, (7)
v =0
Y [n*(n? — 1)(n? — 4)/15
n=0

— 3a*n® — ia Re(3/2 - ¢)n?la,

— ia[(3 cot 8)/4 + a® ReWelh = 0, (8)
where Q = 3 Re/4, Re being the Reynolds number defined by
Re=U,Dl/v,c,=2,¢,=1(n>0), We is the Weber number
defined by We = §/pU2D, S being the surface tension, and A

is the displacement of the free surface from its unperturbed
position. Equation (4) corresponds to the Orr-Sommerfeld
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The onset of instability in a liquid film flowing down an
inclined plane may manifest itself as long surface waves (soft
mode) (Benjamin, 1957; Yih, 1963) or short shear waves (hard
mode) (Lin, 1967; DeBruin, 1974; Chin et al., 1986; Floryan
et al., 1987), depending on the angle of inclination 6. Floryan,
Davis, and Kelly (1987) showed that the change in the critical
Reynolds number of the hard mode may not be monotonic as
the angles of inclination # is reduced, or as the surface tension
is increased. On the other hand the critical Reynolds number
of the soft mode increases monotonically with reduction in ¢
for all surface tension. Hence, there exists a critical angle de-
pending on the surface tension below which the film becomes
unstable with respect to shear waves, and above which the
film becomes unstable with respect to surface waves. Here, we
confirm the finding of Floryan et al. by use of the Chebychev
spectral method (Woods and Lin, 1995). Moreover, we obtain
the upper bounds of the critical angle of inclination and the
lower bound of the critical Reynolds number for all finite sur-
face tension.

Consider a uniform layer of liquid flowing down an inclined
plane under the action of gravity. The basic flow which satisfies
exactly the Navier-Stokes equations has a parabolic distribution
of velocity @ y) parallel to the incline (Benjamin, 1957; Yih,
1963), where y is the distance measured perpendicularly to the
flow direction from the middepth of the liquid layer in the unit
of the half-layer thickness D. When such a parallel flow is
perturbed by an arbitrary Fourier component of the two-dimen-
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must satisfy the Orr-Sommerfeld equation (Benjamin, 1957;
Yih, 1963).

¢ ~ 207" + a‘d
—ia Re[(T — c)(¢" — a’¢) —w'¢] =0, (1)

where ¢ is the normal mode amplitude of the perturbation
stream function

Y = ¢(y) explia(x — c1)]. (2)

« is the wave number; x is the dimensionless distance measured
in the flow direction; ¢ is the complex wave speed; ¢ is time;
primes on ¢ and i denote differentiation with respect to y; and
Re = Reynolds number = U,D/v, U, and v being, respectively,
the average velocity and the fluid kinematic viscosity. Upon
substituting the Chebyshev series expansion of ¢(y)

o) = 2 aT(y)

n=0

(3)

into the Orr-Sommerfeld equation and its boundary conditions,
and demanding the coefficient of the nth order Chebychev poly-
nomial T,(y) of the resulting equation to be zero (Woods and
Lin, 1995), we have
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where Q = 3 Re/4, Re being the Reynolds number defined by
Re=U,Dl/v,c,=2,¢,=1(n>0), We is the Weber number
defined by We = §/pU2D, S being the surface tension, and A

is the displacement of the free surface from its unperturbed
position. Equation (4) corresponds to the Orr-Sommerfeld

DECEMBER 1996, Vol. 63 / 1051

Copyright © 1996 by ASME

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



equation. Equations (5), (6), (7), and (8) arise, respectively,
from the no-slip condition at the incline, the kinematic condition
at the free surface, the tangential force balance at the free sur-
face, and the normal force balance at the free surface. Equations
(4) to (8) can be obtained from the related work of Woods and
Lin (1995) by putting the amplitude of vibration of the incline
to zero in their corresponding equations, i.e., from their Egs.
(27)—(32). The derivation is lengthy and will not be repeated
here. However, the typographical errors in the coefficients of
a, and 4 in their Egs. (29) and (32) are corrected here. It should
be pointed out that Q in their Eqs. (27) is equal to Re? Fr sin 4,
except that the reference velocity used there is different from here.

For a given set of parameters (Re, We, «, §), the homoge-
neous system of Egs. (4) to (8) constitute a Lanczos’ (Orszag,
1971) eigenvalue problem. IMSL subroutine DGVCCG is used
to obtain the eigenvalue c. ¢, gives the wave speed, and ¢, gives
the temporal growth rate of disturbances, if it is positive. The
flow is stable if ¢; < 0. The flow is neutral if ¢; = 0. The
possible numerical inaccuracy, programing and syntax errors
are tested according to the method described in the work of
Woods and Lin (1995). The results to be presented are accurate
up to the third decimal point.

Figure 1 gives the neutral stability curves ¢; = 0 for the soft
as well as hard modes for several small angles of inclination,
and We = 0. The soft mode neutral curves for § = 0.6’ and
0.5’ are not included because they are too close to the Re-axis
to make the comparison of two modes sufficiently clear with
the same length scale. However, the critical Reynolds numbers
corresponding to these two cases are given in Table 1. In this
_ table the critical Reynolds numbers for the hard modes are
listed together with that given by DeBruin and Floryan et al.
DeBruin’s results are given in the first, and that of Floryan are
given in the second parantheses. For the soft mode our results
agree with that of Floryan et al., and DeBruin’s results are given
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Table 1 Critical Reynolds numbers

Hard
7] Soft present (DeBruin) (Floryan et al.)
60’ 72 (72) 5602 (5600) (5602)
3! 1432 (1430) 3711 (3700) (3711)
1 4297 (4300) 5391 (5400) (5363)
0.6' 7162 (—) 7392 (—) (—)
0.56" 7673 (—) 7981 (—) (—)
0.5' 8594 (8600) 8373 (8500) (8369)

in parantheses. It should be pointed out that while the length
and velocity are scaled, respectively, with D and U, in this
work, they are scaled with 2D and 3U,/2 in the works of
DeBruin and Floryan et al. Therefore the critical Reynolds num-
bers, Re, including those indicated in Fig. 1 are multiplied by
three before entering in Table 1. The Re for § = 60' and 3'
agree with that of Floryan et al. For # = 1’ and 0.5 our Re
are slightly larger than that of theirs. Our results are much closer
to that of Floyan et al. than that of DeBruin. Indeed, the critical
Reynolds number of the hard mode first decreases with decreas-
ing @ but increases when # is further decreased below 3'. The
critical Reynolds number for the soft mode increases monotoni-
cally with the decreasing . The critical Reynolds number for
the soft mode remains smaller than that for the hard mode until
0.56'. Below this angle the hard mode becomes more unstable
than the soft mode. Thus, in a deep open channel flow along a
gentle slope, one may observe the growth of short shear waves
under a relatively quiescent surface. At this critical angle both
the hard and soft modes become unstable simultaneously at Rc
= 7673. We found numerically, as Floryan et al. did, that the
surface tension slightly stabilizes the hard mode at 8 < 4.
Therefore, the critical angle we found for zero surface tension
provides the upper bound for the angle of inclination below
which the hard mode is more unstable in a film with finite
surface tension. Moreover, Rc = 7673 for the zero surface
tension case offers the lower bound of Re for the case of finite
surface tension.
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A General Formulation of the Theory of
Wire Ropes’

C. Jolicoeur.® This paper presents an elegant way to extend
a strand model into a wire rope model. The present writer has
appreciated very much the basic principle of this work which
consists in the replacement of the individual wires by structures
that have a more complex behavior than wires and that need
an increased number of parameters to describe this behavior in
the rope. This is an approach that is related to the homogeniza-
tion methods.

The author used Costello’s model (1990) as a starting point,
and has extended it to incorporate the added parameters. He
could probably have used another model, but this choice is a
reasonable one since Costello’s model has proven very reliable
for strand modeling (Jolicoeur and Cardou, 1991). The equa-
tions provided in the paper for the case of a linear strand should
then give identical results with Costello’s model. This was not
demonstrated in the paper and the présent writer has attempted
to verify this. In so doing, some flaws have appeared in the
formulation of the equations, hence the present discussion.

The main problem identified is in the use of the term
V1 + k? (where k = tan «) in Egs. (39) and (53). As formu-
lated, when doing the summation for a,, for example, the terms
corresponding to layers that have a left-hand lay (i.e., & > 90)
take a negative value, leading to an incorrect result for a,. In
other models, use is rather made of sin & and cos & and, in
fact, the following identity

1
cos a =
;l + tan® a

is valid for & < 90 deg. When & > 90 deg, a sign error occurs,
leading to the aforementioned problem. To correct the error, it
is recommended to replace V1 + k7 by 1/cos o; in Egs. (39)
and (53). For the case of a linear strand, Eqs. (53) would be
rewritten as

n
T
a, = TERE + 2, — m; E;R}7k; cos a;
=1

1 1 - 4 1
X + k- | ——+ k- —=— |A
[l + v ! (l + v ’ R?K?) [_

-y o m; E;R}Tik; cos a;
i=1
Vi 1 — vy 4
X — ki + -+ kP - —=— |
[l+v‘- A (l+u, 4 R,?x,?)“_

' By W. Jiang and published in the Sept, 1995 issue of the ASME JOURNAL OF
APPLIED MECHANICS, Vol. 62, pp. 747-755.

? Department of Mechanical Engineering, Universite Laval, Quebec G1K 7P4,
Canada.
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Discussion

. 1+ 2,
¢=— 2 Em.-E;R}‘K, cos? a[[(l +17V'k.»2)k,2

+ v

2u; 4
+ {1 +kf———kf— A
( I + v R?K?) [:I
‘?TEoRg i

% ¥ l—rm,E,R;‘K, cos? a,[(l + 2k
i=1

i=]

d, = 220
(1 + o)

1 2v; 4
+ k:‘ kf;_ l+k,2__lk;i_ i .
+ v, ) " ( L+, R%xf)“]

In addition to this, a typing error has been found in the second
of Egs. (57) where the term A;_, should be replaced by p;-,.

Results obtained with the modified equations have proven
identical (to the fifth significative digit or better) with results
obtained using Costello’s (1990) model for two selected multi-
layered strands, namely the Drake 26/7 ACSR and the Rail 45/
7 ACSR, which are referenced to in Jolicoeur and Cardou
(1991, 1996).
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A General Formulation of the Theory of
Wire Ropes®

S. Sathikh®, Jayakumar®, and C. Jebaraj*. The author
deserves congratulations for his significant contribution to the
rope mechanics through this general formulation. The writers
have two points for discussion. First, the question of symmetry
of the response of a linear elastic strand or rope structure is not
ensured in Eqgs. (38) and (52) since b # ¢ in Eqgs. (39) and
(53). Jolicoeur and Cardou (1991) have dealt with this subject
of lack of symmetry in several earlier formulations, including
the five references of Costello’s team in this paper. They showed
that the lack of symmetry does not significantly affect the re-
sponses. The work of Kumar and Cochran (1987) is worth

*By W. Jiang and published in the Sept. 1995 issue of the ASME Journal of
Applied Mechanics, Vol, 62, pp. 747-755.

* Department of Mechanical Engineering, Crescent Engineering College, Ma-
dras 600 048, India.

* Department of Mechanical Engineering, Anna University, Madras 600 025,
India.
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mention since the formulation of the linearized problem is al-
most similar to that of the present paper, though lacking symme-
try. Only the symmetry of the problem and response would
guarantee the correctness of the theory and the soundness of the
method used. Incidently, in a complex rope structure symmetry
could help simplify the computation, since b = ¢. Recently the
team of the senior writer (Sathikh et al., 1996a) has identified
the origin of the lack of symmetry and formulated the symmetric
problem and its solution.

This could be achieved only if the formulation follows Wempner
(1973) and Ramsey (1990) by considering the wire stretch £ as an
independent parameter in the definition of the constitutive equations
for H and G. Though the author has improved the formulation by
considering £, but only for H, this partial treatment does not guaran-
tee symmetry and correctness. Hence, Eq. (8) for G also should
include a term with £ as Eq. (7) for H so that

H.' = ngl' + deT"
G; = A,‘AKI- + B:{i-

(7
(D1)
In order to explain this, the simplest example of a resting-lay
strand with a rigid core and single layer of m helical wires and

its linearized responses are considered neglecting the Poisson’s
effect. For this case it can be shown that

E=c€sina+ rtan a ¢ cos’ a (D2)

de = sin @ cos a(e — r tan ag) (D3)
Ak = —sin 2ado

= —sin 2« sin & cos a(e — r tan ad) (D4)

AT = cos 2ado = cos 2« sin @ cos a(e — rtan ad) (DS5)

H = GI(AT + 1) (D6)
G = EI(Ak + k&) (D7)

where
GJ/EI = 1/(1 + v) and I = ©R*/4. (D8)

It can be noted that from Egs. (7), (D1), (D6), and (D7) that
the stiffness coefficients are

B\ _ fe\__.,_
A; = EI, (E) = K; (GJ') =7;d; = GJ. (D9)

Substituting &, A7, and Ak in terms of ¢ and ¢, G and H in
Eq. (1) for N, and in turn in Eq. (15) for F and M, it can be
shown that in Eq. (52) b = ¢, and the new values are

&= ag + m{EAsin® a + [GJ cos* a

+ EI sin* &) cos® a sin a/r?) (D10)
b =¢=m({EArsin® @ cos @ + [GJ sin®
— EI(1 + sin? a)] sin® a cos® a/r} (D11)
d = dy + m{ EAr® sin a cos® @ + GJ sin” &
+ EI'sin & cos® @ (1 + sin® @)?} (DI2)

whereas the corresponding values of the paper from Eq. (53)
are

a=4a (D13)
b = m{EAr sin® a cos a

~ [EI sin®* & + GJ cos? @] sin? @ cos® a/r] (D14)
¢ = m{EAr sin® o cos a

— [2EI cos? a + GJ sin? a] sin® & cos a/r) (DI5)
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d =dy, + m{ EAr® sin & cos? &

+ 2EI sin® @ cos’ @ + GJ sin® «}. (D16)

For the general formulation of the paper, this concept could be
readily extended to both resting-lay and closed-pack cases.

Secondly, it is about the limitations of the use of Eqs. (43)
and (59). This expression was originally derived by Timo-
shenko (1956). This is for a case of uncored spring, though
this fact is not explicitly visible. In fact, for a strand with no
core-wire friction for the resting-lay case, what is derived by
LeClair and Costello (1988) for a case with friction is appro-
priate. However, the factor 2k \{EI + kDR + v+ 26 =2
sin a/(2 + v cos? &) in Eqgs. (43) and (59), for the practical
range of @ = 90 deg to 70 deg, is nearly unity and hence does
not affect the results very much for frictionless contacts. A
numerical comparison shows that the bending stiffness for a
low friction typical (3) strand has a factor 1.026 (LeClair Cos-
tello Model 5 in Sathikh et al., 1996b) and 0.927 for a friction-
less cored spring-like () strand (Model 5 in Sathikh et al.,
1996b) against 0.9234 for the uncored spring-like (3) strand of
the paper (Egs. (43) and (59)).

In fact, in a cored strand X = 0 and this warrants wire radial
force to be nonzero, whereas Eqgs. (43) and (59) assume X =
0, as for an uncored spring. An elaborate study of the bending
of a strand has been recently carried out by the senior writer’s
team (Sathikh et al., 1996b) which explains the importance of
X = 0.
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Author’s Closure®

Dr. Jolicoeur correctly points out that the use of the expres-
sion, V1 + k2, will cause a sign error in the case of a left-hand
lay and suggests to replace it by l/cos . Alternatively, the
author suggests to use the negative value of the VI + £ in
such a case to avoid altering the published expressions. From
the mathematic point of view, a square root does have two
signs. Dr. Jolicoeur also correctly points out that there is a
typing error in Eq. (57). The author then notices a similar
typing error in the second of Eq. (55), where \,_; should also
be replaced by ;.

Dr. Sathikh et al. emphasize the importance of the symmetry
of the linear force-strain relationships, Egs. (38) and (52), and
suggest to include a term with £ into the G expression. The lack
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of symmetry is very common in cable-wirerope analysis. The
difference between b and ¢, however, is insignificant, as is already
well known. It should be noted that while the satisfaction of the
Maxwell-Betti reciprocal theorem does make the solution sound
and consistent, a slight deviation from that theorem does not make
the solution incorrect, because the Maxwell-Betti theorem was
established on the linear theory, which is an approximation of the
nonlinear theory with small terms being neglected. A fact is that
the nonlinear solution is much more accurate, where there is no
place for the Maxwell-Betti theorem. Of course, the symmetry of
the problem and response would make the theory and method
more ideal. The problem is thus whether any modifications are
reasonable and can actually improve the accuracy.

The author would like to suggest that Dr. Sathikh et al. further
substantiate their modifications. First of all, the correctness of
their Egs. (D6) and (D7) needs to be proved, and how the axial
strain £ can induce moments H and G in a wire should be
explained. Note that Eq. (7) is justified in the wire rope analysis
because of the well-known coupled extensional-torsional behav-
ior of the cable structure. Note also that in the case of a wire
such a coupled behavior is not considered in the paper (¢ = 0).
Secondly, the use of Egs. (D6) and (D7) only results in a slight
changc of Eq. (53),

maERiT K,
a1l + 1

1 1 4
X[(l+ui+kg)ﬂ(l+v;+k}_l—?}?)h]

Z maER T
4;1 + i}
Vi 1 2 4
X k,— i + G kj == i
[l + v i (1 + v R?K%)“]
mmwER k;
L4+ kz)m

x[(1+1—+—2y*kf)k%—(kf+ﬂik? :2)?\:]
1+lfl- I+U|' R,‘

TERY i mrER} [(

il

wER} + Z

as

b, = -

T g;

1 + Zk,z =+ #k‘i‘)k}ﬁ

T A0 +v) DA+ )" 1+,
l + 21’; 4 4 '
+ (kf T = K+ B )u,] (53)

and the symmetry can only be reached, as Dr. Sathikh et al.
demonstrate, for a very special case of a single resting lay with
a rigid core with no Poisson’s effect, because at that time X\,
and p, assume very special values,

B
h:
'"TI+ R
ok
Hi l+kl;'

In general, \;, and u, are much more complex as are shown in
the paper, and the symmetry still cannot be achieved. Note also
that the difference between Egs. (D10)— (D12) and Eqs. (D13)-
(D16) is insignificant (of the order of R*/r?).
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Dr. Sathikh et al. then discuss the limitation of Egs. (43) and
(59), and indicate that ‘‘an elaborate study of the bending of a
strand has been recently carried out.”” The details, however, are
not given. The author would like to congratulate them on such
an accomplishment,

Discussion

P. R. Heyliger’. Two papers have recently appeared on
the free vibration of elastic solids with traction-free faces (Liew,
Hung and Lim, 1995; Young and Dickinson 1995). Several
important related studies were not cited in either paper. These
include the work of Demarest (1971), Ohno (1976), and Mind-
lin (1986), who studied the rectangular parallelepiped, and
Visscher and co-workers (1991), who examined a wide variety
of shapes including spheres, cylinders, parallelepipeds, ellip-
soids, pyramids, and cones.

References

Demarest, H. H., 1971, “*Cube-resonance method to determine the elastic con-
stants of solids,”" Journal of the Acoustical Society of America, Vol. 49, pp. 768-
775.

Liew, K. M., Hung, K. C., and Lim, M. K., 1995, *‘Free Vibration Studies
on Stress-Free Three-Dimensional Elastic Solids,”” ASME JOURNAL OF APPLIED
MecHanics, Vol 62, pp. 159-163.

Mindlin, R. D., 1986, ‘On vibrations of rectangular parallelepipeds,”” Interna-
tional Journal of Solids and Structures, Vol, 22, pp. 1423-1430.

Ohno, 1., 1976, ‘‘Pree vibration of a rectangular parallelepiped crystal and its

application to determination of elastic constants of orthorhombic crystals,”” Jour-
nal of the Physics of the Earth, Vol. 24, pp. 355-379.
Visscher, W. M., Migliori, A., Bell, T. M., and Reinert, R. A, 1991, *'On the

normal modes of free vibration of inhomogeneous and anisotropic elastic objects,”
Jowrnal of the Acoustical Society of America, Vol. 90, pp. 2154-2162,

Young, P. G., and Dickinson, 5. M., 1995, “Free Vibration of a Class of
Homogeneous Isotropic Solids,”” ASME JOURNAL OF APPLIED MECHANICS, Vol
62, pp. 706-708.

Authors® Closure®

The authors are indebted to Dr. Heyliger for his comment
concerning their paper ‘‘Free Vibration of a Class of Homoge-
neous Isotropic Solids’” (Young and Dickinson, 1995) and for
listing some additional important works on elastic solids with
traction-free faces which were not cited in the paper. Particu-
larly of interest is the comprehensive work by Visscher, Migli-
ori, Bell, and Reinert (1991), of which the present writers were
not aware, having overlooked it in the literature! It may be
noted that two approaches are essentially the same since both
seek solutions for which the Lagrangian is stationary and em-
ploy the same simple polynomial basis functions.
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of symmetry is very common in cable-wirerope analysis. The
difference between b and ¢, however, is insignificant, as is already
well known. It should be noted that while the satisfaction of the
Maxwell-Betti reciprocal theorem does make the solution sound
and consistent, a slight deviation from that theorem does not make
the solution incorrect, because the Maxwell-Betti theorem was
established on the linear theory, which is an approximation of the
nonlinear theory with small terms being neglected. A fact is that
the nonlinear solution is much more accurate, where there is no
place for the Maxwell-Betti theorem. Of course, the symmetry of
the problem and response would make the theory and method
more ideal. The problem is thus whether any modifications are
reasonable and can actually improve the accuracy.

The author would like to suggest that Dr. Sathikh et al. further
substantiate their modifications. First of all, the correctness of
their Egs. (D6) and (D7) needs to be proved, and how the axial
strain £ can induce moments H and G in a wire should be
explained. Note that Eq. (7) is justified in the wire rope analysis
because of the well-known coupled extensional-torsional behav-
ior of the cable structure. Note also that in the case of a wire
such a coupled behavior is not considered in the paper (¢ = 0).
Secondly, the use of Egs. (D6) and (D7) only results in a slight
changc of Eq. (53),
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and the symmetry can only be reached, as Dr. Sathikh et al.
demonstrate, for a very special case of a single resting lay with
a rigid core with no Poisson’s effect, because at that time X\,
and p, assume very special values,
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In general, \;, and u, are much more complex as are shown in
the paper, and the symmetry still cannot be achieved. Note also
that the difference between Egs. (D10)— (D12) and Eqs. (D13)-
(D16) is insignificant (of the order of R*/r?).
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strand has been recently carried out.”” The details, however, are
not given. The author would like to congratulate them on such
an accomplishment,
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Anisotropic Elasticity: Theory and Applications (Oxford En-
gineering Science Series, Vol. 45), by T. C. T. Ting. Oxford
University Press, New York, NY 1996. 570 pages. Price:
$85.00.!

REVIEWED BY C. O. HORGAN?

The author states in the preface to this book that, in the
early 1980s, motivated by the upsurge in research on composite
materials, he embarked on anisotropic elasticity research ‘‘with
little background on isotropic elasticity’” and *‘reluctant and
apprehensive in venturing into anisotropic elasticity.”” He need
not have worried. The book under review is a masterly account
of the fundamental theory of linear anisotropic elasticity and
its applications, with emphasis on the two-dimensional theory.

The book consists of 15 chapters. Following a brief 30-page
introductory chapter on a summary of relevant results from
Matrix Algebra, Chapter 2 presents the basic stress-strain laws
for general anisotropic elastic materials, including classification
of materials according to the number of symmetry planes. Chap-
ter 3 is concerned with the basic theory and applications of anti-
plane shear deformations. It is refreshing to see this topic treated
in a linear elasticity book before embarking on the considerably
more-complicated plane problems. Chapter 3 discusses some
very recent developments from the research literature on the
anti-plane shear theory. The remainder of the book, except for
the final Chapter 15, is concerned with the two-dimensional
plane theory of elasticity. The well-known Lekhniskii formula-
tion, involving a fourth-order partial differential equation for
an Airy stress function, is briefly summarized in Chapter 4 (15
PpP).

The remaining chapters form the core of this book. The author
is one of the pioneers in the use of the Stroh formalism as
an alternative to the Lekhnitskii approach, and this method is
described in detail in Chapters 5-7 (108 pp). As the author
points out in the preface, this algebraic method was first devel-
oped by A.N. Stroh in 1958 and 1962; it has been widely
used by the physics, materials science, and applied mathematics
communities. The present account is the first to appear in book
form, and the author clearly hopes to persuade solid mechanics
researchers of its utility. A nice personal touch is provided at
the end of Chapter 5, where a brief historical account, including
a biography of Stroh (1926-1962), is given.

Applications of the Stroh formalism to special subjects are
presented in Chapters 8—12, whose contents may be surmised
from the chapter headings. Topics covered include Green's
functions for infinite space, half-space, and composite space;
particular solutions, stress singularities, and stress decay; aniso-
tropic materials with an elliptic boundary; anisotropic media

! Originally published in the October 1996 issue of ASME Applied Mechanics
Reviews, Vol. 49, No. 10, p. B110 (Review number 10R16).
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of Virginia, Charlottesville, VA 22903.

1056 / Vol. 63, DECEMBER 1996

with a crack or a rigid line inclusion; and steady state motion
and surface waves. The concluding three chapters are entitled
“‘Degenerate or near degenerate materials,”” of which the iso-
tropic materials are a special case; ‘*Generalization of the Stroh
formalism,’” which treats more general boundary conditions and
extension to thermoelasticity and piezoelectric materials; and
““Three-dimensional deformations.”” An extensive reference
list, together with an author and subject index completes the
book.

In the preface, the author express the hope ‘‘that this book
will be useful for the beginners as well as the more advanced
researchers who are interested in anisotropic elasticity.”” This
reviewer believes that this will certainly be the case. This is a
carefully written account of the fundamental mathematics and
mechanics of anisotropic linearly elastic solids by a leading
researcher in the field. While the Stroh formalism dominates
the treatment in the book (and is clearly the author’s preference
over the methods of Lekhnitskii), Anisotropic Elasticity: The-
ory and Applications is a self-contained exposition of aniso-
tropic linear elasticity that will undoubtedly become one of the
classic reference books on the subject.

The Stone Skeleton: Structural Engineering of Masonry Ar-
chitecture, by Jacques Heyman. Cambridge University Press,
New York, 1995. 160 pages. Price: $59.59.

REVIEWED BY J. H. LIENHARD*

Jacques Heyman looks at ancient buildings in his book, The
Stone Skeleton. Then he tells how the nature of structural design
changed 400 years ago. The change began right after 1638
when Galileo wrote a crude theory for calculating stresses in a
cantilever beam in his Two New Sciences. Ever since then,
structural engineers have focused on stress analysis. They have
asked, in greater and greater detail, what loads cause beams to
crack or arches to collapse. Ever since Galileo, new kinds of
mathematics have steadily given us better means for answering
those questions.

Ancient and medieval design was another matter entirely.
The old masons did not study the theorems and proofs of Euclid.
Rather, they used their squares and compasses to form marvel-
ous geometric shapes in stone. Masons found natural shapes
that would remain in static equilibrium—even when they were
disturbed. As long as you do not subject stone to tension or
shear forces that have the effect of sliding one stone on another,
masonry stands up. The old cathedrals have repeatedly survived
earthquakes and bombing raids that have leveled the cities
around them.

In 1675, a generation after Galileo, Robert Hooke made a
point that dramatizes the way the old masons built with stone.

* M. D. Anderson Professor of Mechanical Engieering and History, University
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